JP2011137632A - Cold storage medium, cold accumulator, and cryogenic cold storage type refrigerating machine - Google Patents

Cold storage medium, cold accumulator, and cryogenic cold storage type refrigerating machine Download PDF

Info

Publication number
JP2011137632A
JP2011137632A JP2011087213A JP2011087213A JP2011137632A JP 2011137632 A JP2011137632 A JP 2011137632A JP 2011087213 A JP2011087213 A JP 2011087213A JP 2011087213 A JP2011087213 A JP 2011087213A JP 2011137632 A JP2011137632 A JP 2011137632A
Authority
JP
Japan
Prior art keywords
regenerator
stage
particles
bismuth
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011087213A
Other languages
Japanese (ja)
Other versions
JP5578501B2 (en
Inventor
Toshimi Sato
敏美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2011087213A priority Critical patent/JP5578501B2/en
Publication of JP2011137632A publication Critical patent/JP2011137632A/en
Application granted granted Critical
Publication of JP5578501B2 publication Critical patent/JP5578501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a more environment-friendly and inexpensive cold storage medium easily turned into a spherical shape, having sufficient mechanical strength for use and having a superior thermal property when used for a refrigerating machine. <P>SOLUTION: The cold storage medium includes granular bodies of bismuth alone in which a rate of the granular bodies having &ge;0.14 mm and &le;1.6 mm of a grain size is set to be 70 wt.% or more with respect to the whole granular bodies and a rate of the granular bodies of which ratio of the major axis with respect to the minor axis is 5 or less is set to be 70 wt.% or more with respect to the whole granular bodies. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、蓄冷材、蓄冷器及び極低温蓄冷式冷凍機に係り、特に、GM(ギフォード・マクマホン)サイクル冷凍機、スターリングサイクル冷凍機、パルス管冷凍機、ビルミエサイクル冷凍機、ソルベーサイクル冷凍機、又は、これを予冷段に使った冷凍システム等に用いるのに好適な、新規な蓄冷材を用いて冷凍能力を向上させた蓄冷材、蓄冷器、極低温蓄冷式冷凍機、及び、これを用いた冷凍システム、超電導磁石、核磁気共鳴イメージング(MRI)装置、クライオポンプ、寒剤精製装置、超電導素子冷却装置等に関する。   The present invention relates to a regenerator material, a regenerator, and a cryogenic regenerator refrigerator, and in particular, a GM (Gifford McMahon) cycle refrigerator, a Stirling cycle refrigerator, a pulse tube refrigerator, a Birmier cycle refrigerator, and a Solvay cycle refrigerator. Regenerators, regenerators, cryogenic regenerators with improved refrigerating capacity using new regenerators, suitable for use in refrigeration systems, etc., used in the precooling stage, and the like The present invention relates to a refrigeration system, a superconducting magnet, a nuclear magnetic resonance imaging (MRI) apparatus, a cryopump, a cryogen purification apparatus, a superconducting element cooling apparatus, and the like.

現在、極低温領域で広く使われている冷凍機の一つに、蓄冷式冷凍機がある。これは、蓄冷器と称される蓄熱型の熱交換器を備えている。この蓄冷器は、容器内部に蓄冷材と呼ばれる熱交換材料を内蔵している。   Currently, one of the refrigerators widely used in the cryogenic region is a regenerative refrigerator. This includes a heat storage type heat exchanger called a regenerator. This regenerator has a heat exchange material called a regenerator built in the container.

蓄冷材としては、対象となる温度で大きな比熱を持つ材料が用いられる。冷凍機は、室温から4Kまでの広い温度が実現されているので、その全領域で、できる限り大きな比熱を持つ材料を選ぶ必要がある。比熱は、材料によって温度依存性が大きく異なっており、1つの材料で全温度領域に対応できるものはない。そのため、温度に応じて最適な材料を組合せて用いられている。通常、室温から50K付近までは金網状の銅やステンレス鋼を用い、それ以下の温度では球状の鉛を用いている。鉛は、50K以下の低い温度領域で、他の材料より高い比熱と、ある程度の構造的強度を持ち、安価でもあることから、広く用いられてきている(例えば特許文献1参照)。   A material having a large specific heat at the target temperature is used as the cold storage material. Since the refrigerator has a wide temperature range from room temperature to 4K, it is necessary to select a material having a specific heat as large as possible in the entire region. The specific heat is greatly different in temperature dependency depending on the material, and no single material can cope with the entire temperature region. For this reason, optimum materials are used in combination according to the temperature. Usually, wire mesh copper or stainless steel is used from room temperature to around 50K, and spherical lead is used at temperatures lower than that. Lead has been widely used because it has a specific heat higher than other materials, a certain degree of structural strength, and is inexpensive at a low temperature range of 50K or lower (see, for example, Patent Document 1).

しかしながら、環境に対する影響から、ヨーロッパでは2006年から電気製品への使用を禁止する指令が施行されることが検討されている。電気製品の半田に鉛が使われており、廃棄後、戸外に放置されることで環境が汚染されることへの対策という側面が強い。   However, due to the impact on the environment, it has been considered that a directive prohibiting use in electrical products will be enforced in Europe in 2006. Lead is used in the solder of electrical products, and it has a strong aspect of dealing with environmental pollution by being left outdoors after disposal.

規制の内容は、一部の軍事用、宇宙用を除く殆どの電気製品から鉛を排除するというものである。規制対象品の中には医療機器も入っており、現時点では、MRI装置の冷凍機に使われている鉛が規制対象になるか否かは明確ではないが、禁止された場合、その影響は大きく、何らかの対応策を確保しておく必要がある。   The content of the regulation is to eliminate lead from most electrical products except for some military and space applications. Medical products are also included in the regulated products. At present, it is not clear whether or not lead used in refrigerators of MRI equipment will be regulated. It is necessary to secure some countermeasures.

鉛に替わる蓄冷材として、特許文献2に、インジウムとビスマス及び更に第3の材料の合金が挙げられている。インジウムは、50K以下の温度で鉛に次ぐ比熱を持っているので、その特性を活かそうという思想である。   Patent Document 2 discloses an alloy of indium, bismuth, and a third material as a cold storage material replacing lead. Since indium has a specific heat after lead at a temperature of 50K or less, the idea is to make use of its characteristics.

特開平3−99162号公報JP-A-3-99162 特開2004−225920号公報JP 2004-225920 A

しかしながら、インジウムは大変軟らかい金属であるため、そのままでは蓄冷材として使えず、ビスマスや他の金属との合金にすることで、蓄冷材に求められる硬度まで上げているが、それでも蓄冷材として利用するには不十分である。又、インジウムの価格は鉛の約3倍であり、蓄冷材として使うのには高すぎるという問題がある。   However, since indium is a very soft metal, it can not be used as a cold storage material as it is, but it has been raised to the hardness required for the cold storage material by alloying with bismuth and other metals, but it is still used as a cold storage material Is not enough. Moreover, the price of indium is about three times that of lead, and there is a problem that it is too expensive to be used as a cold storage material.

本発明は、前記従来の問題点を解決するべくなされたもので、毒性が低く、球状化し易く、利用するのに充分な機械的な強度があり、安価で、冷凍機に利用したときに優れた熱的性質を持つ蓄冷材を提供することを課題とする。   The present invention has been made to solve the above conventional problems, has low toxicity, is easily spheroidized, has sufficient mechanical strength to be used, is inexpensive, and is excellent when used in a refrigerator. It is an object to provide a regenerator material having excellent thermal properties.

