JP2003073661A - Rare earth oxysulfide cold storage medium and cold storing machine - Google Patents

Rare earth oxysulfide cold storage medium and cold storing machine

Info

Publication number
JP2003073661A
JP2003073661A JP2002169732A JP2002169732A JP2003073661A JP 2003073661 A JP2003073661 A JP 2003073661A JP 2002169732 A JP2002169732 A JP 2002169732A JP 2002169732 A JP2002169732 A JP 2002169732A JP 2003073661 A JP2003073661 A JP 2003073661A
Authority
JP
Japan
Prior art keywords
rare earth
regenerator
oxysulfide
earth oxysulfide
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002169732A
Other languages
Japanese (ja)
Other versions
JP3642486B2 (en
Inventor
Takakimi Yanagiya
高公 柳谷
Toshiteru Nozawa
星輝 野沢
Katsunori Kagawa
克典 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP2002169732A priority Critical patent/JP3642486B2/en
Publication of JP2003073661A publication Critical patent/JP2003073661A/en
Application granted granted Critical
Publication of JP3642486B2 publication Critical patent/JP3642486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cold storage medium having a large heat capacity at an extreme low temperature of around 4.2 K and generating no abrasion powder during the operation of a refrigerator. SOLUTION: A rare earth oxysulfide represented by general formula: R2 O2 S (wherein R represents at least a rare earth element including Y and others selected from the group consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) is made into a spherical granule. The granule's average particle diameter is 0.05-1 mm, and its relative density is not lower than 96%. This granule is used as a cold storage medium at the temperature of liquid helium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は希土類オキシ硫化物蓄冷材
とこれを用いた蓄冷器に関する。さらに詳しくは、ヘリ
ウムガスを液化させるのに必要とされる4.2K付近の極低
温領域で大きな熱容量を有し、また冷凍機運転中におい
て摩耗粉が生じない高機能性蓄冷材や蓄冷器に関する。
TECHNICAL FIELD The present invention relates to a rare earth oxysulfide regenerator and a regenerator using the same. More specifically, the present invention relates to a highly functional regenerator or regenerator that has a large heat capacity in the cryogenic region around 4.2K required for liquefying helium gas and that does not generate abrasion powder during refrigerator operation.

【0002】[0002]

【従来の技術とその課題】超伝導磁石やセンサーなどの
冷却には液体ヘリウムが不可欠で、ヘリウムガスの液化
には膨大な圧縮仕事が必要であり、そのため大型の冷凍
機が必要となる。しかしリニアモーターカーやMRI(磁気
共鳴診断装置)などの超伝導現象を利用した小型の装置
に、大型の冷凍機を使用することは難しい。そのため液
体ヘリウム温度(4.2K)が発生可能な小型で高性能の冷凍
機が不可欠である。
2. Description of the Related Art Liquid helium is indispensable for cooling superconducting magnets, sensors and the like, and enormous compression work is required for liquefying helium gas, which requires a large refrigerator. However, it is difficult to use a large refrigerator in a small device that uses superconductivity such as a linear motor car or MRI (magnetic resonance diagnostic device). Therefore, a small, high-performance refrigerator capable of generating liquid helium temperature (4.2K) is essential.

【0003】小型冷凍機の冷却効率や最低到達温度など
は、蓄冷器の充填物質である蓄冷材に依存する。そして
蓄冷材は、蓄冷器を通過するヘリウム冷媒に対して十分
に大きな熱容量をもち、かつ熱交換効率が高い必要があ
る。従来から使用されているPbなどの金属蓄冷材では、
10K以下で熱容量が急激に低下するため、10K以下の冷却
効率が低下する。そこで、より液体ヘリウム温度(4.2K)
に近い温度で大きな熱容量を有する蓄冷材が開発されて
いる。この蓄冷材は例えばHoCu2やErNiなどの希土類金
属間化合物で形成され(特許2609747,USP5449,416)、図
1に示すように20〜7K付近で大きな熱容量を有する
が、7K未満での熱容量は小さく、極低温での冷却能力は
不十分である。また蓄冷材は冷凍機の運転中の熱衝撃や
振動に対する耐久性が必要とされる。
The cooling efficiency and the minimum attainable temperature of the small refrigerator depend on the regenerator material that is the filling material of the regenerator. The regenerator material needs to have a sufficiently large heat capacity for the helium refrigerant passing through the regenerator and have high heat exchange efficiency. In metal regenerator materials such as Pb that have been used conventionally,
Since the heat capacity sharply decreases below 10K, the cooling efficiency below 10K decreases. So more liquid helium temperature (4.2K)
A cold storage material having a large heat capacity at a temperature close to is developed. This cold storage material is formed of a rare earth intermetallic compound such as HoCu 2 or ErNi (Patent 2609747, USP 5449,416), and has a large heat capacity near 20 to 7K as shown in FIG. 1, but a heat capacity below 7K It is small and has insufficient cooling capacity at cryogenic temperatures. Further, the regenerator material is required to have durability against thermal shock and vibration during operation of the refrigerator.

【0004】[0004]

【発明の課題】本発明の課題は、液化ヘリウム温度付近
で大きな熱容量を有し、かつ熱衝撃や振動に対する耐久
性の高い蓄冷材とこれを用いた蓄冷器とを提供すること
にある。本発明の追加の課題は、4〜7Kへの冷凍に適し
た蓄冷材や蓄冷器を提供することにある。本発明の追加
の課題はまた、2〜4Kへの冷凍に適した蓄冷材や蓄冷器
を提供することにある。
An object of the present invention is to provide a regenerator material having a large heat capacity near the temperature of liquefied helium and having high durability against thermal shock and vibration, and a regenerator using the same. An additional object of the present invention is to provide a regenerator material or a regenerator suitable for freezing to 4 to 7K. An additional object of the present invention is also to provide a regenerator material or regenerator suitable for freezing to 2 to 4K.

【0005】[0005]

【発明の構成】この発明の蓄冷材は、一般式 R2O2S (R
はYを含むLa, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, E
r, Tm,Yb及びLuから選択される1種類又は2種類以上の
希土類元素を表す。) で表される希土類オキシ硫化物を
用いたものである。希土類元素は好ましくはGd, Tb, D
y, Ho, Erからのなる群の少なくとも一員とし、さらに
好ましくはGdまたはTbとする。例えば希土類オキシ硫化
物をGd2-xTbxO2S(x=0.2〜2)とすると、比熱のピーク温
度を6K付近から4K付近までの間で変化させることがで
き、特にx値を1.6〜2、好ましくは1.8〜2、さらに好ま
しくは1.9〜2とすると、Gd2O2Sよりもやや高温側に比
熱のピークがある蓄冷材が得られる。この蓄冷材をGdを
希土類元素の主成分とする蓄冷材と組み合わせると、4
〜7Kの範囲でブロードな大きな比熱が得られ、液体ヘリ
ウム温度付近への冷却に特に適している。また希土類オ
キシ硫化物がHoまたはDyのオキシ硫化物であると、これ
らはGdのオキシ硫化物よりも低温側に比熱のピークを持
つため、2〜4Kへの冷凍に特に適している。そして例え
ば、高温側にGdを希土類元素の主成分とする蓄冷材を配
置し、その低温側にHoまたはDyのオキシ硫化物からなる
蓄冷材を配置すると、4Kまでの冷凍をGdを希土類元素の
主成分とする蓄冷材で行い、4k以下の冷凍をHoやDyを希
土類元素の主成分とする蓄冷材で行い、効率的に4K以下
への冷凍ができる。
The regenerator material of the present invention has the general formula R 2 O 2 S (R
Is Y including La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, E
It represents one or more rare earth elements selected from r, Tm, Yb and Lu. ) Is a rare earth oxysulfide. The rare earth element is preferably Gd, Tb, D
It is at least one member of the group consisting of y, Ho and Er, and more preferably Gd or Tb. For example, if the rare earth oxysulfide is Gd 2-x Tb x O 2 S (x = 0.2 to 2), the peak temperature of the specific heat can be changed from around 6K to around 4K, and especially the x value is 1.6 When it is set to ˜2, preferably 1.8 to 2, and more preferably 1.9 to 2, a regenerator material having a peak of specific heat slightly higher than Gd 2 O 2 S can be obtained. When this cold storage material is combined with a cold storage material containing Gd as the main component of the rare earth element, 4
A broad and large specific heat is obtained in the range of up to 7 K, which is particularly suitable for cooling to near the liquid helium temperature. Moreover, when the rare earth oxysulfides are Ho or Dy oxysulfides, they have a specific heat peak at a temperature lower than that of Gd oxysulfides, and thus are particularly suitable for freezing to 2 to 4K. And, for example, if a cool storage material containing Gd as a main component of a rare earth element is placed on the high temperature side, and a cool storage material made of oxysulfide of Ho or Dy is placed on the low temperature side, Gd is a rare earth element that is frozen up to 4K. The cold storage material containing the main component is used, and the freezing of 4k or less is performed with the cold storage material containing Ho or Dy as the main component of the rare earth element, and the freezing to 4K or less can be efficiently performed.

【0006】好ましくは、希土類オキシ硫化物は顆粒と
して用い、特に好ましくは、顆粒の平均粒径を0.05mm〜
1mmとし、あるいはまた好ましくは、顆粒の平均アスペ
クト比を3以下とし、また好ましくは、顆粒の相対密度
を96%以上とする。顆粒中の希土類オキシ硫化物は平均
結晶粒径100μm以下が好ましく、また顆粒は表面粗さを
最大高さRmax基準で10μm以下とすることが好ましく、
また顆粒中の過剰の硫黄含有量は10000wtppm以下が好ま
しい。そして顆粒は2〜7Kに体積比熱の極大値を有する
ことが好ましい。
Preferably, the rare earth oxysulfide is used as granules, and particularly preferably, the average particle diameter of the granules is from 0.05 mm to
1 mm, or preferably, the average aspect ratio of the granules is 3 or less, and preferably the relative density of the granules is 96% or more. The rare earth oxysulfide in the granule preferably has an average crystal grain size of 100 μm or less, and the granule preferably has a surface roughness of 10 μm or less on the basis of the maximum height R max .
The excess sulfur content in the granules is preferably 10,000 wtppm or less. And it is preferable that the granules have a maximum value of the volume specific heat at 2 to 7K.

