JP2004189906A - Cold storage material, method for producing the same and cold storage type refrigerator - Google Patents

Cold storage material, method for producing the same and cold storage type refrigerator Download PDF

Info

Publication number
JP2004189906A
JP2004189906A JP2002360232A JP2002360232A JP2004189906A JP 2004189906 A JP2004189906 A JP 2004189906A JP 2002360232 A JP2002360232 A JP 2002360232A JP 2002360232 A JP2002360232 A JP 2002360232A JP 2004189906 A JP2004189906 A JP 2004189906A
Authority
JP
Japan
Prior art keywords
regenerator
cold storage
storage material
magnetic
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002360232A
Other languages
Japanese (ja)
Other versions
JP4582994B2 (en
Inventor
Masami Okamura
正巳 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002360232A priority Critical patent/JP4582994B2/en
Publication of JP2004189906A publication Critical patent/JP2004189906A/en
Application granted granted Critical
Publication of JP4582994B2 publication Critical patent/JP4582994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold storage material capable of stably exhibiting remarkable freezing ability over a long period in a cryogenic area and to provide a cold storage type refrigerator, etc., by using the cold storage material. <P>SOLUTION: The cold storage material is composed of a rare earth acid sulfide in which minimum value of reflectance obtained when irradiated with rays having 400-600 nm wavelength is ≥30% and ≤95%. The rare earth acid sulfide is preferably a magnetic material compound represented by general formula (1): R<SB>2</SB>O<SB>2</SB>S (wherein R is at least one kind of rare earth element selected from Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は蓄冷材、その製造方法および蓄冷式冷凍機に係り、特に20K以下の極低温域において顕著な冷凍能力を発揮できる蓄冷材、その製造方法およびその蓄冷材を使用した蓄冷式冷凍機等に関する。