本発明は、ビスマス単独の粒体であり、粒径が0.14mm以上1.6mm以下の粒体の割合が全粒体に対して70重量%以上であり、且つ、短径に対する長径の比が5以下である粒体の割合が全粒体に対して70重量%以上である粒体からなることを特徴とする蓄冷材により、前記課題を解決したものである。   The present invention is a bismuth single particle, the proportion of particles having a particle size of 0.14 mm or more and 1.6 mm or less is 70% by weight or more with respect to all the particles, and the ratio of the major axis to the minor axis The problem is solved by a regenerator material characterized in that the ratio of the particles having a particle size of 5 or less is 70% by weight or more based on the total particles.

又、前記粒体の表面粗さを、最大高さRmax基準で100μm以下としたものである。   The surface roughness of the granules is 100 μm or less on the basis of the maximum height Rmax.

本発明は、又、ビスマス単独の粒体であり、且つ、粒体の表面粗さが、最大高さRmax基準で100μm以下である粒体からなることを特徴とする蓄冷材により、前記課題を解決したものである。   The present invention also provides the above-mentioned problem by using a regenerator material that is a bismuth-only granule and has a granule whose surface roughness is 100 μm or less on the basis of the maximum height Rmax. It has been solved.

又、前記粒体の組織が、少なくとも一部に非晶質相を含有するようにしたものである。   Further, the structure of the granular body contains an amorphous phase at least partially.

又、前記粒体における、長さ10μm以上の微小欠陥を有する粒子の全粒子に対する割合を30重量%以下としたものである。   Moreover, the ratio with respect to all the particles of the particle | grains which have a micro defect with a length of 10 micrometers or more in the said granule shall be 30 weight% or less.

又、前記粒体の表面が酸化により変色していないようにしたものである。   Further, the surface of the granule is not discolored by oxidation.

又、前記粒体を、ブロック状、ペレット状、又は、板状に焼結、加工したものである。   The granule is sintered and processed into a block shape, a pellet shape, or a plate shape.

本発明は、又、前記の蓄冷材を充填したことを特徴とする蓄冷器を提供するものである。   The present invention also provides a regenerator that is filled with the regenerator material.

又、前記の蓄冷材と、磁性蓄冷材とから構成される2層以上の積層構造としたことを特徴とする蓄冷器を提供するものである。   Moreover, the present invention provides a regenerator characterized by having a laminated structure of two or more layers composed of the regenerator material and a magnetic regenerator material.

又、前記磁性蓄冷材を、HoCu2、HoCu2とGd2O2S又はGAP(GdAlO3)、Er3Ni又はEr3Co、又は、Er3Ni又はEr3CoとGd2O2S又はGAP(GdAlO3)としたものである。   The magnetic regenerator material is HoCu2, HoCu2 and Gd2O2S or GAP (GdAlO3), Er3Ni or Er3Co, or Er3Ni or Er3Co and Gd2O2S or GAP (GdAlO3).

本発明は、又、前記の蓄冷器を具備したことを特徴とする極低温蓄冷式冷凍機を提供するものである。   The present invention also provides a cryogenic regenerator having the above regenerator.

又、前記蓄冷器を最低温冷却段に用いたものである。   Further, the regenerator is used for the lowest temperature cooling stage.

あるいは、前記蓄冷器を中間冷却段に用い、最終冷却段蓄冷器に4K以下に大きな比熱を持つ別な磁性材を用いたものである。   Alternatively, the regenerator is used for the intermediate cooling stage, and another magnetic material having a large specific heat of 4K or less is used for the final cooling stage regenerator.

本発明によれば、蓄冷材としてビスマス単独を用いているので、環境に与える負荷が比較的低い。又、蓄冷材に要求される条件である、球状化し易い、利用するのに十分な機械的な強度がある、安価で、冷凍機に利用したときに優れた熱的性質を持つ等の、蓄冷材として要求される条件を満足している。   According to the present invention, since bismuth alone is used as the cold storage material, the load on the environment is relatively low. In addition, cold storage, which is a condition required for cold storage materials, such as being easily spheroidized, having sufficient mechanical strength to be used, inexpensive, and having excellent thermal properties when used in a refrigerator. Satisfies the requirements for materials.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1には、本発明に係る第1実施形態の蓄冷型極低温冷凍機の概略を模式的に示す。この冷凍機は、本発明を2段式GM冷凍機に適用したものである。   In FIG. 1, the outline of the cool storage type cryogenic refrigerator of 1st Embodiment which concerns on this invention is shown typically. In this refrigerator, the present invention is applied to a two-stage GM refrigerator.

本実施形態の冷凍機1は、図示する如く、圧縮機11から高圧の冷媒ガスが高圧ガス配管12と高圧バルブ13を経て供給され、低圧バルブ14と低圧ガス配管15を経て低圧ガスとして回収される。この冷凍機1では、1段シリンダ2と2段シリンダ3に、1段蓄冷器21と2段蓄冷器31がそれぞれ収容され、両蓄冷器21、31が、駆動モータ16によって駆動され、上下方向に往復動作することにより、各冷却器の下端側が冷却される。   In the refrigerator 1 of the present embodiment, as shown in the figure, a high-pressure refrigerant gas is supplied from a compressor 11 via a high-pressure gas pipe 12 and a high-pressure valve 13 and is recovered as low-pressure gas via a low-pressure valve 14 and a low-pressure gas pipe 15. The In the refrigerator 1, the first-stage regenerator 21 and the second-stage regenerator 31 are accommodated in the first-stage cylinder 2 and the second-stage cylinder 3, respectively, and both the regenerators 21 and 31 are driven by the drive motor 16 to move in the vertical direction. By reciprocating, the lower end side of each cooler is cooled.

前記1段蓄冷器21と2段蓄冷器31の中には、それぞれ1段蓄冷材22と2段蓄冷材32が充填されている。1段蓄冷材22は、銅製のメッシュ150の金網を、例えば970枚積層して形成されている。   The first stage regenerator 21 and the second stage regenerator 31 are filled with a first stage regenerator 22 and a second stage regenerator 32, respectively. The first-stage regenerator material 22 is formed by laminating, for example, 970 metal meshes made of copper mesh 150.

2段蓄冷器(ディスプレーサ)31は、図示する如く、2段蓄冷材32が、体積比でほぼ同量の位置で仕切られた上下2層の積層構造であり、2層目の低温側蓄冷材32Bに顆粒状のHoCu2が充填され、1層目の高温側蓄冷材32Aにバルクを破砕したBi(ビスマス)又は球状のBiが充填されている。   A two-stage regenerator (displacer) 31 has a laminated structure of two upper and lower layers in which a two-stage regenerator material 32 is partitioned at substantially the same amount by volume ratio as shown in the figure, and the second-layer low-temperature regenerator material 32B is filled with granular HoCu2, and the first layer of high-temperature side cold storage material 32A is filled with Bi (bismuth) or spherical Bi crushed in bulk.