【0007】またこの発明の蓄冷器は、上記の希土類オ
キシ硫化物蓄冷材を適宜の筒などに充填したものであ
る。希土類オキシ硫化物は7K以下での比熱に優れてお
り、その高温側にHoCu2を主成分とする蓄冷材を配置す
ると、7Kまでの冷凍をHoCu2で、7K以下への冷凍を希土
類オキシ硫化物蓄冷材で行い、効率的に7K以下に冷凍で
きる。Gdを希土類元素の主成分とするオキシ硫化物蓄冷
材は5〜4Kに比熱のピークがあり、7〜5Kでの比熱が不
足するので、好ましくはその高温側にTbを希土類元素の
主成分とするオキシ硫化物蓄冷材を配置する。また4K以
下への冷凍では、Gdを希土類元素の主成分とするオキシ
硫化物蓄冷材を配置し、その低温側に、HoまたはDyを希
土類元素の主成分とするオキシ硫化物蓄冷材を配置す
る。2〜4Kへの冷凍は、半導体の透過X線による検査など
でX線検知器を冷却して感度を高めることや、断熱消磁
冷凍機の前段での冷却などに有効である。なおここで希
土類オキシ硫化物での希土類元素の表示を説明する。Gd
のオキシ硫化物あるいはGdを主成分とするオキシ硫化物
蓄冷材は、例えば金属成分の50原子%以上がGdであるこ
とを示し、例えば表1に示すように、Gd1Tb1O2SはGd2O2
Sよりも低温側に比熱ピークを持つ材料で、Tb2O2Sより
もGd2O2Sに類似した材料である。Tb,Dy,Hoなどの場
合、これらのオキシ硫化物あるいはこれらを主成分とす
るオキシ硫化物は、金属成分中の80原子%以上がこれら
の元素であることを意味する。例えば金属成分を10原子
%これらの元素から置換しても、オキシ硫化物の比熱特
性には大差は生じない。
Further, the regenerator of the present invention is one in which the above-mentioned rare earth oxysulfide regenerator material is filled in an appropriate cylinder or the like. Rare earth oxysulfide is excellent in specific heat at 7K below, placing the cold accumulating material mainly composed of HoCu 2 on the high temperature side, refrigeration down to 7K in HoCu 2, rare earth oxysulfide frozen to 7K or less It can be refrigerated to 7K or less efficiently by using a cold storage material. The oxysulfide cold storage material containing Gd as the main component of the rare earth element has a peak of specific heat at 5 to 4K, and the specific heat at 7 to 5K is insufficient. Therefore, it is preferable to use Tb on the high temperature side as the main component of the rare earth element. An oxysulfide cold storage material is placed. In the case of freezing to 4K or less, an oxysulfide cold storage material containing Gd as a main component of a rare earth element is placed, and an oxysulfide storage cold storage material containing Ho or Dy as a main component of a rare earth element is placed on the low temperature side. . Freezing to 2-4K is effective for increasing the sensitivity by cooling the X-ray detector in the inspection of semiconductors through transmitted X-rays, and for cooling the adiabatic degaussing refrigerator in the previous stage. The display of the rare earth element in the rare earth oxysulfide will be described here. Gd
The oxysulfide or oxysulfide cold storage material containing Gd as the main component indicates that, for example, 50 atomic% or more of the metal component is Gd. For example, as shown in Table 1, Gd 1 Tb 1 O 2 S Gd 2 O 2
It is a material that has a specific heat peak on the lower temperature side than S and is more similar to Gd 2 O 2 S than Tb 2 O 2 S. In the case of Tb, Dy, Ho, etc., these oxysulfides or oxysulfides containing these as the main components mean that 80 atomic% or more of the metal components are these elements. For example, 10 atoms of metal component
% Substitution from these elements does not cause a large difference in the specific heat characteristics of oxysulfide.

【0008】[0008]

【発明の作用効果】本発明の希土類オキシ硫化物蓄冷材
は7〜2K付近の範囲で磁気相転移し、かつ従来の蓄冷材
のHoCu2やErNiの2〜5倍の大きな熱容量を有する。こ
のため4.2K付近の極低温環境で高い冷凍能力を有し、か
つ最低到達温度が既存の蓄冷材よりも低く、小型で冷凍
効率の高い蓄冷器を容易に得ることができる。本発明の
蓄冷材や蓄冷器は、超伝導マグネットやMRI冷却用冷凍
機等に利用できる。なお希土類元素の種類を選び、また
複数の希土類元素を用いることにより、所望の磁気相転
移温度を得、さらに磁気相転移温度の付近での比熱ピー
クの幅を広げることができる。また球状の希土類オキシ
硫化物蓄冷材顆粒を用いることにより、蓄冷材の充填密
度を高くしながら、冷却媒体の通過抵抗を低減できる。
そして顆粒表面の粗さを減少することにより、微粉の発
生を防止し蓄冷材の寿命を延ばすことができる。
The effect of the present invention The rare earth oxysulfide regenerator material of the present invention undergoes a magnetic phase transition in the range of about 7 to 2K and has a large heat capacity which is 2 to 5 times that of the conventional regenerator materials such as HoCu 2 and ErNi. For this reason, it is possible to easily obtain a small-sized regenerator having a high refrigerating efficiency, having a high refrigerating capacity in an extremely low temperature environment around 4.2K, having a lower minimum temperature than the existing regenerator material. INDUSTRIAL APPLICABILITY The regenerator material or regenerator of the present invention can be used for a superconducting magnet, an MRI cooling refrigerator, or the like. By selecting the kind of rare earth element and using a plurality of rare earth elements, it is possible to obtain a desired magnetic phase transition temperature and further widen the width of the specific heat peak near the magnetic phase transition temperature. Further, by using spherical rare earth oxysulfide cold storage material granules, it is possible to reduce the passage resistance of the cooling medium while increasing the packing density of the cold storage material.
By reducing the roughness of the granule surface, generation of fine powder can be prevented and the life of the regenerator material can be extended.

【0009】蓄冷器は、高温側から低温側まで比熱が連
続していることと、冷凍目標温度付近での比熱の分布が
ブロードであることが必要である。前者は目標温度まで
効率的に冷凍するために、また後者は目標温度を広い範
囲から選べるための性質である。希土類オキシ硫化物蓄
冷材は7K以上での比熱が小さいので、HoCu2などの蓄冷
材を高温側に配置するのが好ましい。また単一の希土類
オキシ硫化物蓄冷材では比熱の分布が狭いので、希土類
オキシ硫化物蓄冷材を低温用と高温用とを層状に配置し
て、全体として連続的な比熱を持たせることが好まし
い。特にGdを主成分とするオキシ硫化物は6〜7Kでの比
熱が不足するので、その高温側にTbを主成分とするオキ
シ硫化物を配置するのが好ましい。また4K以下への冷凍
では、Gdを主成分とするオキシ硫化物の低温側にHoやDy
を主成分とするオキシ硫化物を配置するのが好ましい。
In the regenerator, it is necessary that the specific heat is continuous from the high temperature side to the low temperature side, and that the distribution of the specific heat near the freezing target temperature is broad. The former has the property of efficiently refrigerating to the target temperature, and the latter has the property of being able to select the target temperature from a wide range. Since the rare earth oxysulfide regenerator material has a small specific heat at 7 K or more, it is preferable to arrange the regenerator material such as HoCu 2 on the high temperature side. Further, since the distribution of the specific heat is narrow in a single rare earth oxysulfide cold storage material, it is preferable to arrange the rare earth oxysulfide cold storage material in layers for low temperature and high temperature to have a continuous specific heat as a whole. . In particular, since the oxysulfide containing Gd as the main component lacks the specific heat at 6 to 7 K, it is preferable to arrange the oxysulfide containing Tb as the main component on the high temperature side. In the case of refrigeration to 4K or less, Ho and Dy are added to the low temperature side of oxysulfide mainly composed of Gd.
It is preferable to dispose an oxysulfide containing as a main component.

【0010】希土類オキシ硫化物は、例えば希土類酸化
物の粉末を石英等の反応管内に収容し、加熱下にH2S,C
H3SH等の酸化数−2の硫黄原子を含むガスを流して、反
応させることにより得られる。反応温度は原料粉末の希
土類酸化物粉末の粒子径により変化するが、容易に入手
できる1μm程度の粒子径のものでは、500〜800℃が好ま
しく、600〜700℃がより好ましい。500℃未満では反応
が終了するまでに長時間を要し、800℃を越えると硫化
物が生成しはじめる。反応時間は1〜9時間が好ましく、
1〜3時間がより好ましい。
The rare earth oxysulfide is, for example, a rare earth oxide powder contained in a reaction tube such as quartz and heated under heating to H 2 S, C.
It is obtained by causing a gas containing a sulfur atom having an oxidation number of −2, such as H 3 SH, to flow and react. The reaction temperature varies depending on the particle size of the rare earth oxide powder of the raw material powder, but if the particle size is about 1 μm, which is easily available, 500 to 800 ° C. is preferable, and 600 to 700 ° C. is more preferable. If it is less than 500 ° C, it takes a long time to complete the reaction, and if it exceeds 800 ° C, sulfides start to form. The reaction time is preferably 1 to 9 hours,
1 to 3 hours is more preferable.

【0011】蓄冷材は、蓄冷器に充填する際の圧縮圧
や、作動中の熱衝撃や振動に耐えて、微粉が生じないよ
うにするため、顆粒状にすることが好ましく、特に顆粒
を球状に近づけ、顆粒の短径に対する長径の比の平均値
(平均アスペクト比)は好ましくは3以下とし、より好ま
しくは2以下とし、さらに好ましくは1付近として真球
に近づける。希土類オキシ硫化物は希土類金属間化合物
よりも脆いため、平均アスペクト比が3を超えると破壊
を起こしやすくなり、また平均アスペクト比が3を超え
ると蓄冷器の中に均一に充填することが困難となる。
It is preferable that the regenerator material is in the form of granules in order to withstand the compression pressure at the time of filling the regenerator and the thermal shock and vibration during the operation to prevent generation of fine powder, and particularly the granules are spherical. The average value of the ratio of the major axis to the minor axis of the granule
The (average aspect ratio) is preferably 3 or less, more preferably 2 or less, and further preferably around 1 to approximate a true sphere. Since rare earth oxysulfides are more brittle than rare earth intermetallic compounds, if the average aspect ratio exceeds 3, fracture tends to occur, and if the average aspect ratio exceeds 3, it becomes difficult to uniformly fill the regenerator. Become.

【0012】顆粒の平均粒径は0.05〜1mmの範囲とする
ことが好ましく、平均粒径が0.05mm未満では充填密度が
高くなり、蓄冷器をヘリウム冷媒が十分に通過できず、
熱交換効率が低下する。一方平均粒径が1mmを超える
と、ヘリウム冷媒との接触面積が小さくなり、熱交換効
率が低下する。そこで平均粒径は0.05〜1mmとすること
が好ましく、より好ましくは0.1〜0.7mmとし、さらに好
ましくは0.1〜0.3mmとする。
The average particle size of the granules is preferably in the range of 0.05 to 1 mm. If the average particle size is less than 0.05 mm, the packing density becomes high, and the helium refrigerant cannot pass through the regenerator sufficiently,
Heat exchange efficiency decreases. On the other hand, when the average particle size exceeds 1 mm, the contact area with the helium refrigerant becomes small, and the heat exchange efficiency decreases. Therefore, the average particle size is preferably 0.05 to 1 mm, more preferably 0.1 to 0.7 mm, and further preferably 0.1 to 0.3 mm.