【0002】
【従来の技術】
近年、超電導技術の発展は著しく、その応用分野が拡大するに伴って小型で高性能の冷凍機の開発が不可欠になってきている。かかる小型冷凍機は、軽量・小型で熱効率の高いことが要求されており、種々の応用分野において実用化が進められている。
【0003】
例えば、超電導MRI装置やクライオポンプなどにおいては、ギフォード・マクマホン(GM)方式やスターリング方式などの冷凍サイクルによる冷凍機が用いられている。また、磁気浮上列車にも超電導磁石を用いて磁力を発生させるために高性能な冷凍機が必須とされている。さらに、最近では、超電導電力貯蔵装置(SMES)、および高品質のシリコンウェハーなどを製造する磁場中単結晶引き上げ装置などにおいても高性能な冷凍機が用いられている。
【0004】
このような冷凍機においては、蓄冷材が充填された蓄冷器内を、圧縮されたHeガスなどの作動媒質が一方向に流れて、その熱エネルギーを蓄冷材に供給し、ここで膨張した作動媒質が反対方向に流れ、蓄冷材から熱エネルギーを受け取る。こうした過程での復熱効果が良好になるに伴い、作動媒質サイクルでの熱効率が向上し、より低い温度を実現することが可能となる。
【0005】
上述したような冷凍機の蓄冷器に充填される蓄冷材としては、従来、CuやPbなどが主に用いられてきた。しかし、このような蓄冷材は、20K以下の極低温で比熱が著しく小さくなるため、上述した復熱効果が十分に機能せず、冷凍機での作動に際して極低温下で1サイクル毎に蓄冷材に充分な熱エネルギーを貯蔵することができず、かつ作動媒質が蓄冷材から充分な熱エネルギーを受け取ることができなくなる。その結果、前記蓄冷材を充填した蓄冷器を組み込んだ冷凍機では極低温に到達させることができない問題があった。
【0006】
そこで、最近では前記蓄冷器の極低温での復熱特性を向上し、より絶対零度に近い冷凍温度を実現するために、特に20K以下の極低温域において体積比熱の極大値を有し、かつその値が大きなErNi,ErNi,HoCuなどのように希土類元素と遷移金属元素とから成る金属間化合物を主体とした磁性蓄冷材が使用されている。このような磁性蓄冷材をGM冷凍機に用いることにより、4Kでの冷凍が実現されている。
【0007】
このような冷凍機を様々なシステムに応用することが検討されるに伴って、より大型の冷却対象物を安定的に冷却する技術的要請から、冷凍機にはより一層の冷凍能力の向上が求められている。その要請に答えるべく最近では、従来の金属系磁性蓄冷材の一部を、GdOSなどの希土類元素を含む酸硫化物に置き換えることにより冷凍能力を向上させる試みがなされている。
【0008】
本願発明者の知見によれば、上記GdOSに代表される希土類酸硫化物は、約5Kの極低温域において急峻で大きな体積比熱ピークを有する一方、約6K以上の高温度側での体積比熱は小さい。そのため、6K以上の温度領域で大きな体積比熱を有するHoCuなどの金属系蓄冷材と積層して使用することにより冷凍能力の向上がある程度実現される。
【0009】
一般に上記蓄冷材は、Heガスなどの作動媒体との熱交換を効率良く実施するため、また冷凍機の蓄冷器への充填効率を高めるために、粒径0.2mm程度の球状粒子に加工されて使用されている。例えば、HoCuなどの金属系蓄冷材の場合には、例えば、所定組成の原料を溶融せしめ、その溶湯を遠心噴霧法のようなアトマイズ法により微細に分散すると同時に、溶湯の表面張力によって球状化した状態で冷却凝固せしめて球状に加工される場合が多い。
【0010】
【発明が解決しようとする課題】
しかしながら、前記GdOSのような希土類酸硫化物は高融点を有し溶解し難い化合物であり、上記のような溶湯急冷法による球状化手法が適用できない。そこで、GdOSの微粉末を転動造粒法などによって顆粒状に造粒した後に、この造粒粉を球状に成形し、さらに高温度で焼結することにより球状の磁性体粒子に加工することが実施されている。この球状に焼結したままの状態では、磁性体粒子表面に微細な割れなどの欠陥が残っており、必然的に球状磁性体粒子の機械的強度が不十分となるため、冷凍機の運転中に磁性体粒子が破壊し易く、冷凍機能力が短期間の間に低下してしまうという問題が発生していた。