本実施形態の冷凍機1の冷却部は、一体的に連続形成された前記1段シリンダ2と2段シリンダ3にそれぞれ収容された1段冷却器21と2段冷却器31とで構成され、1段シリンダの下端(低温端)の1段冷却ステージ23は約40Kまで冷やされ、2段シリンダの下端の2段冷却ステージ33は、例えば7K以下まで冷やされる。又、1段冷却ステージ23と2段冷却ステージ33には電気ヒータ(図示せず)がそれぞれ取り付けられ、その電気入力によって熱負荷が印加され、各ステージの冷凍能力が測定できるようになっている。   The cooling unit of the refrigerator 1 of the present embodiment is composed of a first-stage cooler 21 and a two-stage cooler 31 respectively accommodated in the first-stage cylinder 2 and the second-stage cylinder 3 that are integrally formed. The first stage cooling stage 23 at the lower end (low temperature end) of the first stage cylinder is cooled to about 40K, and the second stage cooling stage 33 at the lower end of the second stage cylinder is cooled to, for example, 7K or less. In addition, an electric heater (not shown) is attached to each of the first-stage cooling stage 23 and the second-stage cooling stage 33, and a heat load is applied by the electric input so that the refrigeration capacity of each stage can be measured. .

なお、図1において、24は1段蓄冷器21のガス通路、25は1段シリンダ2との間を気密にするためのシール、26は1段膨張空間、34は2段蓄冷器のガス通路、36は2段膨張空間であり、ディスプレーサのストロークは25mmである。但し、2段蓄冷器31と2段シリンダ3の間のシールは省略してある。   In FIG. 1, 24 is a gas passage of the first-stage regenerator 21, 25 is a seal for airtightness with the first-stage cylinder 2, 26 is a first-stage expansion space, and 34 is a gas passage of the two-stage regenerator. , 36 is a two-stage expansion space, and the stroke of the displacer is 25 mm. However, the seal between the two-stage regenerator 31 and the two-stage cylinder 3 is omitted.

本実施例において、高温側の蓄冷材32Aとして充填される顆粒状のビスマスは、例えば純度99.99%とすることができ、その粒径は0.14〜1.6mm、好ましくは0.15〜1.4mm、更に好ましくは0.22〜1.3mmである。   In this embodiment, the granular bismuth filled as the high temperature side cold storage material 32A can have a purity of, for example, 99.99%, and its particle size is 0.14 to 1.6 mm, preferably 0.15. It is -1.4mm, More preferably, it is 0.22-1.3mm.

ビスマスサイズ(粒径)と4.2Kの冷凍能力の関係の例を図2に示す。   An example of the relationship between the bismuth size (particle size) and the freezing capacity of 4.2K is shown in FIG.

粒径が0.14mm未満の場合は、蓄冷器に充填する際の密度が高くなりすぎ、冷却媒体であるHeガスの通過抵抗が急激に増大することになる。又、粒径が1.6mmを超える場合には、粒体と冷却媒体との間の熱交換効率が著しく低下してしまう恐れがある。   When the particle size is less than 0.14 mm, the density when filling the regenerator becomes too high, and the passage resistance of He gas, which is the cooling medium, rapidly increases. Moreover, when a particle size exceeds 1.6 mm, there exists a possibility that the heat exchange efficiency between a granule and a cooling medium may fall remarkably.

又、本実施形態のビスマス製蓄冷材の最小径に対する最大径の比(アスペクト比)は、3次元の任意の方向について5以下、好ましくは3以下、更に好ましくは2以下、更に可能な限り球形に近づけることが好ましい。アスペクト比が5を超える場合には、機械的に変形破壊を起こし易くなると共に、高密度で充填することが困難となるため、冷却効率が低下する。   In addition, the ratio of the maximum diameter to the minimum diameter (aspect ratio) of the bismuth regenerator material of this embodiment is 5 or less, preferably 3 or less, more preferably 2 or less, and spherical as much as possible in any three-dimensional direction. It is preferable to approach. When the aspect ratio exceeds 5, mechanical deformation is likely to occur, and it is difficult to fill with high density, so that the cooling efficiency is lowered.

なお、以下に示す本実施形態の冷凍能力1Wの4.2K冷凍機を使用した実験では、ビスマス製蓄冷材は純度99.99%以上、粒径0.3〜0.5mm、アスペクト比5以下の顆粒状のものを使用し、特に断らない限りは、モータ16による運転サイクルは60rpm、ディスプレーサのストロークは30mmである。   In an experiment using a 4.2K refrigerator having a refrigeration capacity of 1 W according to this embodiment shown below, the bismuth regenerator material has a purity of 99.99% or more, a particle size of 0.3 to 0.5 mm, and an aspect ratio of 5 or less. Unless otherwise specified, the operation cycle by the motor 16 is 60 rpm, and the displacer stroke is 30 mm.

まず、図3には、本発明が蓄冷材の素材として使用するビスマスの低温域における体積比熱の特性を、他の蓄冷材として利用されている材料と対比させて示す。ビスマスBiは、化粧品の材料にも使われていることから安全性が高く、環境汚染の心配も無いと考えられ、しかも安価である。一般に、蓄冷材としては、目的とする極低温域における体積比熱が大きいことが要求されるが、図3を見る限りビスマスは鉛Pbに及ばない。但し、5K以上の領域では、磁性蓄冷材であるHoCu2とほぼ一致している特徴を有している。図において、GOSはGd2O2Sの略称である。   First, in FIG. 3, the characteristic of volume specific heat in the low temperature region of bismuth used as a material for the regenerator material in the present invention is shown in comparison with a material used as another regenerator material. Bismuth Bi is also used in cosmetic materials, so it has high safety, is considered to be free from environmental pollution, and is inexpensive. In general, the regenerator material is required to have a large volume specific heat in the intended cryogenic temperature range, but bismuth does not reach lead Pb as far as FIG. 3 is seen. However, in the region of 5K or more, it has a feature that almost coincides with HoCu2 that is a magnetic regenerator material. In the figure, GOS is an abbreviation for Gd2O2S.

実施例1で評価した蓄冷材の硬度測定結果を表1に示す。   Table 1 shows the hardness measurement results of the regenerator material evaluated in Example 1.

Figure 2011137632
Figure 2011137632

ビッカーズ硬度では、ビスマス球は鉛と同等であるといってよい。表面が黒色のBロットの硬度が、表面が金色のAロットに比べて低いが、表面酸化の影響である可能性がある。又、強度に関しては、圧縮強度を測ったところ、圧縮による変形はビスマスの方が鉛より少なく、材料の割れも観察されなかった。このことから、ビスマスは鉛と同等の強度を有していることが分かった。   In Vickers hardness, bismuth spheres can be said to be equivalent to lead. Although the hardness of the B lot whose surface is black is lower than that of the A lot whose surface is gold, there is a possibility that it is due to the effect of surface oxidation. Regarding the strength, when the compressive strength was measured, deformation due to compression was less in bismuth than in lead, and no cracking of the material was observed. From this, it was found that bismuth has the same strength as lead.

次に、鉛とビスマスを2段蓄冷器31に充填して冷凍能力を比較した。蓄冷器構成を図4に示す。鉛、ビスマスともに粒径0.4−0.5mmのものを用いた。ビスマスは、表面が酸化していない球状粉から篩い分けをして用いた。鉛とビスマスの充填量が違うが、ここでは充填体積を揃えて実験を行なった。   Next, lead and bismuth were filled in the two-stage regenerator 31, and the refrigerating capacity was compared. The regenerator configuration is shown in FIG. Both lead and bismuth having a particle size of 0.4 to 0.5 mm were used. Bismuth was used after sieving from a spherical powder whose surface was not oxidized. Although the filling amount of lead and bismuth is different, the experiment was conducted with the filling volume being equal.