【0013】蓄冷材の顆粒の相対密度は96%以上が好ま
しく、より好ましくは98%以上とし、さらに好ましくは9
9%以上とし、理論密度に近づけることが好ましい。相対
密度が96%未満では、多数の開空孔が存在しているため
機械的強度が低下する。また顆粒の機械的強度を増すた
め、平均結晶粒径は100μm以下が好ましく、より好まし
くは50μm以下とし、さらに好ましくは10μm以下で1μ
m以上とする。顆粒の平均結晶粒径が100μmを越えると
機械的強度が低下する。顆粒表面の凹凸は破壊の起点と
なるので、顆粒の表面粗さは例えばJIS B0601で規定す
る凹凸最大高さRmax基準で、10μm以下が好ましい。
The relative density of granules of the regenerator material is preferably 96% or more, more preferably 98% or more, and further preferably 9% or more.
It is preferably 9% or more and close to the theoretical density. When the relative density is less than 96%, the mechanical strength is lowered because many open pores are present. In order to increase the mechanical strength of the granules, the average crystal grain size is preferably 100 μm or less, more preferably 50 μm or less, further preferably 10 μm or less and 1 μm or less.
m or more If the average crystal grain size of the granules exceeds 100 μm, the mechanical strength decreases. Since the unevenness of the granule surface becomes the starting point of fracture, the surface roughness of the granule is preferably 10 μm or less based on the maximum unevenness height Rmax defined by JIS B0601.

【0014】顆粒中に含まれる過剰の硫黄含有量は1000
0wtppm以下が好ましく、特に好ましくは5000wtppm以下
とし、最も好ましくは2000wtppm以下とする。顆粒中に
多量の硫黄が存在すると焼結阻害を引き起こし、機械的
強度が低下する。過剰の硫黄含有量の制御は、例えば希
土類酸化物の硫化時にH2Sガスの流量を制御することに
より簡単に行える。
The excess sulfur content in the granules is 1000
It is preferably 0 wtppm or less, particularly preferably 5000 wtppm or less, and most preferably 2000 wtppm or less. The presence of a large amount of sulfur in the granules causes sintering inhibition and reduces the mechanical strength. The control of the excess sulfur content can be easily performed, for example, by controlling the flow rate of the H 2 S gas at the time of sulfiding the rare earth oxide.

【0015】顆粒は希土類オキシ硫化物粉末から種々の
方法で作製でき、例えば転動造粒法、押し出し法と転動
造粒法との組み合せ、流動造粒法、噴霧乾燥法、型押し
法等を用いればよく、球状に成形することが好ましい。
成形後、篩い分けや形状分級等により、最適な粒径やア
スペクト比に揃える。また希土類酸化物粉末を予め上記
の手法で顆粒化しておき、その後に硫化反応を行っても
良い。硫化条件は酸化物粉末原料を用いたときと同様で
ある。
Granules can be prepared from rare earth oxysulfide powder by various methods, for example, rolling granulation method, combination of extrusion method and rolling granulation method, fluidized granulation method, spray drying method, embossing method, etc. May be used, and it is preferable to mold into a spherical shape.
After molding, it is adjusted to the optimum particle size and aspect ratio by sieving and shape classification. Alternatively, the rare earth oxide powder may be granulated in advance by the above method, and then the sulfurization reaction may be performed. Sulfurization conditions are the same as when using the oxide powder raw material.

【0016】希土類オキシ硫化物の成形体を焼結する。
常圧焼結では、希土類オキシ硫化物が酸化されないよう
に、焼結雰囲気は真空(10-3torr以下)又はアルゴンや窒
素などの不活性ガスとし、焼結温度は1100〜1600℃、焼
結時間を1〜10時間とすることが好ましい。焼結温度が
低いあるいは焼結時間が短いと、相対密度は96%以上と
ならず、機械的強度が低下する。焼結温度が高すぎるあ
るいは焼結時間が長すぎると、顆粒の平均結晶粒径が大
きくなり、機械的強度が低下する。
The rare earth oxysulfide compact is sintered.
In atmospheric pressure sintering, the sintering atmosphere is vacuum (10 -3 torr or less) or an inert gas such as argon or nitrogen so that the rare earth oxysulfides are not oxidized, and the sintering temperature is 1100 to 1600 ° C. The time is preferably 1 to 10 hours. When the sintering temperature is low or the sintering time is short, the relative density does not reach 96% or more, and the mechanical strength decreases. If the sintering temperature is too high or the sintering time is too long, the average crystal grain size of the granules becomes large and the mechanical strength decreases.

【0017】なお焼結後にHIP処理を用いて、緻密化を
促進することも機械的強度を向上させるために有効であ
る。HIP処理時の焼結雰囲気(圧力媒体)には例えばアル
ゴンを用いて、処理温度は1200〜1500℃、圧力は50〜20
0MPaとすることが好ましい。処理温度が低いあるいは圧
力が低いと、常圧焼結での機械的強度とほとんど変わら
ない。一方処理温度が高すぎるあるいは圧力が高すぎる
と、顆粒の平均結晶粒径が大きくなり、機械的強度が低
下する。
It is also effective to improve the mechanical strength by promoting densification by using HIP treatment after sintering. Argon, for example, is used for the sintering atmosphere (pressure medium) at the time of HIP processing, the processing temperature is 1200 to 1500 ° C., and the pressure is 50 to 20.
It is preferably 0 MPa. When the treatment temperature is low or the pressure is low, the mechanical strength is almost the same as that in normal pressure sintering. On the other hand, if the treatment temperature is too high or the pressure is too high, the average crystal grain size of the granules becomes large and the mechanical strength decreases.

【0018】顆粒表面の粗さを最大高さRmax基準で例え
ば10μm以下とするため、好ましくは焼結した顆粒を研
磨する。例えば加工槽内に蓄冷材の顆粒と遊離研磨材を
入れ、加工液が必要であればメディアとともに装入し、
加工槽又は槽内に装入した加工物を運動させて、加工物
と研磨材ないしメディアの相対運動で研磨する。例え
ば、回転バレル加工、遠心流動バレル加工、振動バレル
加工、ジャイロ加工、レシプロ加工、直線流動加工など
を用いればよい。
In order to make the surface roughness of the granules, for example, 10 μm or less on the basis of the maximum height R max , the sintered granules are preferably polished. For example, put the granules of the regenerator material and the free abrasive material in the processing tank, and if the processing liquid is needed, load it with the media,
A processing tank or a workpiece placed in the tank is moved, and polishing is performed by relative movement of the workpiece and the abrasive or media. For example, rotary barrel processing, centrifugal flow barrel processing, vibrating barrel processing, gyro processing, reciprocating processing, linear flow processing and the like may be used.

【0019】[0019]

【実施例】以下に実施例及び比較例について説明する
が、本発明はこれらの実施例に限定されるものではな
い。なお蓄冷材の蓄冷器への充填は充填圧100KPaで行
い、ヘリウムガス通過抵抗は蓄冷器の上下端の間の差圧
により測定した。また平均アスペクト比は、焼結後の顆
粒を顕微鏡撮影し、長軸と短軸の長さの比を画像認識装
置で測定して求めた。粉塵の発生度合いは蓄冷器から回
収した蓄冷材を目視で検査し、破壊されている顆粒の割
合から求めた。さらに過剰硫黄の含有量は、Gdの化学分
析値と燃焼法によるS含有量の比較から求め、その単位
はwtppmである。
EXAMPLES Examples and comparative examples will be described below, but the present invention is not limited to these examples. The regenerator was filled with the regenerator at a filling pressure of 100 KPa, and the helium gas passage resistance was measured by the pressure difference between the upper and lower ends of the regenerator. The average aspect ratio was determined by microscopically photographing the granules after sintering and measuring the ratio of the length of the major axis to the length of the minor axis with an image recognition device. The degree of dust generation was determined by visually inspecting the regenerator material collected from the regenerator and determining the proportion of broken granules. Further, the content of excess sulfur is obtained by comparing the chemical analysis value of Gd and the S content by the combustion method, and its unit is wtppm.

【0020】[0020]

【オキシ硫化物の調製と熱容量】フィッシャー法による
平均粒径が0.46μmの酸化ガドリニウム10gを、石英ボー
トに充填して石英反応管に収容し、硫化水素ガス H2Sを
0.2L/minの流量で流しながら、650℃で2時間反応させ
た。反応生成物をX線回折で測定したところ、ガドリニ
ウムオキシ硫化物 Gd2O2Sのみのピークしか認められ
ず、希土類酸化物に対する反応収率は100%であった。得
られたGd2O2S粉体を圧力30MPaで直径12mmの円盤状に成
形し、圧力200MPaで静水圧プレスした後、アルゴン雰囲
気で1500℃×6時間の常圧焼結を行なって、Gd2O2S試料
を得た(実施例1)。
[Preparation and heat capacity of oxysulfide] 10 g of gadolinium oxide having an average particle size of 0.46 μm by the Fischer method was filled in a quartz boat and housed in a quartz reaction tube, and hydrogen sulfide gas H 2 S was supplied.
The mixture was reacted at 650 ° C for 2 hours while flowing at a flow rate of 0.2 L / min. When the reaction product was measured by X-ray diffraction, only the peak of the gadolinium oxysulfide Gd 2 O 2 S was observed, and the reaction yield with respect to the rare earth oxide was 100%. The obtained Gd 2 O 2 S powder was molded into a disk shape with a diameter of 12 mm at a pressure of 30 MPa, isostatically pressed at a pressure of 200 MPa, and then subjected to atmospheric pressure sintering at 1500 ° C. for 6 hours in an argon atmosphere to give Gd. A 2 O 2 S sample was obtained (Example 1).

【0021】実施例1のGd2O2S焼結体の密度はアルキメ
デス法により理論密度の99.9%であり、平均結晶粒径は
以下の式から算出すると3.2μmであった。 d=1.56C/(MN) (d:平均粒径、C:SEM等の高分解能画像で任意に引いた
線の長さ、N:任意に引いた線上の結晶粒の数、M:画像
の倍率) また実施例1のGd2O2S焼結体の過剰硫黄含有量は、Gdの
化学分析値と燃焼法によるS含有量の比較から求めたと
ころ1000wtppmであった。
The density of the Gd 2 O 2 S sintered body of Example 1 was 99.9% of the theoretical density by the Archimedes method, and the average crystal grain size was 3.2 μm as calculated from the following formula. d = 1.56C / (MN) (d: average grain size, C: length of line arbitrarily drawn in high resolution image such as SEM, N: number of crystal grains on line arbitrarily drawn, M: image The excess sulfur content of the Gd 2 O 2 S sintered body of Example 1 was 1000 wtppm as determined by comparison between the chemical analysis value of Gd and the S content by the combustion method.

【0022】実施例1のGd2O2S焼結体の熱容量測定結果
を図1に、磁気相転移温度とそのときの熱容量を表1に
示す。また図1にはこれ以外にTb2O2S,Dy2O2S,Ho2O2S
の熱容量を示し、他に参考としてヘリウム(He-0.5MPa)
の熱容量と一般的な蓄冷材であるPb, ErNi, HoCu2の熱
容量を示す。実施例1のGd2O2S蓄冷材は5K付近に磁気
相転移温度をもち、磁気相転移温度での熱容量は1.2J/c
c・Kで、液化ヘリウム温度付近では従来のHoCu2やErNiと
比較して3〜5倍の大きな熱容量を有していた。
FIG. 1 shows the results of measuring the heat capacity of the Gd 2 O 2 S sintered body of Example 1, and Table 1 shows the magnetic phase transition temperature and the heat capacity at that time. In addition to this, Fig. 1 also shows Tb 2 O 2 S, Dy 2 O 2 S, and Ho 2 O 2 S.
Helium (He-0.5MPa) for reference
The heat capacities of Pb, ErNi, and HoCu 2 , which are general cold storage materials, are shown. The Gd 2 O 2 S regenerator material of Example 1 has a magnetic phase transition temperature around 5K, and the heat capacity at the magnetic phase transition temperature is 1.2 J / c.
At c · K, the heat capacity was 3 to 5 times higher than that of conventional HoCu 2 or ErNi near the temperature of liquefied helium.