【0011】
上記問題の解決策として、欠陥等が残留して強度が比較的低い部位がと形成された粒子表面層を研磨処理することにより欠陥部を除去することが有効な対策となっている。しかしながら、GdOSのような希土類酸硫化物に対して研磨時に機械的ストレスを付加すると粒子表面部に存在していた硫黄分(S)が揮発脱落し易く蓄冷材の組成が化学的量論組成から大きくずれることになり、蓄冷材の比熱特性が低下するという問題点があった。
【0012】
本発明は上記問題点を解決するためになされたものであり、特に4〜6K付近の限られた温度域での体積比熱が大きく、極低温域において顕著な冷凍能力を長期間に亘って安定して発揮することが可能な蓄冷材、その製造方法およびその蓄冷材を用いた蓄冷式冷凍機を提供することを目的とする。さらに、上記のような蓄冷式冷凍機を使用することによって、長期間に亘って優れた性能を発揮させることを可能にしたMRI装置,磁気浮上列車用超電導磁石,クライオポンプおよび磁界印加式単結晶引上げ装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者は上記目的を達成するために、種々の組成および比熱特性を有する蓄冷材を調製して冷凍機の蓄冷器に充填して、上記組成および比熱特性が冷凍機の冷凍能力,蓄冷材の寿命,耐久性に及ぼす影響を実験により比較検討した。
【0014】
その結果、特に4〜6K付近の限られた温度域において体積比熱が大きい蓄冷材を、その高温側の比熱特性に応じて蓄冷器への充填することにより、4K温度域における冷凍機の冷凍能力が顕著に向上するという知見を得た。例えば、4Kにおける比熱が高い一方、10Kでの比熱が低いような蓄冷材を使用する場合には、蓄冷器内部の温度分布を考慮して蓄冷器の低温側のみに上記蓄冷材を充填することにより、その蓄冷材の4Kにおける高比熱特性が活かされることにより、冷凍機性能が大幅に向上することが判明した。
【0015】
さらに、本発明者は前記のように研磨処理することにより比熱特性が低下した希土類酸硫化物蓄冷材の諸特性を詳細に比較調査した。その結果、酸硫化物からなる蓄冷材の比熱特性と、その蓄冷材を波長400−600nmの光線で照射した場合における反射率との間に一定の相関があることを見出した。つまり、研磨処理による機械的ストレスが原因で蓄冷材の表面部の硫黄(S)成分が揮発したり、脱落したりすることにより蓄冷材の組成がずれ、結果として比熱特性の低下に繋がることが判明した。すなわち、硫黄成分(S)が揮発した後の原子空孔が原因となって蓄冷材表面部が着色し、その着色によって400−600nmの波長光の表面部における反射率が30%未満に低下させたものと考えられる。
【0016】
ところが、研磨処理後の希土類酸硫化物蓄冷材の粒子について、SOなどの硫黄酸化物を含有する雰囲気中で所定の熱処理を施すことにより、硫黄成分(S)が欠損した部位に効果的に硫黄成分を補充でき、本来の化学量論的組成を回復させることができるため、蓄冷材の体積比熱も回復することを見出した。そして、硫黄成分(S)の欠損を回復させることにより反射率が改善され、波長範囲が400−600nmである光の蓄冷材表面部における反射率の最小値が30%以上95%以下となる範囲まで回復することにより、蓄冷材の比熱特性も実用上問題のない程度まで回復することが判明した。本発明は上記知見に基づいて完成されたものである。
【0017】
すなわち本発明に係る蓄冷材は、波長400−600nmの光線を照射した時の反射率の最小値が30%以上95%以下の範囲にある希土類酸硫化物から成ることを特徴とする。
【0018】
上記波長400−600nmの可視光線を照射した時の反射率の最小値が30%以上95%以下の範囲にある希土類酸硫化物から成る蓄冷材粒子であれば、その表面部における硫黄成分の欠落が研磨処理後においても少なく、蓄冷材粒子の化学量論的組成が適正に維持され、良好な比熱特性を発揮しうる。