最低温度の回転数依存性を図5に示す。2段温度T2は殆ど差がないが、1段温度T1は全回転数領域でビスマス(△印)を用いた方が鉛(○印)より2K程度低くなっている。   The rotation speed dependency of the minimum temperature is shown in FIG. The two-stage temperature T2 is almost the same, but the first-stage temperature T1 is about 2K lower than that of lead (◯ mark) when bismuth (Δ mark) is used in the entire rotation speed region.

1段無負荷時の2段冷凍能力の回転数依存性を図6に示す。試験したどの回転数でもビスマス(△印)の場合の方が鉛(○印)より高い冷凍能力を示している。最高の冷凍能力は48rpmで得られた。60rpmの場合の冷凍能力線図を図7に示す。図5で示したように、1段温度が鉛の場合よりビスマスでは低くなっていた。その結果を反映して、1段に負荷をかけた場合にも、ビスマス(△印)の方が鉛(○印)より低い温度を示していることがわかる。   FIG. 6 shows the rotation speed dependency of the two-stage refrigeration capacity at the first stage no load. At any rotational speed tested, bismuth (Δ mark) shows higher refrigerating capacity than lead (◯ mark). The highest refrigeration capacity was obtained at 48 rpm. The refrigeration capacity diagram at 60 rpm is shown in FIG. As shown in FIG. 5, bismuth was lower than the case where the first stage temperature was lead. Reflecting the result, it can be seen that even when a load is applied to one stage, bismuth (Δ mark) shows a lower temperature than lead (◯ mark).

1段に負荷を入れた時の2段冷凍能力の比較を図8に示す。どの1段温度でもビスマス(△印)の方が鉛(○印)より高い冷凍能力を示している。その差は1段温度が高いほど大きく、45K付近では4.2Kの2段冷凍能力に約10%もの大きな違いが見られる。   FIG. 8 shows a comparison of the two-stage refrigeration capacity when a load is applied to the first stage. Bismuth (Δ mark) shows higher refrigerating capacity than lead (◯ mark) at any one stage temperature. The difference is larger as the first stage temperature is higher, and a large difference of about 10% is seen in the second stage refrigeration capacity of 4.2K near 45K.

次に、表面状態及び粒径の違いによる冷凍能力の違いを評価した。ビスマス球は大きさ0.1mm刻みで篩い分けした。評価した分類を表2に示す。なお、低温側には、図4(B)と同様に、HoCu2110g+GOS93.7gを充填した。   Next, the difference in refrigerating capacity due to the difference in surface condition and particle size was evaluated. Bismuth spheres were sieved in 0.1 mm increments. The evaluated classification is shown in Table 2. The low temperature side was filled with HoCu 2110 g + GOS 93.7 g as in FIG.

Figure 2011137632
Figure 2011137632

図9は、ビスマスの条件をパラメータとした2段冷凍能力の1段温度依存性を示している。黒い点がBロットに対応し、白抜き点がAロットに対応する。同ロット内の粒径による違いに比べて、ロット間の違いが大きい。特に1段温度T1が40Kより高い範囲で、ロット間の違いが、より大きくなっていることが分かる。   FIG. 9 shows the first-stage temperature dependence of the two-stage refrigeration capacity with the bismuth condition as a parameter. Black dots correspond to B lot, and white dots correspond to A lot. The difference between lots is larger than the difference due to the particle size in the same lot. In particular, it can be seen that the difference between lots is larger in the range where the first stage temperature T1 is higher than 40K.

ビスマスの粒径による2段冷凍能力の違いを図10に示す。1段温度T1を25K〜45Kまで、5K刻みで描いてある。黒い点がBロットに対応し、白抜き点がAロットに対応する。ロット間の比較ができるのは粒径が0.4−0.5mmの場合であるが、違いは1段温度が高いほど大きいことが分かる。それに対して同ロット内の粒径による冷凍能力の違いは少ないと見ることができる。   The difference in the two-stage refrigeration capacity depending on the particle size of bismuth is shown in FIG. The first stage temperature T1 is drawn in increments of 5K from 25K to 45K. Black dots correspond to B lot, and white dots correspond to A lot. Comparison between lots is possible when the particle size is 0.4-0.5 mm, but the difference is larger as the first stage temperature is higher. On the other hand, it can be seen that there is little difference in refrigeration capacity depending on the particle size in the same lot.

1段冷凍能力の場合を図11に示すが、こちらはロット間の違いも実際上無いと見てよい。これは鉛の場合、明らかな粒径依存性が見られたのと対照的である。   The case of the first stage refrigeration capacity is shown in FIG. 11, but it can be seen that there is practically no difference between lots. This is in contrast to the obvious particle size dependence seen with lead.

これらの結果から、評価した範囲ではビスマスの粒径が冷凍能力に与える影響は無いと考えて良い。信頼性等に問題がなければ、使用する粒径範囲が広ければ、購入単価を安くできる。一方、表面の酸化状態が冷凍機性能に影響を与える可能性があり、表面酸化状態による4.2Kにおける冷凍能力の違いを調べた結果を表3に示す。   From these results, it can be considered that the bismuth particle size has no influence on the refrigerating capacity in the evaluated range. If there is no problem in reliability or the like, the purchase unit price can be reduced if the particle size range to be used is wide. On the other hand, the surface oxidation state may affect the refrigerator performance, and Table 3 shows the results of examining the difference in the refrigerating capacity at 4.2 K depending on the surface oxidation state.

Figure 2011137632
Figure 2011137632

鉛に替わる蓄冷材としてビスマスを評価した結果、4K冷凍機用としてビスマスは鉛より優れた性能を示すことが示された。材料の価格も粒径を広く取れる可能性があることから、鉛より安くすることができる可能性がある。ただ表面が酸化すると性能が下がる可能性がある。   As a result of evaluating bismuth as a cold storage material instead of lead, it was shown that bismuth showed better performance than lead for 4K refrigerators. There is a possibility that the price of the material can be made cheaper than lead since the particle size may be widely taken. However, if the surface is oxidized, the performance may decrease.

実際に利用するには、冷凍能力だけでなく材料強度も重要であるが、硬度試験、圧縮試験でビスマスは鉛以上の硬度、強度があることが示された。以上のことから、ビスマスは鉛の替わりに十分使える可能性がある。   For practical use, not only the refrigeration capacity but also the material strength is important, but the hardness test and compression test showed that bismuth has hardness and strength higher than lead. From the above, bismuth may be used in place of lead.

次に、冷凍能力0.5Wの4.2K機による10K以上の温度領域のビスマス特性を評価した。   Next, bismuth characteristics in a temperature region of 10K or higher were evaluated using a 4.2K machine having a refrigeration capacity of 0.5 W.