【0023】[0023]

【表1】 試料 組成 磁気相転移温度/K 熱容量/J/cc・K 実施例1 Gd2O2S 5.2 1.2 実施例2 Ho2O2S 2.2 1.25 Dy2O2S 4.6 1.0 実施例3 Gd1.8Tb0.2O2S 4.8 0.84 Gd1Tb1O2S 4.2 0.61 Tb1.8Gd0.2O2S 5.3 1.3 Tb2O2S 6.3 1.7 実施例4 Dy1.8Ho0.2O2S 4.3 0.8 Ho1.8Dy0.2O2S 2.4 0.85 実施例5 Gd1.8Y0.2O2S 4.6 0.75 Gd1.8La0.2O2S 4.6 0.85 Gd1.8Ce0.2O2S 4.7 0.74 Gd1.8Pr0.2O2S 4.7 0.69 Gd1.8Nd0.2O2S 4.8 0.77 Gd1.8Sm0.2O2S 4.8 0.63 Gd1.8Eu0.2O2S 4.9 0.76 Gd1.8Dy0.2O2S 4.9 0.82 Gd1.8Ho0.2O2S 4.9 0.71 Gd1.8Er0.2O2S 5 0.81 Gd1.8Tm0.2O2S 5 0.73 Gd1.8Yb0.2O2S 5.1 0.76 Gd1.8Lu0.2O2S 5.2 0.8[Table 1] Sample composition Magnetic phase transition temperature / K Heat capacity / J / cc · K Example 1 Gd 2 O 2 S 5.2 1.2 Example 2 Ho 2 O 2 S 2.2 1.25 Dy 2 O 2 S 4.6 1.0 Example 3 Gd 1.8 Tb 0.2 O 2 S 4.8 0.84 Gd 1 Tb 1 O 2 S 4.2 0.61 Tb 1.8 Gd 0.2 O 2 S 5.3 1.3 Tb 2 O 2 S 6.3 1.7 Example 4 Dy 1.8 Ho 0.2 O 2 S 4.3 0.8 Ho 1.8 Dy 0.2 O 2 S 2.4 0.85 Example 5 Gd 1.8 Y 0.2 O 2 S 4.6 0.75 Gd 1.8 La 0.2 O 2 S 4.6 0.85 Gd 1.8 Ce 0.2 O 2 S 4.7 0.74 Gd 1.8 Pr 0.2 O 2 S 4.7 0.69 Gd 1.8 Nd 0.2 O 2 S 4.8 0.77 Gd 1.8 Sm 0.2 O 2 S 4.8 0.63 Gd 1.8 Eu 0.2 O 2 S 4.9 0.76 Gd 1.8 Dy 0.2 O 2 S 4.9 0.82 Gd 1.8 Ho 0.2 O 2 S 4.9 0.71 Gd 1.8 Er 0.2 O 2 S 5 0.81 Gd 1.8 Tm 0.2 O 2 S 5 0.73 Gd 1.8 Yb 0.2 O 2 S 5.1 0.76 Gd 1.8 Lu 0.2 O 2 S 5.2 0.8

【0024】実施例1で使用した酸化ガドリニウムGd2O
3を、硫化させずに酸化物のままで、実施例1と同一条
件で調製して焼結体とした(比較例1)。この試料は1K
付近に磁気相転移温度を持ち、4.2K付近での熱容量は極
めて小さく、ヘリウムガスを液化させるための蓄冷材と
しては利用できないことが判明した。
Gadolinium oxide Gd 2 O used in Example 1
3 was prepared as a sintered body under the same conditions as in Example 1, but without being sulfurized as an oxide (Comparative Example 1). This sample is 1K
It was found that it has a magnetic phase transition temperature in the vicinity and its heat capacity around 4.2K is extremely small, so it cannot be used as a regenerator material for liquefying helium gas.

【0025】平均粒径0.36μmの酸化ホルミウムや平均
粒径0.6μmの酸化ジスプロシウムを、実施例1と同様に
硫化・成形・静水圧プレス・焼結することにより、Ho2O
2S,Dy2O2S焼結体を得た(実施例2)。得られた焼結体
の熱容量を図1に、磁気相転移温度とその温度での熱容
量を表1に示す。液化ヘリウム温度付近の広い領域で、
HoCu2やErNiに比べ大きな熱量を示した。
Homium oxide having an average particle size of 0.36 μm and dysprosium oxide having an average particle size of 0.6 μm were sulfided, molded, hydrostatically pressed and sintered in the same manner as in Example 1 to give Ho 2 O.
A 2 S, Dy 2 O 2 S sintered body was obtained (Example 2). The heat capacity of the obtained sintered body is shown in FIG. 1, and the magnetic phase transition temperature and the heat capacity at that temperature are shown in Table 1. In a wide area near the temperature of liquid helium,
It showed a larger amount of heat than HoCu 2 and ErNi.

【0026】実施例1で使用した酸化ガドリニウム粉体
と平均粒径0.69μmの酸化テルビウム粉体の混合物を、
実施例1と同様に硫化・成形・静水圧プレス・焼結する
ことにより、ガドリウム−テルビウム系オキシ硫化物(G
dxTb2-xO2S)焼結体を得た(実施例3)。0≦x≦2の範囲
において組成を変化させた4種類の焼結体(x=0.2,1.0,
1.8,2.0)のX線回折を測定したところ、x=2.0ではTb2O2
S のみのピークしか認められず、x=0.2, 1.0, 1.8ではG
d2O2SにもTb2O2Sのどちらにも属さない固溶したGdxTb
2-xO2Sに対応するピークが得られた。
A mixture of the gadolinium oxide powder used in Example 1 and the terbium oxide powder having an average particle size of 0.69 μm was prepared,
Sulfurization, molding, isostatic pressing and sintering were carried out in the same manner as in Example 1 to obtain gadolinium-terbium oxysulfide (G
A d x Tb 2 -xO 2 S) sintered body was obtained (Example 3). Four types of sintered bodies (x = 0.2,1.0,
1.8, 2.0) X-ray diffraction was measured, and when x = 2.0, Tb 2 O 2
Only S peak is observed, and G at x = 0.2, 1.0, 1.8
Solid solution Gd x Tb belonging to neither d 2 O 2 S nor Tb 2 O 2 S
A peak corresponding to 2-x O 2 S was obtained.

【0027】実施例3のGdxTb2-xO2S焼結体の熱容量測
定結果を図2に示し、磁気相転移温度とそのときの熱容
量を表1に示す。xの値が1.8, 1と減少するにしたがっ
て磁気相転移時の熱容量は減少するが、磁気相転移温度
はGd2O2Sと比較して低温側にシフトし、比熱のピーク幅
が広がり、液化ヘリウム温度ではGd2O2Sの熱容量を上回
る。一方表1や図3に示すように、Tb2O2S の組成に近
づくにつれて、磁気相転移温度はGd2O2Sよりも高温側に
シフトする。
The heat capacity measurement results of the Gd x Tb 2-x O 2 S sintered body of Example 3 are shown in FIG. 2, and the magnetic phase transition temperature and the heat capacity at that time are shown in Table 1. The heat capacity at the magnetic phase transition decreases as the value of x decreases to 1.8, 1, but the magnetic phase transition temperature shifts to the low temperature side compared to Gd 2 O 2 S, and the peak width of the specific heat widens, At the liquid helium temperature, it exceeds the heat capacity of Gd 2 O 2 S. On the other hand, as shown in Table 1 and FIG. 3, as the composition of Tb 2 O 2 S approaches, the magnetic phase transition temperature shifts to a higher temperature side than Gd 2 O 2 S.

【0028】一般に結晶中の希土類磁性原子では磁気相
互作用は原子間距離に依存し、完全な結晶で磁性原子間
距離が同じであれば、磁気相互作用は単一のパラメータ
ーで表すことができ、結晶の磁気スピン系全体がシャー
プな相転移を起こす。その場合、実施例1のように、相
転移による比熱のピークは大きく鋭くなる。一方、実施
例3のように、複数の希土類元素を固溶させると、磁性
原子間距離は局所的に変化し、局所的に結晶場が乱れ
て、結晶全体の磁気相互作用の均一性が損なわれる。そ
の結果、結晶中の磁気スピンの磁気相転移に局所的な乱
れが現れ、比熱のピークがある温度範囲に分散して比熱
ピークの幅が広がり、これに伴いHo系では磁気相転移温
度が高温側にシフトし、GdやTb,Dy系では低温側にシフ
トする。
Generally, in a rare earth magnetic atom in a crystal, the magnetic interaction depends on the interatomic distance, and if the interatomic distance is the same in a perfect crystal, the magnetic interaction can be represented by a single parameter, The entire magnetic spin system of the crystal undergoes a sharp phase transition. In that case, as in Example 1, the peak of the specific heat due to the phase transition becomes large and sharp. On the other hand, when a plurality of rare earth elements are solid-dissolved as in Example 3, the distance between magnetic atoms is locally changed, the crystal field is locally disturbed, and the homogeneity of the magnetic interaction of the entire crystal is impaired. Be done. As a result, local disorder appears in the magnetic phase transition of the magnetic spins in the crystal, and the peak of the specific heat is dispersed in a certain temperature range to widen the width of the specific heat peak. To the low temperature side in Gd, Tb, and Dy systems.