【0019】
なお上記反射率の測定方法は、特別に限定されるものではないが、開口比率7.8%の積分球を用いた分光光度計により容易に測定できる。ただし、この測定方法では、試料を充填した容器からの反射率の影響など、装置に起因する誤差を取り除き、試料そのものを反射率を測定するように配慮しなければならない。例えば、試料容器の深さが浅い場合や試料の充填密度が低い場合などでは、試料容器の内面からの反射率をあわせて測定することになる。このような場合には、十分深い容器に高い密度で試料を充填した状態で測定する。具体的には、容器の深さ2cm、充填密度55%以上が好ましい。なお本発明において、上記反射率の測定方法用のリファレンスには、BaSOを使用した。
【0020】
上記波長400−600nmの光線を照射した時の反射率の最小値が30%未満の場合には、硫黄成分(S)の揮発や欠落による着色が顕著であり、蓄冷材粒子の表面の組成が化学量論的組成から変移していることになり、良好な比熱特性が得られない。一方、上記反射率の最小値を95%以上にするためには、揮発や欠落によって喪失した硫黄成分を蓄冷材粒子表面部に回復させるための熱処理操作を極めて長時間に渡って実施する必要があり工業上好ましくない。上記波長400−600nmにおける可視光線の反射率の最小値についての特に好ましい範囲は50%以上90%以下である。さらに好ましい範囲は、60%以上85%以下である。
【0021】
また、上記蓄冷材において、前記希土類酸硫化物が、
一般式:RS ……(1)
(式中、RはCe,Pr,Nd,Sm,Gd,Tb,Dy,HoおよびErから選択される少なくとも一種の希土類元素を示す。)で表わされる磁性体化合物であることが好ましい。上記一般式で表わされる酸硫化物は極低温領域で大きな比熱を有し好ましい。
【0022】
さらに上記蓄冷材において、特に前記一般式におけるR成分がガドリニウム(Gd)である場合に、約5K付近の低温度領域で大きな比熱を示すために、特に好ましい。
【0023】
なお本発明に係る蓄冷材は上記一般式(1)に示す化学量論組成を厳密に満たすことがより好ましいが、O成分を基準にして下記(2)式に示す一般式で表される組成を有するように形成しても良い。
【0024】
一般式:R2±0.11±0.1 ……(2)
【0025】
また、上記一般式(1)、(2)に示す組成を有する蓄冷材が、不可避的不純物を含有しても良い。
【0026】
また、上記蓄冷材において、前記蓄冷材が磁性体化合物粒子からなり、この磁性体化合物粒子の粒径が0.01〜3mmであることが望ましい。
【0027】
さらに、上記蓄冷材において、前記蓄冷材を構成する全磁性体化合物粒子に対して、長径の短径に対する比(アスペクト比)が5以下であり、かつ0.01mm以上3mm以下の粒径を有する磁性体化合物粒子の割合が70質量%以上であることが望ましい。
【0028】
また本発明に係る蓄冷式冷凍機は、蓄冷材を充填した蓄冷器から成る冷却段を複数個有し、各冷却段の蓄冷器の上流高温側から作動媒質を流して上記作動媒質と蓄冷材との熱交換によって蓄冷器の下流側にて、より低温度を得る蓄冷式冷凍機において、最終冷却段の蓄冷器の低温側空間に充填される蓄冷材の少なくとも一部の蓄冷材が前記一般式:RS(1)または(2)式で表される蓄冷材から成ることを特徴とする。なお、本発明の蓄冷材は蓄冷器の下流低温側に充填されることが好ましい。
【0029】
さらに、本発明に係るMRI(Magnetic Resonance Imaging)装置、磁気浮上列車用超電導磁石、クライオポンプおよび磁界印加式単結晶引上げ装置は、いずれも上記した本発明に係る蓄冷式冷凍機を具備することを特徴としている。
【0030】
本発明に係る蓄冷材は、その一般式から明らかなように、希土類元素(R成分)と酸素(O)と硫黄(S)とから成る磁性体から成る。
【0031】
上記R成分は、Ce,Pr,Nd,Sm,Gd,Tb,Dy,HoおよびErから選択された少なくとも1種の希土類元素である。これらのR成分は、いずれも蓄冷材成分として添加した場合に、磁性体の体積比熱ピークの温度位置をより低温側に移動させたり、ピークの半値幅を拡げたり、冷凍機の設計仕様に応じた比熱特性の調整を行うなどして蓄冷材として有効な比熱特性を実現するために添加される。