これまで4K領域におけるビスマスの効果に着目した実験結果について記載した。しかし、GM冷凍機の用途として、4K以外にクライオポンプ等10K以上の領域もある。この温度領域で、従来は、全て鉛が蓄冷材として使われている。鉛を全てビスマスに替えると、10K以上の温度領域では冷凍能力が30%以上低下する結果となっていた。従って鉛フリーが不可欠となった場合、冷凍能力不足のため鉛を全てビスマスに置き換えることでは済まない場合も生じてくる。そこでビスマスを利用して、鉛と同等の冷凍能力を達成する方策を見つけるための実験を行なった。   So far, experimental results focusing on the effect of bismuth in the 4K region have been described. However, as a use of the GM refrigerator, there is a region of 10K or more such as a cryopump other than 4K. Conventionally, all lead is used as a cold storage material in this temperature range. When all the lead was replaced with bismuth, the refrigeration capacity was reduced by 30% or more in the temperature range of 10K or higher. Therefore, when lead-free becomes indispensable, there are cases where it is not possible to replace all lead with bismuth due to insufficient freezing capacity. Therefore, an experiment was conducted to find out how to use bismuth to achieve a refrigerating capacity equivalent to that of lead.

方策の一つとして、ビスマスと他の蓄冷材のハイブリット化が考えられる。そこで、これまで試みた蓄冷材の中から、15K前後で優れた比熱特性を持つ材料を選択して評価した。まずは4Kで使われているHoCu2と、15Kに比熱ピークを持つEr0.7Ho0.3Niを評価した。図3に示したように、Er0.7Ho0.3Niは15K付近に大きな比熱ピークを持っている。GOSは、5K付近の比熱ピークとなる温度以上で極端に比熱が低下することから、評価の対象外とした。   One possible measure is to hybridize bismuth and other cold storage materials. Therefore, materials having excellent specific heat characteristics at around 15K were selected and evaluated from the cold storage materials tried so far. First, HoCu2 used at 4K and Er0.7Ho0.3Ni having a specific heat peak at 15K were evaluated. As shown in FIG. 3, Er0.7Ho0.3Ni has a large specific heat peak in the vicinity of 15K. GOS was excluded from the evaluation because the specific heat was drastically decreased at a temperature higher than the specific heat peak near 5K.

用いた冷凍機は、冷凍能力0.5Wの4.2K機であり、シリンダ寸法は1段内径52mm、長さ191.5mm、2段内径25mm、長さ165mmである。又、ストローク25mm、充填圧力19kgf/cm2G、ディスプレーサモータ回転数60rpmであった。1段蓄冷器は、150メッシュの銅網を900枚充填している。圧縮機の運転周波数は50Hzであった。   The refrigerator used is a 4.2K machine having a refrigeration capacity of 0.5 W, and the cylinder dimensions are a first stage inner diameter of 52 mm, a length of 191.5 mm, a second stage inner diameter of 25 mm, and a length of 165 mm. The stroke was 25 mm, the filling pressure was 19 kgf / cm @ 2 G, and the displacer motor rotation speed was 60 rpm. The single-stage regenerator is filled with 900 pieces of 150 mesh copper mesh. The operating frequency of the compressor was 50 Hz.

本実施例で比較した蓄冷器の構成を図12に、蓄冷器構成の違いによる冷凍能力の違いを図13に示す。   The configuration of the regenerator compared in this example is shown in FIG. 12, and the difference in refrigeration capacity due to the difference in regenerator configuration is shown in FIG.

2段の最低到達温度は、HoCu2が充填されている場合だけ4K以下であった。最も低い温度は、蓄冷器2の場合の2.78Kであり、全てビスマスからなる蓄冷器3の場合の6.14Kとは大きな差がある。一方、1段は全てビスマスからなる蓄冷器3の場合に最も低い温度が達成された。   The lowest temperature reached in the second stage was 4K or less only when HoCu2 was filled. The lowest temperature is 2.78 K in the case of the regenerator 2, which is greatly different from 6.14 K in the case of the regenerator 3 made entirely of bismuth. On the other hand, the lowest temperature was achieved in the case of the regenerator 3 in which the first stage was made of bismuth.

冷凍能力を比較するため、冷凍能力線図から内挿法により2段温度10K、15K、20Kと1段温度50K、60K、70Kの場合の冷凍能力を求めて比較した。図14が2段能力、図15が1段能力である。   In order to compare the refrigeration capacities, the refrigeration capacities at the second stage temperatures of 10K, 15K, and 20K and the first stage temperatures of 50K, 60K, and 70K were obtained and compared from the refrigeration capacity diagrams by interpolation. FIG. 14 shows the two-stage capability, and FIG. 15 shows the one-stage capability.

図14に示した2段能力は、全てビスマス(蓄冷器3)の場合、鉛(蓄冷器1)に比べて低下するが、ビスマスの低温側1/4をHoCu2(蓄冷器5)又はEr0.7Ho0.3Ni(蓄冷器6)で置き換えることで、ほぼ鉛と同等まで回復することが分かる。   The two-stage capacity shown in FIG. 14 is lower in the case of bismuth (cold regenerator 3) than lead (cold regenerator 1), but the low temperature side 1/4 of bismuth is reduced to HoCu2 (cold regenerator 5) or Er0. It can be seen that by replacing with 7Ho0.3Ni (the regenerator 6), it is recovered to almost the same as lead.

一方で、図15に示した1段冷凍能力はビスマスにより向上する。即ち、全てビスマス(蓄冷器3)にした場合、2段温度T2が10K付近の低い温度の場合に1段冷凍能力の値は特に大きい。しかし2段温度が1段冷凍能力に与える効果は大きく、20Kと高くなると1段冷凍能力はハイブリット蓄冷器の場合と同等か、むしろ劣っている。総合的に見ると、鉛に替わる蓄冷機構成としてはビスマスとHoCu2の組み合わせが優れている。   On the other hand, the first-stage refrigeration capacity shown in FIG. 15 is improved by bismuth. That is, when all are made of bismuth (the regenerator 3), the value of the first stage refrigerating capacity is particularly large when the second stage temperature T2 is a low temperature around 10K. However, the effect that the two-stage temperature has on the first-stage refrigeration capacity is large. When the temperature is as high as 20 K, the first-stage refrigeration capacity is equal to or rather inferior to that of the hybrid regenerator. Overall, the combination of bismuth and HoCu2 is excellent as a regenerator configuration replacing lead.

以上のように、本実施形態のビスマスからなる蓄冷材は、鉛より環境に優しい点で優れている上に、例えばHoCu2、Gd2O2S等の磁性蓄冷材や更に他の種類の蓄冷材と併用する等の工夫を施すことにより、従来の鉛以上の蓄冷材として活用することが可能となる。   As described above, the regenerator material made of bismuth of the present embodiment is superior to lead in terms of environmental friendliness, and is used in combination with, for example, a magnetic regenerator material such as HoCu2, Gd2O2S, and other types of regenerator materials. It becomes possible to utilize as a cool storage material more than the conventional lead by giving this device.

又、HoCu2と共に併用する磁性蓄冷材としては、前記Gd2O2Sに限らず、GAP(GdAlO3)や、一般式RxO2S又は(R1−yR’y)xO2S(R、R’は少なくとも一種類の希土類元素、0.1≦x≦9、0≦y≦1)で表わされるものを挙げることができる。この場合、元素R及びR’を、イットリウムY、ランタンLa、セリウムCe、プラセオジムPr、ネオジムNd、プロメチウムPm、サマリウムSm、ユーロピウムEu、ガドリニウムGd、テルビウムTb、ジスプロシウムDy、ホルミウムHo、エルビウムEr、ツリウムTm、又は、イッテルビウムYbとしてもよい。又、Er3Niの代りにEr3Coを用いることもできる。   The magnetic regenerator material used together with HoCu2 is not limited to Gd2O2S, but GAP (GdAlO3), general formula RxO2S or (R1-yR'y) xO2S (R, R 'is at least one kind of rare earth element, 0 .Ltoreq.x.ltoreq.9, 0.ltoreq.y.ltoreq.1). In this case, the elements R and R ′ are yttrium Y, lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd, promethium Pm, samarium Sm, europium Eu, gadolinium Gd, terbium Tb, dysprosium Dy, holmium Ho, erbium Er, thulium. Tm or ytterbium Yb may be used. Further, Er3Co can be used instead of Er3Ni.