【0029】実施例2で用いた酸化ホルミウム粉体や酸
化ジスプロシウム粉体を混合し、実施例1と同様に硫化
・成形・静水圧プレス・焼結することにより、ジスプロ
シウム−ホルミウム複合オキシ硫化物DyxHo2-xO2Sの焼
結体を得た(実施例4)。この焼結体の熱容量を図4
に、磁気相転移温度とその温度での熱容量を表1に示
す。xの値を変えることにより、Dy2O2SとHo2O2Sの中間
の磁気相転移温度を得ることができ、また比熱のピーク
幅をDy2O2SやHo2O2Sよりも広げることができた。
The dysprosium-holmium composite oxysulfide Dy was prepared by mixing the holmium oxide powder and the dysprosium oxide powder used in Example 2 and subjecting them to sulfide / molding / isostatic pressing / sintering in the same manner as in Example 1. A sintered body of x Ho 2 -x O 2 S was obtained (Example 4). Figure 4 shows the heat capacity of this sintered body.
Table 1 shows the magnetic phase transition temperature and the heat capacity at that temperature. By changing the value of x, an intermediate magnetic phase transition temperature between Dy 2 O 2 S and Ho 2 O 2 S can be obtained, and the peak width of the specific heat can be obtained from Dy 2 O 2 S and Ho 2 O 2 S. I was able to spread

【0030】酸化ガドリニウム(90mol%)と、Y, La, Ce,
Pr, Nd, Sm, Eu, Dy, Er, Tm, Yb及びLuの希土類酸化
物(10mol%)を、実施例3と同様に処理して、複合希土類
オキシ硫化物焼結体を得た(実施例5)。それらの磁気
相転移温度(Tc)とその温度での熱容量とを表1に示す。
複合希土類オキシ硫化物を用ることにより、様々な磁気
相転移温度を得ることができ、また磁気相転移温度での
比熱のピーク値も様々に変化する。実施例3,5で使用
した希土類酸化物を、硫化せずに酸化物のまま、実施例
3と同様に処理して焼結体としたが、4.2K付近での熱容
量は極めて小さかった(比較例2)。
Gadolinium oxide (90 mol%), Y, La, Ce,
The rare earth oxides of Pr, Nd, Sm, Eu, Dy, Er, Tm, Yb and Lu (10 mol%) were treated in the same manner as in Example 3 to obtain a composite rare earth oxysulfide sintered body (implementation). Example 5). Table 1 shows the magnetic phase transition temperature (Tc) and the heat capacity at that temperature.
By using the composite rare earth oxysulfide, various magnetic phase transition temperatures can be obtained, and the peak value of the specific heat at the magnetic phase transition temperature also changes variously. The rare earth oxides used in Examples 3 and 5 were treated in the same manner as in Example 3 with the oxides remaining unsulfurized to obtain sintered bodies, but the heat capacity at around 4.2K was extremely small (comparison). Example 2).

【0031】[0031]

【蓄冷材顆粒】実施例1で得たGd2O2S粉体を転動造粒法
により球状に成形し、得られた顆粒を異なる2種類のナ
イロンメッシュ(Aメッシュ(目開き308μm)とBメッシュ
(目開き190μm))により篩い分けした。篩い分けをした
顆粒を約25°に傾けた鉄板(鏡面に研磨したもの)上に転
がし、転がり落ちた顆粒を回収し、これにより形状分級
を行なった。顆粒100個の平均粒径及び平均アスペクト
比は0.25mm、1.1であった。なおGd2O2S顆粒の平均粒径
及び平均アスペクト比は、ビデオハイスコープシステム
を用いて撮影した画像から測定した。
[Regenerator granules] The Gd 2 O 2 S powder obtained in Example 1 was formed into a spherical shape by the rolling granulation method, and the obtained granules were mixed with two different nylon meshes (A mesh (opening 308 μm)). B mesh
(Opening of 190 μm)). The sieved granules were rolled on an iron plate (polished to a mirror surface) tilted at about 25 °, and the rolled-down granules were collected, which was subjected to shape classification. The average particle size and average aspect ratio of 100 granules were 0.25 mm and 1.1. The average particle size and the average aspect ratio of the Gd 2 O 2 S granules were measured from images taken by using a video high scope system.

【0032】得られたGd2O2S顆粒をアルミナ製のルツボ
に充填し、焼結炉内に設置して常圧焼結を行い、炉内を
十分に真空排気した後にアルゴンガスを導入して、アル
ゴン雰囲気中で焼結した。焼成温度を1500℃、焼成時間
を6時間として、目的とするGd2O2S蓄冷材を得た。Gd2O
2S蓄冷材の密度は、ピクノメーター法により理論密度の
99.2%であった。平均結晶粒径及び硫黄含有量は実施例
1と同じであった。
The obtained Gd 2 O 2 S granules were filled in an alumina crucible and placed in a sintering furnace to carry out normal pressure sintering, and the inside of the furnace was sufficiently evacuated and then argon gas was introduced. And sintered in an argon atmosphere. The desired Gd 2 O 2 S regenerator material was obtained by setting the firing temperature to 1500 ° C. and the firing time to 6 hours. Gd 2 O
The density of 2 S regenerator material is calculated by the pycnometer method.
It was 99.2%. The average crystal grain size and the sulfur content were the same as in Example 1.

【0033】ナイロン系メディアと10wt%濃度のアルミ
ナスラリーを加工槽内に装入し、そこにGd2O2S蓄冷材を
入れ、回転バレル加工法による表面加工処理を行って、
蓄冷材の顆粒を得た(実施例6)。加工時間を6時間に
すると、顆粒の表面粗さは1μmとなった。なお表面粗さ
は走査型トンネル顕微鏡(STM粗さ計)により測定した。
得られたGd2O2S蓄冷材をGM冷凍機の冷却部に最密充填に
近い充填率で充填した後、熱容量25J/KのHeガスを3g/se
cの質量流量、16atmのガス圧条件で、GM冷凍運転サイク
ルを連続500時間継続した。この時点で蓄冷部を流通す
るヘリウムガスの通過抵抗を測定したところ、運転開始
時からの通過抵抗の増加は認められなかった。連続1000
Hr運転後、Gd2O2S蓄冷材を取出して観察したところ、微
粉化した顆粒は観察されなかった。
Nylon type media and 10 wt% concentration of alumina slurry were loaded into a processing tank, Gd 2 O 2 S regenerator material was placed therein, and surface processing was performed by a rotary barrel processing method.
Granules of a cold storage material were obtained (Example 6). When the processing time was 6 hours, the surface roughness of the granules became 1 μm. The surface roughness was measured with a scanning tunneling microscope (STM roughness meter).
After filling the obtained Gd 2 O 2 S regenerator material in the cooling section of the GM refrigerator at a filling rate close to the closest packing, He gas with a heat capacity of 25 J / K was added at 3 g / se.
The GM refrigeration operation cycle was continued for 500 hours continuously under the condition of mass flow rate of c and gas pressure of 16 atm. When the passage resistance of the helium gas flowing through the cold storage section was measured at this time, no increase in the passage resistance from the start of the operation was observed. 1000 in succession
After the Hr operation, the Gd 2 O 2 S regenerator material was taken out and observed, and no finely divided granules were observed.

【0034】以下の各試料では、実施例6と同様の条件
で、希土類オキシ硫化物の顆粒を、硫化・成形・分級・
焼結・研磨することによって調製した。また調製条件
は、特に指摘した点以外は、実施例6と同様である。な
お試料番号は、実施例1を試料1として続き順に示す。
In each of the following samples, the rare earth oxysulfide granules were sulfided, molded, classified, and subjected to the same conditions as in Example 6.
It was prepared by sintering and polishing. The preparation conditions are the same as in Example 6 except as noted. Note that the sample numbers are shown in the order of succession with Example 1 as Sample 1.

【0035】鉄板の傾け角度を変化させた以外は、実施
例6と同様の条件で顆粒を作成して、焼結・研磨した
(試料2,3)。また実施例6で形状分級した残りの、
アスペクト比が3を超える顆粒を焼結・研磨した(試料
4)。そしてヘリウムガスの通過抵抗及び粉塵の発生度
合いを、実施例6で用いたGM冷凍運転サイクルで評価
し、結果を表2に示す。平均アスペクト比が3未満では
実施例6と同様に良好な結果が得られが、平均アスペク
ト比が3を超えると、連続運転500時間継続でヘリウム
ガス通過抵抗は30〜40%増加し、連続1000Hr運転後では
細かく砕けた顆粒の割合が20〜30%程度に達していた。
Granules were prepared, sintered and polished under the same conditions as in Example 6 except that the tilt angle of the iron plate was changed (Samples 2 and 3). In addition, the remainder of the shape classification in Example 6,
Granules having an aspect ratio of more than 3 were sintered and polished (Sample 4). Then, the passage resistance of helium gas and the degree of generation of dust were evaluated by the GM refrigeration operation cycle used in Example 6, and the results are shown in Table 2. When the average aspect ratio is less than 3, good results are obtained as in Example 6, but when the average aspect ratio exceeds 3, the helium gas passage resistance increases by 30 to 40% after continuous operation for 500 hours, and continuous 1000 Hr. After operation, the proportion of finely crushed granules reached about 20-30%.

【0036】[0036]

【表2】 試料 分級角度/° 平均アスペクト比 Heガス通過抵 粉塵発生度合い 抵抗増加率 1 25 1.1 なし 問題なし 2 30 1.3 なし 問題なし 3 40 1.8 なし 問題なし 4 − 3.2 運転500Hr後 20%〜30%顆粒 30〜40% 破壊[Table 2] Sample classification angle / ° Average aspect ratio He gas passage Degree of dust generation Resistance increase rate 1 25 1.1 No problem No 2 30 1.3 No problem No 3 40 1.8 No problem 4 − 3.2 After 500 hours, 20% to 30% % Granule 30-40% destroyed

【0037】焼結温度あるいは焼結時間を変えて結晶粒
径を変化させた他は、実施例6と同様の条件で焼結顆粒
を作製した(試料5〜9)。結晶粒径の違いによるヘリ
ウムガスの通過抵抗及び粉塵の発生度合いを、実施例6
で用いたGM冷凍運転サイクルで評価し、結果を表3に示
す。試料1,5〜7のように結晶粒径が100μm以下の顆
粒で、良好な結果が得られた。しかし試料8,9のよう
に結晶粒径が100μmを超える顆粒では、連続運転500時
間継続でヘリウムガス通過抵抗が20〜30%増加し、連続1
000時間運転では細かく砕けた顆粒の割合が10〜15%程度
に達した。
Sintered granules were produced under the same conditions as in Example 6 except that the crystal grain size was changed by changing the sintering temperature or the sintering time (Samples 5 to 9). The helium gas passage resistance and the degree of generation of dust due to the difference in crystal grain size were measured in Example 6
The GM refrigerating operation cycle used in 1. was evaluated, and the results are shown in Table 3. Good results were obtained with granules having a crystal grain size of 100 μm or less like Samples 1 to 5-7. However, in the case of granules with a crystal grain size of more than 100 μm like Samples 8 and 9, the helium gas passage resistance increased by 20 to 30% after continuous operation for 500 hours, and
The percentage of finely crushed granules reached about 10 to 15% after 000 hours of operation.

【0038】[0038]

【表3】 試料 焼結温度/ 焼結時間/ 平均結晶 Heガス通過 粉塵発生 ℃ Hr 粒径/μm 抵抗増加率 度合い 1 1500 6 3.7 なし 問題なし 5 1550 6 23 なし 問題なし 6 1600 6 85 なし 問題なし 7 1600 3 37 なし 問題なし 8 1650 6 110 運転500Hr後 10〜15% 20〜30% 顆粒破壊 9 1600 15 121 運転500Hr後 10〜15% 20〜30% 顆粒破壊[Table 3] Sample Sintering temperature / Sintering time / Average Crystal He gas passage Dust generation ℃ Hr Particle size / μm Resistance increase rate Degree 1 1500 6 3.7 No problem No 5 1550 6 23 No problem No 6 1600 6 85 No problem None 7 1600 3 37 None No problem 8 1650 6 110 10 to 15% 20 to 30% after operation 500hr, granule destruction 9 1600 15 121 10 to 15% after operation 500hr 10 to 15% 20 to 30% granule destruction

【0039】表面加工時間を変化させて、表面粗さの違
いによるヘリウムガス通過抵抗及び粉塵の発生度合い
を、実施例6で用いたGM冷凍運転サイクルで評価し、結
果を表4に示す。試料1,10,11のように表面粗さ
が10μm以下で、良好な結果が得られた。しかし試料1
2のように、表面粗さが10μmを超えると、連続運転500
時間継続でヘリウムガス通過抵抗は20〜30%増加し、連
続1000Hr運転では細かく砕けた顆粒の割合が15〜20%程
度に達した。
The surface processing time was changed, and the helium gas passage resistance and the degree of dust generation due to the difference in surface roughness were evaluated in the GM refrigeration operation cycle used in Example 6, and the results are shown in Table 4. Good results were obtained when the surface roughness was 10 μm or less as in Samples 1, 10, and 11. But sample 1
When the surface roughness exceeds 10 μm, as in 2, continuous operation 500
The helium gas passage resistance increased by 20 to 30% as the time continued, and the proportion of finely crushed granules reached about 15 to 20% in continuous 1000Hr operation.