【0032】
上記R成分としての希土類元素を適宜選択することにより、磁性体の比熱ピークの温度位置を目的の温度、すなわち4〜6K領域に設定することができる。
【0033】
R成分は、上述のように、所定の少なくとも一種の希土類元素を示すが、Gdが特に好ましい。
【0034】
また蓄冷材を充填した蓄冷器内を流れるヘリウムガスなどの作動媒質の流れを円滑にするとともに、上記作動媒質と蓄冷材との熱交換効率を高め、かつ熱交換機能を安定に維持するために、上記の蓄冷材は、粒径が揃った球状磁性粒子から構成するとよい。具体的には前記したように、上記蓄冷材を構成する全磁性粒子に対して、長径の短径に対する比(アスペクト比)が5以下であり、かつ0.01mm以上3mm以下の粒径を有する磁性粒子の割合が70%重量以上となるように調整することが好ましい。
【0035】
磁性粒子の粒径は粒子の強度、冷凍機の冷却機能および伝熱特性に大きな影響を及ぼすファクターであり、その粒径が0.01mm未満となると、蓄冷器に充填する際の充填密度が高くなり過ぎて、冷却媒体であるHeガスの通過抵抗(圧力損失)が急激に増大する上に、流通するHeガスに同伴されてコンプレッサ内に侵入して構成部品等を早期に摩耗させてしまう。
【0036】
一方、粒径が3mmを超える場合には、粒体の結晶組織に偏析を生じて脆くなるとともに磁性粒子と冷却媒体であるHeガスとの間の伝熱面積が小さくなり、熱伝達効率が著しく低下してしまうおそれがある。また、このような粗大な粒子が30重量%を超えると、蓄冷性能の低下を招くおそれがある。したがって平均粒径は0.01mm以上3mm以下に設定されるが、より好ましくは0.05〜1.0mmの範囲であり、さらに0.1mm以上0.5mm以下が好ましい。また冷却機能および強度を実用上充分に発揮させるためには、上記平均粒径が0.01mm以上3mm以下である粒子が磁性蓄冷材粒子全体に対して、少なくとも70重量%以上、好ましくは80重量%以上、さらに好ましくは90%以上占めることが好ましい。
【0037】
また磁性蓄冷材粒子の短径に対する長径の比(アスペクト比)は5以下好ましくは3以下、さらに好ましくは2以下、なお一層好ましくは1.3以下に調整される。磁性粒子のアスペクト比は、粒子の強度および蓄冷器に充填する際の充填密度および均一性に大きな影響を及ぼすものであり、アスペクト比が5を超える場合には、機械的作用によって磁性粒子が変形破壊を起こし易くなるとともに、空隙が均質となるように蓄冷器に均一かつ高密度で充填することが困難となり、このような粒子が蓄冷材全粒子の30重量%を超えると、蓄冷効率の低下を招くおそれがある。
【0038】
ここで調製した磁性粒子の粒径のばらつきおよび短径に対する長径の比のばらつきが生じた場合においても、それらを適宜分級して使用することも容易である。この場合、蓄冷部に充填する全磁性粒子のうち、アスペクト比が上記範囲内の磁性粒子の割合を70%以上、好ましくは80%以上、さらに好ましくは90%以上とすることにより、充分に実用に耐える蓄冷材とすることができる。
【0039】
また磁性粒子の表面粗さは、機械的強度、冷却特性、冷却媒体の通過抵抗、蓄冷効率等に大きな影響を及ぼす要因であり、一般にJIS B0601で規定する凹凸の最大高さRmaxで10μm以下、好ましくは5μm以下、さらに好ましくは2μm以下に設定することが望ましい。なお、これらの表面粗さは走査電子顕微鏡(SEM粗さ計)によって測定することができる。
【0040】
表面粗さが10μmRmaxを超えると、粒子に破壊の出発点となるマイクロクラックが発生し易くなるとともに、冷却媒体の通過抵抗が上昇しコンプレッサの負荷が増大したり、特に充填された磁性粒子同士の接触面積が増大し、磁性粒子間における冷熱の移動が大きくなり蓄冷効率が低下してしまう。
【0041】