又、以上の実施形態では、蓄冷材がビスマス単独の顆粒状(粉体)からなる場合を示したが、本発明の蓄冷材としては、ビスマス単独に限らず、ビスマスを主成分とする合金であってもよい。合金成分としてはアンチモン(Sb)があり、これを、例えば5〜10%程度まで含有させてもよく、このような合金にすることにより硬度を上げることができるという利点もある。   In the above embodiment, the case where the regenerator material is made of granular material (powder) of bismuth alone is shown. However, the regenerator material of the present invention is not limited to bismuth alone, but an alloy containing bismuth as a main component. There may be. As an alloy component, there is antimony (Sb), which may be contained up to about 5 to 10%, for example, and there is an advantage that the hardness can be increased by using such an alloy.

又、ビスマス又はビスマスを主成分とする合金からなる顆粒状の蓄冷材は、溶融金属を回転円板やロール、回転ノズル等を使用し、粒状化と同時に急冷する溶融金属急冷法によって製造してもよく、又、プラズマスプレー法やガスアトマイズ法等任意の製法により製造するようにしてもよい。   The granular regenerator material made of bismuth or an alloy containing bismuth as a main component is manufactured by a molten metal quenching method in which a molten metal is rapidly cooled simultaneously with granulation using a rotating disk, a roll, a rotating nozzle or the like. Alternatively, it may be produced by an arbitrary production method such as a plasma spray method or a gas atomization method.

次に、前記第1実施形態の2段式GM冷凍機を使ったMRI装置である本発明の第2実施形態を図16に示す。   Next, FIG. 16 shows a second embodiment of the present invention which is an MRI apparatus using the two-stage GM refrigerator of the first embodiment.

本実施形態のMRI装置4では、磁場空間48を作り出すために超電導磁石45が用いられている。該超電導磁石45は、液体ヘリウム44に浸漬され、超電導状態まで冷やされている。液体ヘリウム容器43の外部に熱シールド42があり、更に外側には真空容器41がある。液体ヘリウムは注入口46から注入されるが、液体ヘリウム容器43内部に設けられている凝縮部47によって、気化したヘリウムは再び液に戻され、ヘリウムを長期間無補給で運転が可能である。   In the MRI apparatus 4 of this embodiment, a superconducting magnet 45 is used to create a magnetic field space 48. The superconducting magnet 45 is immersed in liquid helium 44 and cooled to a superconducting state. There is a heat shield 42 outside the liquid helium vessel 43 and a vacuum vessel 41 outside. Liquid helium is injected from the inlet 46, but the vaporized helium is returned to the liquid again by the condensing unit 47 provided in the liquid helium container 43, and operation can be performed without supplying helium for a long period of time.

凝縮部47はGM冷凍機1の2段冷却ステージ33と熱的に結合され、継続的に寒冷が供給される。GM冷凍機1の1段冷却ステージ23により熱シールド42が冷却されている。   The condensing unit 47 is thermally coupled to the two-stage cooling stage 33 of the GM refrigerator 1 and is continuously supplied with cold. The heat shield 42 is cooled by the one-stage cooling stage 23 of the GM refrigerator 1.

本実施形態では、GM冷凍機1の冷凍能力が本発明にかかる蓄冷材によって向上されるので、液体ヘリウム44の再凝縮を、より効率的に行なうことができ、ヘリウムの蒸発量がより大きなMRI装置にも対応可能になる。   In this embodiment, since the refrigerating capacity of the GM refrigerator 1 is improved by the cold storage material according to the present invention, the recondensation of the liquid helium 44 can be performed more efficiently, and the MRI with a larger helium evaporation amount. It becomes possible to correspond to the device.

なお、本実施形態では、冷凍機1を液体ヘリウム44の再凝縮に用いていたが、液体ヘリウムを無くし、冷凍機1が直接、超電導磁石45を熱伝導で冷却するように構成することもできる。又、熱シールドを追加し、1段冷却ステージ23と2段冷却ステージ33が、それぞれ別の熱シールドを冷やす、いわゆるシールド冷却型にすることもできる。   In the present embodiment, the refrigerator 1 is used for recondensing the liquid helium 44. However, the liquid helium can be eliminated, and the refrigerator 1 can be configured to directly cool the superconducting magnet 45 by heat conduction. . Further, by adding a heat shield, the first-stage cooling stage 23 and the second-stage cooling stage 33 can be of a so-called shield cooling type in which different heat shields are cooled.

以上の実施形態においては、本発明がGMサイクル冷凍機に適用されていたが、本発明の適用対象はこれに限定されず、パルス管冷凍機、スターリングサイクル冷凍機、ビルミエサイクル冷凍機、ソルベーサイクル冷凍機等の他の蓄冷型極低温冷凍機にも適用できることは明らかである。   In the above embodiment, the present invention is applied to the GM cycle refrigerator, but the application target of the present invention is not limited to this, and a pulse tube refrigerator, a Stirling cycle refrigerator, a Birmier cycle refrigerator, a Solvey It is clear that the present invention can be applied to other regenerative cryogenic refrigerators such as cycle refrigerators.

又、本発明に係る蓄冷型極低温冷凍機を使ったシステムとしては、前記第2実施形態のMRI装置に限らず、NMR装置、超電導磁石装置、クライオポンプ、ジョセフソン電圧標準装置、寒剤情製装置、超電導素子冷却装置、ヘリウム再凝縮装置等にも、同様に適用できることは明らかである。   The system using the regenerator type cryogenic refrigerator according to the present invention is not limited to the MRI apparatus of the second embodiment, but includes an NMR apparatus, a superconducting magnet apparatus, a cryopump, a Josephson voltage standard apparatus, a cryogen product It is obvious that the present invention can be similarly applied to a device, a superconducting element cooling device, a helium recondensing device, and the like.

又、蓄冷材の形状も粒体に限定されず、ブロック状、ペレット状、又は、板状に焼結、加工してから、蓄冷器に充填することもできる。あるいは、蓄冷材を、目開きが0.01mmから1mmになるような網状としたり、目開きが0.01mmから1mmの金属網表面に塗布又はめっきして形成することもできる。   Further, the shape of the regenerator material is not limited to the granular material, and can be filled into the regenerator after being sintered and processed into a block shape, a pellet shape, or a plate shape. Alternatively, the regenerator material may be formed in a net shape having an opening of 0.01 mm to 1 mm, or may be formed by applying or plating on the surface of a metal net having an opening of 0.01 mm to 1 mm.