【0040】[0040]

【表4】 試料 表面加工時間 表面粗さ/μm Heガス通過 粉塵発生度合い 抵抗増加率 1 6 1 なし 問題なし 10 4 5 なし 問題なし 11 2 8 なし 問題なし 12 0 12 運転500Hr後 15%〜20%顆粒 20〜30% 破壊[Table 4] Sample surface processing time Surface roughness / μm He gas passage Dust generation rate Resistance increase rate 1 6 1 No problem No 10 4 5 No problem No 11 2 8 No problem 12 0 12 15% to 20% after 500 hours of operation 20% to 30% granule destruction

【0041】硫化ガス流量を変化させて調製したGd2O2S
粉体を用いて、実施例6と同様に顆粒を作製して焼結し
た。過剰硫黄の含有量は相対密度に影響し、ヘリウムガ
ス通過抵抗及び粉塵の発生度合いにも影響する。そこで
ヘリウムガス通過抵抗や粉塵の発生度合いを、実施例6
で用いたGM冷凍運転サイクルで評価し結果を表5に示
す。試料1,13,14のように、相対密度が96%以上
の顆粒で良好な結果が得られた。試料15のように相対
密度が96%未満の顆粒では、連続運転500時間継続した時
点のヘリウムガス通過抵抗の増加率は15〜20%に達し、
連続1000Hr運転後での顆粒の破壊状況は、細かく砕けた
顆粒の割合が5〜10%程度に達した。相対密度を96%以上
にするため過剰硫黄の含有量は10,000wtppm以下が好ま
しく、より好ましくは相対密度を98%以上とするため500
0wtppm以下とし、最も好ましくは相対密度を99%以上と
するため1000wtppm以下とする。
Gd 2 O 2 S prepared by changing the sulfide gas flow rate
Granules were prepared and sintered in the same manner as in Example 6 using the powder. The excess sulfur content affects the relative density, and also affects the helium gas passage resistance and the degree of dust generation. Therefore, the helium gas passage resistance and the degree of generation of dust are determined in Example 6
Table 5 shows the results of evaluation by the GM refrigeration operation cycle used in. Good results were obtained with granules having a relative density of 96% or more as in Samples 1, 13, and 14. In the case of granules having a relative density of less than 96% as in Sample 15, the increase rate of helium gas passage resistance at the time of continuous operation for 500 hours reaches 15 to 20%,
Regarding the state of destruction of granules after continuous operation for 1000 hours, the proportion of finely crushed granules reached about 5-10%. In order to make the relative density 96% or more, the content of excess sulfur is preferably 10,000 wtppm or less, more preferably 500 to make the relative density 98% or more.
It is 0 wtppm or less, and most preferably 1000 wtppm or less in order to make the relative density 99% or more.

【0042】[0042]

【表5】 試料 H2Sガス流量 硫黄含有量/ 相対密度/% Heガス通過 粉塵発生度 (L/min) wtppm 抵抗増加率 合い 1 0.2 1000 99.2 なし 問題なし 13 1 5000 98.3 なし 問題なし 14 1.25 7000 97.6 なし 問題なし 15 2.5 12500 95.1 運転500Hr後 5〜10%顆粒 15〜20% 破壊[Table 5] Sample H 2 S gas flow rate Sulfur content / Relative density /% He gas passage Dust generation rate (L / min) wtppm Resistance increase rate 1 0.2 1000 99.2 No problem 13 1 5000 98.3 No problem 14 1.25 7000 97.6 None No problem 15 2.5 12500 95.1 After 500 hours of operation 5-10% Granules 15-20% Destruction

【0043】実施例6で調製したGd2O2S蓄冷材や実施例
6と同様の方法で作製したGd1.8Tb0 .2O2S蓄冷材の冷凍
特性を、消費電力3.3kWの蓄冷型パルスチューブ冷凍機
により調べた。この冷凍機には2段の蓄冷器を設置し、
高温側の1段目の蓄冷器にはPbを使用し、2段目の蓄冷器
には蓄冷材を充填した。図5(A)に従来例での2段目の蓄
冷器の構成を示す。蓄冷器には、温度の高い側から順
に、Pb、Er3Ni及びHoCu2が充填されており、各々の体積
比は2:1:1である。従来例での冷凍特性を図6(a)に示
す。この冷凍機は4.2Kでの出力が約165mWであり、無負
荷時の最低到達温度は約2.9Kであった。
[0043] The refrigeration properties of the Gd 1.8 Tb 0 .2 O 2 S cold accumulating material was prepared in the same manner as Gd 2 O 2 S regenerator material and Example 6 prepared in Example 6, regenerative power consumption 3.3kW It investigated by the pulse tube refrigerator. This refrigerator has a two-stage regenerator,
Pb was used for the first stage regenerator on the high temperature side, and the second stage regenerator was filled with regenerator material. FIG. 5 (A) shows the configuration of the second-stage regenerator in the conventional example. The regenerator is filled with Pb, Er 3 Ni and HoCu 2 in order from the higher temperature side, and the volume ratio of each is 2: 1: 1. The freezing characteristics of the conventional example are shown in FIG. The output of this refrigerator at 4.2K was about 165mW, and the minimum temperature reached at no load was about 2.9K.

【0044】一方、この蓄冷器のHoCu2蓄冷材の低温側
の25容量%を、Gd2O2S蓄冷材やGd1.8Tb0.2O2S蓄冷材等に
置き換えて、蓄冷特性を調べた。実施例での蓄冷器の構
成を図5(B)に示す。Gd2O2S蓄冷材での冷凍特性を図6
(b)に、Gd1.8Tb0.2O2S蓄冷材での冷凍特性を図6(c)に
示す。Gd2O2S蓄冷材を用いると、4.2Kでの出力が約300m
W、無負荷時の最低到達温度は約2.7Kであった。Gd1.8Tb
0.2O2S蓄冷材を用いると、4.2Kでの出力が約340mW、無
負荷時の最低到達温度は約2.65Kとなった。
On the other hand, 25% by volume of the HoCu 2 regenerator material on the low temperature side of this regenerator was replaced with a Gd 2 O 2 S regenerator material, a Gd 1.8 Tb 0.2 O 2 S regenerator material or the like to examine the regenerator characteristics. The configuration of the regenerator in the example is shown in FIG. 5 (B). Figure 6 shows the freezing characteristics of the Gd 2 O 2 S regenerator material.
Fig. 6 (c) shows the freezing characteristics of the Gd 1.8 Tb 0.2 O 2 S regenerator material in (b). With Gd 2 O 2 S regenerator, output at 4.2K is about 300m
The minimum temperature reached at W and no load was about 2.7K. Gd 1.8 Tb
When 0.2 O 2 S regenerator material was used, the output at 4.2K was about 340mW, and the minimum temperature reached at no load was about 2.65K.

【0045】図6(a)の従来の蓄冷器を1とする、図6
(b),(c)のGd2O2SやGd1.8Tb0.2O2S蓄冷材を用いた蓄冷
器の冷凍能力の比を、図7に示す。Gd2O2S蓄冷材を充填
した蓄冷器(破線a)では4.2Kで約2倍の冷凍能力を有
し、温度の低下とともに冷凍能力の比が増加し3Kで4倍
に達した。Gd1.8Tb0.2O2S蓄冷材(実線b)では、4.2Kで
2倍以上の冷凍能力を有し、温度の低下とともに冷凍能
力の比が増加して3Kで4.5倍に達した。
The conventional regenerator of FIG. 6 (a) is referred to as FIG.
Fig. 7 shows the ratio of the refrigerating capacity of the regenerator using the Gd 2 O 2 S and Gd 1.8 Tb 0.2 O 2 S regenerator materials in (b) and (c). The regenerator filled with Gd 2 O 2 S regenerator material (broken line a) had about twice the refrigerating capacity at 4.2K, and the ratio of the refrigerating capacity increased as the temperature decreased and reached 4 times at 3K. Gd 1.8 Tb 0.2 O 2 S with cold storage material (solid line b) at 4.2K
It has more than twice the refrigerating capacity, and the ratio of the refrigerating capacity increased with the temperature decrease, reaching 4.5 times at 3K.

【0046】篩い分けに用いたメッシュの目開きの大き
さを変化させて、顆粒の平均粒径を変化させた以外は、
実施例6と同様の条件で、蓄冷材顆粒を作成した。作製
した顆粒の冷凍特性を前記と同様に評価し、結果を表6
に示す。試料16〜18のように、顆粒の平均粒径が0.
05mm以上1mm以下では4.2Kで高い出力が得られるが、試
料19,20のように、顆粒の平均粒径がこの範囲を外
れると、4.2Kでの出力が低下した。従って、顆粒の平均
粒径は0.05mm以上1mm以下が好ましく、より好ましくは
0.1〜0.7mm、さらに好ましくは0.1〜0.3mm、最も好まし
くは0.2〜0.3mmとする。
Except that the size of the mesh used for sieving was changed to change the average particle size of the granules,
Under the same conditions as in Example 6, cold storage material granules were prepared. The frozen characteristics of the produced granules were evaluated in the same manner as above, and the results are shown in Table 6.
Shown in. Like Samples 16-18, the average particle size of the granules is 0.
A high output was obtained at 4.2K in the range of 05 mm or more and 1 mm or less, but when the average particle size of the granules was out of this range as in Samples 19 and 20, the output at 4.2K decreased. Therefore, the average particle size of the granules is preferably 0.05 mm or more and 1 mm or less, more preferably
The thickness is 0.1 to 0.7 mm, more preferably 0.1 to 0.3 mm, and most preferably 0.2 to 0.3 mm.

【0047】[0047]

【表6】試料 顆粒の平均粒径/mm 4.2Kでの出力/mW 16 0.25 300 17 0.77 290 18 0.071 285 19 1.1 200 20 0.045 185[Table 6] Average particle size of sample granules / mm 4.2 Output power at 4.2K / mW 16 0.25 300 17 0.77 290 18 18 0.071 285 19 19 200 200 0.045 185

【0048】[0048]

【比較例3】実施例6と同様の成形・分級・焼結条件で
作製したGd2O3顆粒の冷凍特性を、前記と同様に評価し
た。4.2Kでの出力は約100mWであり、無負荷時の最低到
達温度は約3.5Kであった。この結果は、蓄冷器の出力及
び最低到達温度の両方で従来例(HoCu2)を下回ってい
る。
Comparative Example 3 The freezing characteristics of Gd 2 O 3 granules produced under the same molding, classifying and sintering conditions as in Example 6 were evaluated in the same manner as above. The output at 4.2K was about 100mW, and the minimum temperature reached at no load was about 3.5K. This result is lower than the conventional example (HoCu 2 ) in both the output of the regenerator and the minimum reached temperature.