また磁性粒子の機械的強度に影響を与える長さ10μm以上の微小欠陥を有する磁性粒子の割合は、全体の30%以下、好ましくは10%以下、さらに好ましくは10%以下にすることが実用上望ましい。
【0042】
本発明に係る蓄冷材の製造方法は、希土類酸硫化物から成る磁性体化合物粒子を調製する工程と、この磁性体化合物粒子を球状に研磨加工する工程と、この球状化した磁性体化合物粒子を、硫黄酸化物雰囲気中において温度900〜1200℃で1〜12時間の範囲で熱処理する工程とを備えることを特徴とする。
【0043】
上記蓄冷材の製造方法において、上記磁性体化合物粒子を形成するための原料紛としては、より緻密で高強度の蓄冷材粒子を形成するために、平均粒径が0.3〜30μmの原料粉末を使用することが好ましい。より好ましくは、0.5〜20μmの原料粉末を使用することが望ましく、さらには、平均粒径が1〜10μmの原料粉末を使用することがより望ましい。
【0044】
上記希土類酸硫化物から成る磁性体化合物粒子を調製する方法としては、特に限定されるものではなく、例えば、所定組成を有する酸化物微粒子の混合体を、転動造粒法などによって球状に成形し、得られた球状の成形体を所定の温度条件で焼結することにより所定の酸硫化物からなる粒子を合成調製する方法などが採用できる。なお上記焼結温度は1200−1800℃の範囲が好ましい。また焼結時間は1時間以上48時間以内であることが好ましい。
【0045】
ところが、焼結したままの酸硫化物粒子では、粒子表面部における表面粗さが大きくなる場合があり、冷媒ガスに対する通気抵抗を増加させ、冷凍効率を下げるおそれがある。また、粒子表面に微細な粉末が固着しており、この粉末が冷凍機の運転時に作用する衝撃により脱離して冷凍機部品に目詰まりを起こし、冷凍機の性能を低下させる原因となる。さらに、粒子表面に残存した微細な欠陥が割れを生じ、蓄冷材の寿命を低下させたり、前記同様に目詰まりを発生させたりする恐れもある。
【0046】
そこで焼結して得られた焼結体粒子の表面層を研磨加工して、粒子の球状度をさらに高めると共に、磁性体化合物粒子表面に固着した粉末を除去し、さらに比較的強度が弱い加工欠陥部位(傷)を取り除く工程を実施する。
【0047】
ところが、上記研磨加工工程を実施すると、その衝撃力(機械的ストレス)によって粒子表面部に存在していた硫黄分(S)が揮発脱落し易く蓄冷材の組成が化学的量論組成から大きくずれることになり、蓄冷材の比熱特性が低下してしまう。
【0048】
そこで本発明方法では、上記研磨加工の後に、上記のような硫黄成分(S)の回復を図るために所定の熱処理を行うものである。すなわち、研磨処理後の希土類酸硫化物蓄冷材の粒子について、SOなどの硫黄酸化物を含有する雰囲気中で所定の熱処理を施すことにより、硫黄成分(S)が欠損した部位に効果的に硫黄成分を補充でき、本来の化学量論的組成を回復させることができるため、蓄冷材の体積比熱も回復させることが出来る。そして、硫黄成分(S)の欠損を回復させることにより反射率が改善され、波長範囲が400−600nmである光の蓄冷材表面部における反射率の最小値が30%以上95%以下となる範囲まで回復することにより、蓄冷材の比熱特性も実用上問題のない程度まで回復させることが可能になる。
【0049】
上記熱処理時の雰囲気は、例えばSOガスを1〜5体積(vol)%程度含有する雰囲気が好ましいが、SOガスを使用した場合でも同様の効果を得ることができる。また、OやNなどの他のガスにSOあるいはSOを混合した雰囲気で熱処理しても良い。なお上記硫黄成分ガス濃度の雰囲気中において、熱処理温度は900〜1200℃の範囲が好ましい。また熱処理時間は、処理効率の観点から1時間以上24時間以内が好ましい。
【0050】
本発明に係る蓄冷式冷凍機は、複数の冷却段を有する冷凍機において最終冷却段の蓄冷器の少なくとも一部に、上記の磁性蓄冷材粒子を充填して構成される。例えば、2段膨張式冷凍機においては、第2段目蓄冷器の低温端側に、また3段膨張式冷凍機においては、第3段目蓄冷器の低温端側に、本発明に係る磁性蓄冷材粒子を充填する一方、他の蓄冷材充填空間には、その温度分布に応じた比熱特性を有する他の蓄冷材を充填して構成される。