以上説明したとおり、本発明によれば、環境に優しい材料からなる優れた性能を有する極低温蓄冷材を提供することが可能となり、又、該蓄冷材を充填した極低温蓄冷器、更に該蓄冷器を備えた極低温冷凍機を提供することが可能となり、更には該冷凍機を使用する各種システムを提供することも可能となる。   As described above, according to the present invention, it is possible to provide a cryogenic regenerator material having excellent performance made of an environmentally friendly material, a cryogenic regenerator filled with the regenerator material, and the regenerator. It is possible to provide a cryogenic refrigerator equipped with a refrigerator, and it is also possible to provide various systems using the refrigerator.

本発明に係る第1実施形態の極低温冷凍機の概要を模式的に示す説明図Explanatory drawing which shows typically the outline | summary of the cryogenic refrigerator of 1st Embodiment which concerns on this invention. ビスマスサイズと4.2Kの冷凍能力の関係の例を示す線図Diagram showing an example of the relationship between bismuth size and 4.2K refrigerating capacity 蓄冷材を構成する材料の体積比熱を示す線図Diagram showing volume specific heat of material constituting cold storage material (A)従来の鉛蓄冷器と(B)本発明に係るビスマス蓄冷器の構成を比較して示す2段蓄冷器の要部断面図(A) Cross-sectional view of a main part of a two-stage regenerator showing the configuration of a conventional lead regenerator and (B) a bismuth regenerator according to the present invention. 本発明の実施例1における無負荷時の最低温度の回転数依存性を示す線図The diagram which shows the rotation speed dependence of the minimum temperature at the time of no load in Example 1 of this invention 同じく1段無負荷時の2段冷凍能力の回転数依存性を示す線図Similarly, a diagram showing the rotational speed dependence of the two-stage refrigeration capacity when there is no first stage load 同じく60rpmの場合の冷凍能力線図Refrigeration capacity diagram for 60rpm 同じく1段に負荷を入れた時の4.2Kにおける2段冷凍能力の1段温度依 存性を示す線図Similarly, a diagram showing the temperature dependence of the second stage refrigeration capacity at 4.2K when the first stage is loaded. 同じくビスマスの条件をパラメータとした4.2Kにおける2段冷凍能力の1段温度依存性を示す線図Similarly, a diagram showing the temperature dependence of the first stage of the second stage refrigeration capacity at 4.2K with the bismuth condition as a parameter. 同じく4.2Kにおける2段冷凍能力のビスマス粒径依存性を示す線図Similarly, a diagram showing the bismuth particle size dependence of the two-stage refrigeration capacity at 4.2K 同じく1段冷凍能力のビスマス粒径依存性を示す線図Similarly, a diagram showing the bismuth particle size dependence of the first stage refrigerating capacity 実施例2で比較した2段蓄冷器の要部構成を示す断面図Sectional drawing which shows the principal part structure of the two-stage regenerator compared in Example 2 実施例2における蓄冷器構成の違いによる冷凍能力を比較して示す線図The diagram which compares and shows the refrigerating capacity by the difference in the cool storage structure in Example 2. 同じく2段冷凍能力を比較して示す線図Diagram showing comparison of two-stage refrigeration capacity 同じく1段冷凍能力を比較して示す線図Diagram showing comparison of first-stage refrigeration capacity 本発明の冷凍機をMRI装置に適用した第2実施形態の全体構成を示す概略断面図The schematic sectional drawing which shows the whole structure of 2nd Embodiment which applied the refrigerator of this invention to the MRI apparatus.

1…冷凍機
2…1段シリンダ
3…2段シリンダ
21…1段蓄冷器
22…1段蓄冷材
23…1段冷却ステージ
31…2段蓄冷器
32…2段蓄冷材
32A…高温側蓄冷材
32B…低温側蓄冷材
33…2段冷却ステージ
DESCRIPTION OF SYMBOLS 1 ... Refrigerator 2 ... 1 stage cylinder 3 ... 2 stage cylinder 21 ... 1 stage cool storage 22 ... 1 stage cool storage material 23 ... 1 stage cooling stage 31 ... 2 stage cool storage 32 ... 2 stage cool storage 32A ... high temperature side cool storage material 32B ... Low-temperature side regenerator 33 ... Two-stage cooling stage

Claims (16)

ビスマス単独の粒体であり、粒径が0.14mm以上1.6mm以下の粒体の割合が全粒体に対して70重量%以上であり、且つ、短径に対する長径の比が5以下である粒体の割合が全粒体に対して70重量%以上である粒体からなることを特徴とする蓄冷材。   Bismuth single particles, the proportion of particles having a particle size of 0.14 mm or more and 1.6 mm or less is 70% by weight or more with respect to the whole particles, and the ratio of the major axis to the minor axis is 5 or less. A regenerator material comprising a granule in which the proportion of a certain granule is 70% by weight or more based on the total granule. 前記粒体の表面粗さが、最大高さRmax基準で100μm以下であることを特徴とする請求項1に記載の蓄冷材。   The regenerator material according to claim 1, wherein the surface roughness of the granules is 100 μm or less on the basis of the maximum height Rmax. ビスマス単独の粒体であり、粒径が0.14mm以上1.6mm以下の粒体の割合が全粒体に対して70重量%以上であり、且つ、粒体の表面粗さが、最大高さRmax基準で100μm以下である粒体からなることを特徴とする蓄冷材。   Bismuth-only particles, the proportion of particles having a particle size of 0.14 mm or more and 1.6 mm or less is 70% by weight or more with respect to the whole particles, and the surface roughness of the particles is the highest. A cold storage material comprising particles having a thickness Rmax of 100 μm or less. 前記粒体の組織は、少なくとも一部に非晶質相を含有する請求項1乃至3のいずれかに記載の蓄冷材。   The cold storage material according to any one of claims 1 to 3, wherein the grain structure includes an amorphous phase at least in part. 前記粒体における、長さ10μm以上の微小欠陥を有する粒子の全粒子に対する割合が30重量%以下であることを特徴とする請求項1乃至3のいずれかに記載の蓄冷材。   The regenerator material according to any one of claims 1 to 3, wherein a ratio of particles having microdefects having a length of 10 µm or more to all particles in the granule is 30 wt% or less. 前記粒体の表面が酸化により変色していないことを特徴とする請求項1乃至3のいずれかに記載の蓄冷材。   The regenerator material according to any one of claims 1 to 3, wherein the surface of the granule is not discolored by oxidation. 前記粒体が、ブロック状、ペレット状、又は、板状に焼結、加工されたことを特徴とする請求項1乃至6のいずれかに記載の蓄冷材。   The regenerator material according to any one of claims 1 to 6, wherein the granule is sintered and processed into a block shape, a pellet shape, or a plate shape. 請求項1乃至7のいずれかに記載の蓄冷材を充填したことを特徴とする蓄冷器。   A regenerator that is filled with the regenerator material according to claim 1. 請求項1乃至7のいずれかに記載の蓄冷材と、磁性蓄冷材とから構成される2層以上の積層構造としたことを特徴とする蓄冷器。   A regenerator having a laminated structure of two or more layers constituted of the regenerator material according to any one of claims 1 to 7 and a magnetic regenerator material. 前記磁性蓄冷材が、HoCu2である請求項9に記載の蓄冷器。   The regenerator according to claim 9, wherein the magnetic regenerator material is HoCu 2. 前記磁性蓄冷材が、HoCu2とGd2O2S又はGAP(GdAlO3)である請求項9に記載の蓄冷器。   The regenerator according to claim 9, wherein the magnetic regenerator material is HoCu 2 and Gd 2 O 2 S or GAP (GdAlO 3). 前記磁性蓄冷材が、Er3Ni又はEr3Coである請求項9に記載の蓄冷器。   The regenerator according to claim 9, wherein the magnetic regenerator material is Er3Ni or Er3Co. 前記磁性蓄冷材が、Er3Ni又はEr3CoとGd2O2S又はGAP(GdAlO3)である請求項9に記載の蓄冷器。   The regenerator according to claim 9, wherein the magnetic regenerator material is Er3Ni or Er3Co and Gd2O2S or GAP (GdAlO3). 請求項8乃至13のいずれかに記載の蓄冷器を具備したことを特徴とする極低温蓄冷式冷凍機。   A cryogenic regenerator having the regenerator according to any one of claims 8 to 13. 前記蓄冷器を最低温冷却段に用いたことを特徴とする請求項14に記載の極低温蓄冷式冷凍機。   The cryogenic regenerative refrigerator according to claim 14, wherein the regenerator is used in a lowest temperature cooling stage. 前記蓄冷器を中間冷却段に用い、最終冷却段蓄冷器に4K以下に大きな比熱を持つ別な磁性材を用いたことを特徴とする請求項14に記載の極低温蓄冷式冷凍機。   The cryogenic regenerative refrigerator according to claim 14, wherein the regenerator is used for an intermediate cooling stage, and another magnetic material having a large specific heat of 4K or less is used for the final cooling stage regenerator.
JP2011087213A 2011-04-11 2011-04-11 Cold storage material, regenerator and cryogenic regenerator Active JP5578501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011087213A JP5578501B2 (en) 2011-04-11 2011-04-11 Cold storage material, regenerator and cryogenic regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087213A JP5578501B2 (en) 2011-04-11 2011-04-11 Cold storage material, regenerator and cryogenic regenerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005059648A Division JP2006242484A (en) 2005-03-03 2005-03-03 Cold accumulating material, cold accumulator and cryogenic cold accumulating refrigerator