【0049】HoCu2蓄冷材と希土類オキシ硫化物蓄冷材
とは、体積比で、HoCu2が20〜80%、希土類オキシ硫化
物が80〜20%が好ましい。さらに、Gd系のオキシ硫化物
の高温側にTb系のオキシ硫化物を配置する場合でも、そ
の高温側にはHoCu2を配置して、7Kまでの冷凍能力を確
保することが好ましい。またTbを主成分とするオキシ硫
化物として、Gd0.1Tb1.9O2Sを調製したところ、Tb2O2S
よりも比熱のピークが僅かに低温側にシフトし、他はTb
2O2Sと類似した蓄冷材が得られた。
The volume ratio of the HoCu 2 regenerator material to the rare earth oxysulfide regenerator material is preferably 20 to 80% HoCu 2 and 80 to 20% rare earth oxysulfide. Further, even when the Tb-based oxysulfide is arranged on the high temperature side of the Gd-based oxysulfide, it is preferable to arrange HoCu 2 on the high temperature side to secure the refrigerating capacity up to 7K. As oxy sulfides mainly comprised of Tb, was prepared Gd 0.1 Tb 1.9 O 2 S, Tb 2 O 2 S
The specific heat peak shifts slightly to the low temperature side, and
A cold storage material similar to 2 O 2 S was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例の希土類オキシ硫化物蓄冷材とヘリウ
ム及び従来例の蓄冷材の熱容量を示す特性図
FIG. 1 is a characteristic diagram showing heat capacities of a rare earth oxysulfide regenerator material and helium of an example and a regenerator material of a conventional example.

【図2】 実施例でのGdリッチのGd2-xTbxO2S希土類オ
キシ硫化物蓄冷材の熱容量を示す特性図
FIG. 2 is a characteristic diagram showing heat capacities of Gd-rich Gd 2-x Tb x O 2 S rare earth oxysulfide cold storage materials in Examples.

【図3】 実施例でのTbリッチのGd2-xTbxO2S希土類オ
キシ硫化物蓄冷材の熱容量を示す特性図
FIG. 3 is a characteristic diagram showing a heat capacity of a Tb-rich Gd 2−x Tb x O 2 S rare earth oxysulfide cold storage material in an example.

【図4】 実施例のHo-Dy複合希土類オキシ硫化物蓄冷
材の熱容量を示す特性図
FIG. 4 is a characteristic diagram showing the heat capacity of the Ho-Dy composite rare earth oxysulfide cold storage material of the example.

【図5】 従来例の蓄冷器(A)と実施例の蓄冷器(B)の構
成を示す図
FIG. 5 is a diagram showing the configurations of a conventional regenerator (A) and an example regenerator (B).

【図6】 従来の蓄冷器の冷凍能力(a)と実施例の蓄冷
器の冷凍能力(b), (c)を示す特性図
FIG. 6 is a characteristic diagram showing the refrigerating capacity (a) of the conventional regenerator and the refrigerating capacity (b) and (c) of the regenerator of the embodiment.

【図7】 従来例の蓄冷器と実施例の蓄冷器との冷凍能
力の比を示す特性図
FIG. 7 is a characteristic diagram showing a ratio of refrigerating capacities of a conventional regenerator and an example regenerator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 香川 克典 香川県三豊郡詫間町大字香田80 神島化学 工業株式会社詫間工場内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Katsunori Kagawa             Kamijima Kagaku 80 Kada, Omagama-cho, Mitoyo-gun, Kagawa Prefecture             Industrial Co., Ltd. Takuma Factory

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 一般式 R2O2S (RはYを含むLa, Ce,
Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,Y
b及びLuから選択される1種類又は2種類以上の希土類元
素を表す。) で表される希土類オキシ硫化物からなる希
土類オキシ硫化物蓄冷材。
1. The general formula R 2 O 2 S (R is Y containing La, Ce,
Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
Represents one or more rare earth elements selected from b and Lu. ) A rare earth oxysulfide cold storage material consisting of a rare earth oxysulfide.
【請求項2】 前記希土類オキシ硫化物がGd2-xTbxO2
S(x=0.2〜2)であることを特徴とする、請求項1の希土
類オキシ硫化物蓄冷材。
2. The rare earth oxysulfide is Gd 2-x Tb x O 2
The rare earth oxysulfide cold storage material according to claim 1, wherein S (x = 0.2 to 2).
【請求項3】 前記希土類オキシ硫化物Gd2-xTbxO2S
でのx値が1.6〜2であることを特徴とする、請求項2の
希土類オキシ硫化物蓄冷材。
3. The rare earth oxysulfide Gd 2-x Tb x O 2 S
3. The rare earth oxysulfide cold storage material according to claim 2, wherein the x value in is 1.6 to 2.
【請求項4】 前記希土類オキシ硫化物がHoまたはDy
のオキシ硫化物であることを特徴とする、請求項1の希
土類オキシ硫化物蓄冷材。
4. The rare earth oxysulfide is Ho or Dy.
2. The regenerator material of rare earth oxysulfide according to claim 1, which is an oxysulfide of
【請求項5】 前記希土類オキシ硫化物が顆粒状であ
ることを特徴とする、請求項1の希土類オキシ硫化物蓄
冷材。
5. The regenerator material of rare earth oxysulfide according to claim 1, wherein the rare earth oxysulfide is granular.
【請求項6】 前記希土類オキシ硫化物蓄冷材の顆粒
の平均粒径が0.05mm〜1mmであることを特徴とする、請
求項5の希土類オキシ硫化物蓄冷材。
6. The rare earth oxysulfide regenerator material of claim 5, wherein the granules of the rare earth oxysulfide regenerator material have an average particle size of 0.05 mm to 1 mm.
【請求項7】 前記顆粒の短径に対する長径の比の平
均値(平均アスペクト比)が3以下であることを特徴とす
る、請求項5の希土類オキシ硫化物蓄冷材。
7. The rare earth oxysulfide cold storage material according to claim 5, wherein the average value (average aspect ratio) of the ratio of the major axis to the minor axis of the granule is 3 or less.
【請求項8】 前記希土類オキシ硫化物の顆粒の相対
密度が96%以上であることを特徴とする、請求項5の希
土類オキシ硫化物蓄冷材。
8. The rare earth oxysulfide cold storage material according to claim 5, wherein the relative density of the rare earth oxysulfide granules is 96% or more.
【請求項9】 前記希土類オキシ硫化物の顆粒を平均
結晶粒径が100μm以下としたことを特徴とする、請求項
5の希土類オキシ硫化物蓄冷材。
9. The cool storage material for rare earth oxysulfide according to claim 5, wherein the rare earth oxysulfide granules have an average crystal grain size of 100 μm or less.
【請求項10】 前記顆粒の表面粗さを最大高さRmax
準で10μm以下としたことを特徴とする、請求項5の希
土類オキシ硫化物蓄冷材。
10. The rare earth oxysulfide cold storage material according to claim 5, wherein the surface roughness of the granules is 10 μm or less based on the maximum height R max .
【請求項11】 前記顆粒中の過剰の硫黄含有量を1000
0wtppm以下としたことを特徴とする、請求項5の希土類
オキシ硫化物蓄冷材。
11. Excessive sulfur content in the granules of 1000
The rare earth oxysulfide cold storage material according to claim 5, characterized in that the content is 0 wtppm or less.
【請求項12】 前記顆粒が7〜2Kに体積比熱の極大値
を有することを特徴とする、請求項5の希土類オキシ硫
化物蓄冷材。
12. The regenerator material for rare earth oxysulfides according to claim 5, wherein the granules have a maximum value of volume specific heat at 7 to 2K.
【請求項13】 一般式 R2O2S (RはYを含むLa, Ce,
Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,Y
b及びLuから選択される1種類又は2種類以上の希土類元
素を表す。) で表される希土類オキシ硫化物からなる希
土類オキシ硫化物蓄冷材を充填した蓄冷器。
13. The general formula R 2 O 2 S (R is Y containing La, Ce,
Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
Represents one or more rare earth elements selected from b and Lu. ) A regenerator filled with a rare earth oxysulfide cold storage material composed of a rare earth oxysulfide.
【請求項14】 前記蓄冷器には、蓄冷材が高温用材料
から低温用材料への順で層状に充填され、前記希土類オ
キシ硫化物蓄冷材の高温側にHoCu2蓄冷材が充填されて
いることを特徴とする、請求項13の蓄冷器。
14. The regenerator is filled with a regenerator material in layers in the order from a high temperature material to a low temperature material, and a HoCu 2 regenerator material is filled on the high temperature side of the rare earth oxysulfide regenerator material. The regenerator according to claim 13, wherein:
【請求項15】 前記蓄冷器には、蓄冷材が高温用材料
から低温用材料への順で層状に充填され、Gdのオキシ硫
化物蓄冷材の高温側にTbのオキシ硫化物蓄冷材が充填さ
れていることを特徴とする、請求項13の蓄冷器。
15. The regenerator is filled with the regenerator material in layers in the order from the high temperature material to the low temperature material, and the high temperature side of the Gd oxysulfide regenerator material is filled with the Tb oxysulfide regenerator material. The regenerator according to claim 13, which is provided.
【請求項16】 前記蓄冷器には、蓄冷材が高温用材料
から低温用材料への順で層状に充填され、Gdのオキシ硫
化物蓄冷材の低温側にHoまたはDyのオキシ硫化物蓄冷材
が充填されていることを特徴とする、請求項15の蓄冷
器。
16. The regenerator is filled with a regenerator material in layers from a high temperature material to a low temperature material in this order, and Ho or Dy oxysulfide regenerator material is provided on the low temperature side of the Gd oxysulfide regenerator material. The regenerator according to claim 15, wherein the regenerator is filled with.
JP2002169732A 2001-06-18 2002-06-11 Rare earth oxysulfide regenerator and regenerator Expired - Lifetime JP3642486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002169732A JP3642486B2 (en) 2001-06-18 2002-06-11 Rare earth oxysulfide regenerator and regenerator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001183895 2001-06-18
JP2001-183895 2001-06-18
JP2002169732A JP3642486B2 (en) 2001-06-18 2002-06-11 Rare earth oxysulfide regenerator and regenerator

Publications (2)

Publication Number Publication Date
JP2003073661A true JP2003073661A (en) 2003-03-12
JP3642486B2 JP3642486B2 (en) 2005-04-27

Family

ID=26617130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002169732A Expired - Lifetime JP3642486B2 (en) 2001-06-18 2002-06-11 Rare earth oxysulfide regenerator and regenerator

Country Status (1)