【0051】
上述した最終冷却段の蓄冷器の低温側空間における本発明の磁性蓄冷材粒子の充填量が体積比率で3%未満と過少な場合には、冷凍機の蓄冷効率の向上が認められず、冷凍機の能力が改善されない。一方、充填量が70体積%を超えるように過大になると、上述した磁性蓄冷材粒子の比熱特性の欠点が顕著になり、同様に蓄冷効率の低下を招く。すなわち、体積比熱がピークとなる温度以外の温度域、特に高温側温度域における体積比熱が、比較的に小さくなることが蓄冷器全体に悪影響を及ぼす結果、蓄冷効率の低下を招く。したがって、上記最終冷却段の蓄冷器の全容積に対する本発明の磁性蓄冷材粒子の充填容積比率は、3〜70容積%の範囲とされるが、好ましくは5〜50容積%の範囲であり、さらに10〜30容積%の範囲が特に望ましい。
【0052】
上記構成に係る蓄冷材によれば、極低温域において急峻な体積比熱のピークを有する希土類酸硫化物系磁性材料(R磁性材料)で構成しているため、体積比熱ピークの温度位置がより低温側にシフトするとともに、比熱ピークの半値幅が拡大され、比熱特性が良好な蓄冷材が得られる。そして、その蓄冷材を冷凍機の最終冷却段を構成する蓄冷器内の低温端側に充填することにより、温度4K領域における冷凍能力が高く、かつ長期間に亘って安定した冷凍性能が維持できる冷凍機を提供することができる。
【0053】
そして、MRI装置、クライオポンプ、磁気浮上列車用超電導磁石、および磁界印加式単結晶引上げ装置は、いずれも冷凍機性能が各装置の性能を左右することから、上述したような冷凍機を用いた本発明のMRI装置、クライオポンプ、磁気浮上列車用超電導磁石、および磁界印加式単結晶引上げ装置は、いずれも長期間に亘って優れた性能を発揮させることができる。
【0054】
【発明の実施の形態】
次に本発明の実施形態について以下に示す実施例に基づいて具体的に説明する。
【0055】
(実施例1)
平均粒径3μmのGdSの原料粉末を転動造粒機に充填し造粒することにより、粒径約0.1〜0.4mmの造粒粒子を調製した。この造粒粒子をAr雰囲気中において、温度1800℃で2時間焼結することにより磁性体粒子を調製した。次に焼結した磁性体粒子について、ダイヤモンド砥粒を含む回転円盤上に載置し転動せしめることにより各粒子の表面層を研磨して球状化すると共に、表面層に付着形成されていた固着粉および欠陥部を除去した。この研磨工程での除去量は、磁性体粒子の粒径の約3%程度であった。その後、この磁性体粒子について、3vol.%のSOガスを含有するNガス雰囲気中において、温度1100℃で5時間の熱処理を実施することにより、実施例1に係る蓄冷材を調製した。得られた蓄冷材粒子の反射率を測定したところ、400−600nmの波長域における最小値は、波長460nmにおける72%であった。
【0056】
一方、上記のように調製した蓄冷材の特性を評価するために、図1に示すような2段膨張式GM冷凍機を用意した。なお、図1に示す2段式のGM冷凍機10は、本発明の冷凍機の一実施例を示すものである。図1に示す2段式のGM冷凍機10は、大径の第1シリンダ11と、この第1シリンダ11と同軸的に接続された小径の第2シリンダ12とが設置された真空容器13を有している。第1シリンダ11には第1蓄冷器14が往復動自在に配置されており、第2シリンダ12には第2蓄冷器15が往復動自在に配置されている。第1シリンダ11と第1蓄冷器14との間、および第2シリンダ12と第2蓄冷器15との間には、それぞれシールリング16,17が配置されている。
【0057】
第1蓄冷器14には、Cuメッシュ等の第1蓄冷材18が収容されている。第2蓄冷器15の低音側には、本発明の極低温用蓄冷材が第2蓄冷材19として所定比率で充填されている。第1蓄冷器14および第2蓄冷器15は、第1蓄冷材18や極低温用蓄冷材19の間隙等に設けられたHeガス等の作動媒質の通路をそれぞれ有している。
【0058】
第1蓄冷器14と第2蓄冷器15との間には、第1膨張室20が設けられている。また、第2蓄冷器15と第2シリンダ12の先端壁との間には、第2膨張室21が設けられている。そして、第1膨張室20の底部に第1冷却ステージ22が、また第2膨張室21の底部に第1冷却ステージ22より低温の第2冷却ステージ23が形成されている。