Publications (2)

Publication Number Publication Date
JP2011137632A true JP2011137632A (en) 2011-07-14
JP5578501B2 JP5578501B2 (en) 2014-08-27

Family

ID=44349202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087213A Active JP5578501B2 (en) 2011-04-11 2011-04-11 Cold storage material, regenerator and cryogenic regenerator

Country Status (1)

Country Link
JP (1) JP5578501B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156084A (en) * 2013-06-20 2017-09-07 住友重機械工業株式会社 Cold storage material and cold storage type refrigeration machine
US11137216B2 (en) 2013-06-20 2021-10-05 Sumitomo Heavy Industries, Ltd. Regenerator material and regenerative refrigerator
EP3805666A4 (en) * 2018-06-04 2022-02-23 Csic Pride (Nanjing) Cryogenic Technology Co., Ltd. Cold storage material and cold storage type cryogenic refrigerator using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058079A (en) 2015-09-17 2017-03-23 株式会社東芝 Cold storage material for cryogenic refrigeration machine, cryogenic regenerator, cold storage type cryogenic refrigeration machine and system with cryogenic cold storage type cryogenic refrigeration machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203272A (en) * 1992-01-27 1993-08-10 Toshiba Corp Cryogenic cold accumulation material and cryogenic cold accumulator using same
JPH11264618A (en) * 1998-03-18 1999-09-28 Toshiba Corp Cold storage material, and cold storage refrigerator
JPH11294882A (en) * 1998-04-08 1999-10-29 Takakuni Hashimoto Storage medium and cold storage type refrigerating machine
JP2003073661A (en) * 2001-06-18 2003-03-12 Konoshima Chemical Co Ltd Rare earth oxysulfide cold storage medium and cold storing machine
WO2003081145A1 (en) * 2002-03-22 2003-10-02 Sumitomo Heavy Industries, Ltd. Cryogenic temperature cool storage device and refrigerator
JP2004143341A (en) * 2002-10-25 2004-05-20 Hirofumi Wada Cold storage material and cold storage type refrigerator using the same
JP2004225920A (en) * 2002-11-27 2004-08-12 Aisin Seiki Co Ltd Cool accumulator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203272A (en) * 1992-01-27 1993-08-10 Toshiba Corp Cryogenic cold accumulation material and cryogenic cold accumulator using same
JPH11264618A (en) * 1998-03-18 1999-09-28 Toshiba Corp Cold storage material, and cold storage refrigerator
JPH11294882A (en) * 1998-04-08 1999-10-29 Takakuni Hashimoto Storage medium and cold storage type refrigerating machine
JP2003073661A (en) * 2001-06-18 2003-03-12 Konoshima Chemical Co Ltd Rare earth oxysulfide cold storage medium and cold storing machine
WO2003081145A1 (en) * 2002-03-22 2003-10-02 Sumitomo Heavy Industries, Ltd. Cryogenic temperature cool storage device and refrigerator
JP2004143341A (en) * 2002-10-25 2004-05-20 Hirofumi Wada Cold storage material and cold storage type refrigerator using the same
JP2004225920A (en) * 2002-11-27 2004-08-12 Aisin Seiki Co Ltd Cool accumulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156084A (en) * 2013-06-20 2017-09-07 住友重機械工業株式会社 Cold storage material and cold storage type refrigeration machine
US11137216B2 (en) 2013-06-20 2021-10-05 Sumitomo Heavy Industries, Ltd. Regenerator material and regenerative refrigerator
EP3805666A4 (en) * 2018-06-04 2022-02-23 Csic Pride (Nanjing) Cryogenic Technology Co., Ltd. Cold storage material and cold storage type cryogenic refrigerator using same

Also Published As

Publication number Publication date
JP5578501B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
EP1854859B1 (en) Cold storage material, cold storage device and very-low-temperature cold storage refrigerator
JP4104004B2 (en) Cold storage type cryogenic refrigerator
US6467277B2 (en) Cold accumulating material, method of manufacturing the same and refrigerator using the material
JP4445230B2 (en) Cryogenic regenerator, regenerator and refrigerator
JP5889743B2 (en) Regenerative refrigerator
JP5578501B2 (en) Cold storage material, regenerator and cryogenic regenerator
US20070227159A1 (en) Regenerator and Cryogenics Pump
JP4237791B2 (en) Manufacturing method of regenerator material
JP2023174677A (en) Cryogenic refrigerating machine, method for manufacturing the same, and superconduction coil assembling device
JP6495546B1 (en) HoCu-based regenerator material and regenerator and refrigerator equipped with the same
JP3980158B2 (en) Cold storage material and cold storage type refrigerator
WO2001020233A1 (en) Ductile magnetic regenerator alloys for closed cycle cryocoolers
JP3648265B2 (en) Superconducting magnet device
WO2022224783A1 (en) Magnetic cold storage material particle, cold storage device, refrigerating machine, cryopump, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, magnetic-field-application-type single crystal pulling apparatus, and helium re-condensation apparatus
JP2004143341A (en) Cold storage material and cold storage type refrigerator using the same
JPH0882450A (en) Cold accumulator for cryogenic refrigerator
JPH11294882A (en) Storage medium and cold storage type refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110413

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120725

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Effective date: 20121012

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20130409

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20130705

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130712

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20130816

Free format text: JAPANESE INTERMEDIATE CODE: A912

A521 Written amendment

Effective date: 20140526

Free format text: JAPANESE INTERMEDIATE CODE: A523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5578501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150