Country Link
JP (1) JP3642486B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081145A1 (en) * 2002-03-22 2003-10-02 Sumitomo Heavy Industries, Ltd. Cryogenic temperature cool storage device and refrigerator
JP2004189906A (en) * 2002-12-12 2004-07-08 Toshiba Corp Cold storage material, method for producing the same and cold storage type refrigerator
JP2005090854A (en) * 2003-09-17 2005-04-07 Sumitomo Heavy Ind Ltd Cryogenic cold-accumulator, and refrigerator
JP2005336240A (en) * 2004-05-25 2005-12-08 Konoshima Chemical Co Ltd Hybrid cold storage material, method for producing the same and cold storage unit
JP2009103412A (en) * 2007-10-25 2009-05-14 Toshiba Corp Regeneration type refrigerator
WO2011024757A1 (en) * 2009-08-25 2011-03-03 株式会社東芝 Rare-earth cold storage material particle, rare-earth cold storage material particles, refrigerator utilizing same, measuring device, and method for producing same
JP2011137632A (en) * 2011-04-11 2011-07-14 Sumitomo Heavy Ind Ltd Cold storage medium, cold accumulator, and cryogenic cold storage type refrigerating machine
JP2015083914A (en) * 2013-09-17 2015-04-30 住友重機械工業株式会社 Regenerative refrigerator, first stage regenerator, and second stage regenerator
JP2018173268A (en) * 2012-10-09 2018-11-08 株式会社東芝 Manufacturing method for cold head
WO2022114045A1 (en) 2020-11-26 2022-06-02 株式会社 東芝 Cold storage material, cold storage material particles, granular particles, cold storage device, refrigerating machine, cryopump, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, magnetic-field-application-type single crystal pulling apparatus, and helium re-condensation apparatus
WO2022224783A1 (en) 2021-04-20 2022-10-27 株式会社 東芝 Magnetic cold storage material particle, cold storage device, refrigerating machine, cryopump, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, magnetic-field-application-type single crystal pulling apparatus, and helium re-condensation apparatus
WO2023032867A1 (en) 2021-08-30 2023-03-09 株式会社 東芝 Granular particles for cold storage material particles, cold storage material particles, cold storage device, refrigerating machine, cryopump, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, magnetic field application-type single crystal pulling apparatus, and helium re-condensation apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259837B2 (en) * 2002-10-02 2009-04-30 神島化学工業株式会社 Method for producing rare earth oxysulfide ceramic regenerator material
JP6608835B2 (en) 2014-09-25 2019-11-20 株式会社東芝 Rare earth regenerator particles, refrigerators using them, superconducting magnets, inspection devices and cryopumps

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617036A (en) * 1991-03-29 1994-01-25 Mitsubishi Materials Corp Cryogenic cold storage material
JPH11325628A (en) * 1998-05-11 1999-11-26 Toshiba Corp Cold storage material and cold storage type refrigerating machine
JP2001262134A (en) * 2000-03-21 2001-09-26 National Institute For Materials Science Oxide cold storage material and cold storage device
JP2003213252A (en) * 2002-01-18 2003-07-30 Konoshima Chemical Co Ltd Rare earth oxysulfide cold storage medium and cold storage apparatus
JP2003306673A (en) * 2002-04-15 2003-10-31 Konoshima Chemical Co Ltd Ceramic cryogenic energy-storing material of rare earth oxysulfide, method for producing the same, and cryogenetic energy-storing tool for very low temperature by using the cryogenic energy-storing material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617036A (en) * 1991-03-29 1994-01-25 Mitsubishi Materials Corp Cryogenic cold storage material
JPH11325628A (en) * 1998-05-11 1999-11-26 Toshiba Corp Cold storage material and cold storage type refrigerating machine
JP2001262134A (en) * 2000-03-21 2001-09-26 National Institute For Materials Science Oxide cold storage material and cold storage device
JP2003213252A (en) * 2002-01-18 2003-07-30 Konoshima Chemical Co Ltd Rare earth oxysulfide cold storage medium and cold storage apparatus
JP2003306673A (en) * 2002-04-15 2003-10-31 Konoshima Chemical Co Ltd Ceramic cryogenic energy-storing material of rare earth oxysulfide, method for producing the same, and cryogenetic energy-storing tool for very low temperature by using the cryogenic energy-storing material

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7404295B2 (en) * 2002-03-22 2008-07-29 Sumitomo Heavy Industries, Ltd. Ultra-low temperature regenerator and refrigerator
WO2003081145A1 (en) * 2002-03-22 2003-10-02 Sumitomo Heavy Industries, Ltd. Cryogenic temperature cool storage device and refrigerator
JP2004189906A (en) * 2002-12-12 2004-07-08 Toshiba Corp Cold storage material, method for producing the same and cold storage type refrigerator
JP4582994B2 (en) * 2002-12-12 2010-11-17 株式会社東芝 Cold storage material, manufacturing method thereof, and cold storage type refrigerator
JP2005090854A (en) * 2003-09-17 2005-04-07 Sumitomo Heavy Ind Ltd Cryogenic cold-accumulator, and refrigerator
JP4666570B2 (en) * 2004-05-25 2011-04-06 神島化学工業株式会社 Hybrid regenerator material, its manufacturing method and regenerator
JP2005336240A (en) * 2004-05-25 2005-12-08 Konoshima Chemical Co Ltd Hybrid cold storage material, method for producing the same and cold storage unit
JP2009103412A (en) * 2007-10-25 2009-05-14 Toshiba Corp Regeneration type refrigerator
US9556374B2 (en) 2009-08-25 2017-01-31 Kabushiki Kaisha Toshiba Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same
US10385248B2 (en) 2009-08-25 2019-08-20 Kabushiki Kaisha Toshiba Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same
JP5656842B2 (en) * 2009-08-25 2015-01-21 株式会社東芝 Rare earth regenerator material particles, rare earth regenerator material particles, refrigerator using the same, measuring device, and method for producing the same
WO2011024757A1 (en) * 2009-08-25 2011-03-03 株式会社東芝 Rare-earth cold storage material particle, rare-earth cold storage material particles, refrigerator utilizing same, measuring device, and method for producing same
US9719004B2 (en) 2009-08-25 2017-08-01 Kabushiki Kaisha Toshiba Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same
US10024583B2 (en) 2009-08-25 2018-07-17 Kabushiki Kaisha Toshiba Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same
US10040982B2 (en) 2009-08-25 2018-08-07 Kabushiki Kaisha Toshiba Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same
US10907081B2 (en) 2009-08-25 2021-02-02 Kabushiki Kaisha Toshiba Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same
JP2011137632A (en) * 2011-04-11 2011-07-14 Sumitomo Heavy Ind Ltd Cold storage medium, cold accumulator, and cryogenic cold storage type refrigerating machine
US11015101B2 (en) 2012-10-09 2021-05-25 Kabushiki Kaisha Toshiba Rare earth regenerator material particle, rare earth regenerator material particle group, and cold head, superconducting magnet, examination apparatus, and cryopump using the same
US10513646B2 (en) 2012-10-09 2019-12-24 Kabushiki Kaisha Toshiba Rare earth regenerator material particle, rare earth regenerator material particle group, and cold head, superconducting magnet, examination apparatus, and cryopump using the same
JP2018173268A (en) * 2012-10-09 2018-11-08 株式会社東芝 Manufacturing method for cold head
US11692117B2 (en) 2012-10-09 2023-07-04 Kabushiki Kaisha Toshiba Rare earth regenerator material particle, rare earth regenerator material particle group, and cold head, superconducting magnet, examination apparatus, and cryopump using the same
US10281175B2 (en) 2013-09-17 2019-05-07 Sumitomo Heavy Industries, Ltd. Regenerative refrigerator, first stage regenerator, and second stage regenerator
JP2015083914A (en) * 2013-09-17 2015-04-30 住友重機械工業株式会社 Regenerative refrigerator, first stage regenerator, and second stage regenerator
WO2022114045A1 (en) 2020-11-26 2022-06-02 株式会社 東芝 Cold storage material, cold storage material particles, granular particles, cold storage device, refrigerating machine, cryopump, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, magnetic-field-application-type single crystal pulling apparatus, and helium re-condensation apparatus
WO2022224783A1 (en) 2021-04-20 2022-10-27 株式会社 東芝 Magnetic cold storage material particle, cold storage device, refrigerating machine, cryopump, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, magnetic-field-application-type single crystal pulling apparatus, and helium re-condensation apparatus
WO2023032867A1 (en) 2021-08-30 2023-03-09 株式会社 東芝 Granular particles for cold storage material particles, cold storage material particles, cold storage device, refrigerating machine, cryopump, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, magnetic field application-type single crystal pulling apparatus, and helium re-condensation apparatus

Also Published As

Publication number Publication date
JP3642486B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
KR100859347B1 (en) Rare earth metal oxysulfide cool storage material and cool storage device
JP3642486B2 (en) Rare earth oxysulfide regenerator and regenerator
US20220135419A1 (en) Rare earth oxysulfide cold storage medium
WO2006092871A1 (en) Cold storage material, cold storage device and very-low-temperature cold storage refrigerator
US6467277B2 (en) Cold accumulating material, method of manufacturing the same and refrigerator using the material
RU2293261C2 (en) Regenerative material and regenerator based on oxysulfide of rare-earth metal
JP4170703B2 (en) Rare earth oxysulfide ceramic regenerator material and method for producing the same, and cryogenic regenerator using the regenerator material
JP4666570B2 (en) Hybrid regenerator material, its manufacturing method and regenerator
JP4170654B2 (en) Rare earth oxysulfide ceramic regenerator material and method for producing the same, and cryogenic regenerator using the regenerator material
JP3990894B2 (en) Oxide ceramics regenerator material and its manufacturing method
JP4256664B2 (en) Method for producing rare earth vanadium oxide ceramics
RU2818411C1 (en) Cold preservation material, cold preservation material particle, granular particle, cold preservation device, refrigerator, cryopump, superconducting magnet, apparatus for imaging nuclear magnetic resonance, apparatus for nuclear magnetic resonance, apparatus for drawing monocrystal with application of magnetic field and device for re-condensation of helium
JP2002249763A (en) Cold storage material, method for producing the same and refrigerator using the same cold storage material
WO2023145730A1 (en) Cold storage material, cold storage material particles, granular particles, cold storage machine, refrigerator, cryo-pump, super-conducting magnet, nuclear magnetic resonance imaging device, nuclear magnetic resonance device, magnetic field application-type single crystal pulling device, helium recondensing device, and dilution refrigerator
EP4328284A1 (en) Magnetic cold storage material particle, cold storage device, refrigerating machine, cryopump, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, magnetic-field-application-type single crystal pulling apparatus, and helium re-condensation apparatus
JP7432769B2 (en) Cold storage materials, cold storage material particles, granulated particles, cold storage devices, refrigerators, cryopumps, superconducting magnets, nuclear magnetic resonance imaging devices, nuclear magnetic resonance devices, magnetic field application type single crystal pulling devices, and helium recondensation devices
JP4259837B2 (en) Method for producing rare earth oxysulfide ceramic regenerator material
WO2023032867A1 (en) Granular particles for cold storage material particles, cold storage material particles, cold storage device, refrigerating machine, cryopump, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, magnetic field application-type single crystal pulling apparatus, and helium re-condensation apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3642486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

EXPY Cancellation because of completion of term