【0059】
上述したような2段式のGM冷凍機10には、コンプレッサ24から高圧の作動媒質(例えばHeガス)が供給される。供給された作動媒質は、第1蓄冷器14に収容された第1蓄冷材18間を通過して第1膨張室20に到達し、さらに第2蓄冷器15に収容された極低温用蓄冷材(第2蓄冷材)19間を通過して第2膨張室21に到達する。この際に、作動媒質は各蓄冷材18,19に熱エネルギーを供給して冷却される。各蓄冷材18,19間を通過した作動媒質は、各膨張室20,21で膨張して寒冷を発生させ、各冷却ステージ22,23が冷却される。膨張した作動媒質は、各蓄冷材18,19間を反対方向に流れる。作動媒質は各蓄冷材18,19から熱エネルギーを受け取った後に排出される。こうした過程で復熱効果が良好になるに従って、作動媒質サイクルの熱効率が向上し、より一層低い温度が実現されるように構成されている。
【0060】
そして、前記のように調製した実施例1に係る蓄冷材100gを、上記2段膨張式GM冷凍機の2段目蓄冷器の最低温側に充填した。さらに、その高温側には、HoCuを150g充填し、さらにその高温側にはPbを250g充填して実施例1に係る冷凍機を組み立てた。
【0061】
そして、上記のように組み立てた実施例1に係る冷凍機について運転周波数1Hzで冷凍試験を実施し、3000時間連続運転後における冷凍能力を測定した結果、4.2Kにおける冷凍能力として、1.11Wが得られた。
【0062】
なお本実施例における冷凍能力は、冷凍機運転時にヒータによって第2冷却段に熱負荷を作用させ、第2冷却段の温度上昇が4.2Kで停止したときの熱負荷で定義した。
【0063】
(比較例1)
平均粒径3μmのGdS原料粉末を転動造粒機に充填して造粒を実施し、粒径約0.1〜0.4mmの造粒粒子を調製した。この造粒粒子をAr雰囲気中において、温度1800℃で2時間焼結することにより磁性体粒子を調製した。次に焼結した磁性体粒子を、ダイヤモンド砥粒を含む回転円盤上に載置し転動せしめることにより各粒子の表面層を研磨して球状化すると共に、表面層に付着形成されていた固着粉および欠陥部を除去した。この研磨工程での除去量は、磁性体粒子の粒径の約3%程度であった。その後、硫黄成分含有雰囲気中での熱処理を実施せずに、そのまま比較例1に係る蓄冷材とした。得られた蓄冷材粒子の反射率を測定したところ、400−600nmの波長域における最小値は、波長460nmにおける28%であった。
【0064】
そして得られた蓄冷材粒子100gを2段膨張式GM冷凍機の2段目蓄冷器の最低温側に充填した。その高温側にはHoCu蓄冷材を150g充填し、さらにその高温側にはPb蓄冷材を250gを充填して比較例1に係る冷凍機を組み立てた。そして実施例1と同様に、運転周波数1Hzで冷凍試験を実施したところ、4.2Kにおける冷凍能力として、0.53Wが得られた。
【0065】
(実施例2)
実施例1と同様に表面研磨を実施した磁性体粒子について、3vol%のSOガスを含有するN雰囲気中において、温度1000℃で5時間熱処理を実施することにより、実施例2に係る蓄冷材を調製した。得られた蓄冷材粒子の反射率を測定したところ、400−600nmの波長域における最小値は、波長460nmにおける44%であった。
【0066】
次に得られた蓄冷材粒子100gを2段膨張式GM冷凍機の2段目蓄冷器の最低温側に充填した。その高温側にはHoCu蓄冷材を150g充填し、さらにその高温側にはPb蓄冷材を250g充填することにより、実施例2に係る冷凍機を組み立てた。そして実施例1と同様に、運転周波数1Hzで冷凍試験を実施したところ、4.2Kにおける冷凍能力として、0.89Wが得られた。
【0067】
(実施例3)
実施例1と同様に表面研磨を実施した磁性体粒子について、3vol%のSOガスを含有するNガス雰囲気中において、温度1100℃で3時間熱処理を実施することにより、実施例3に係る蓄冷材を調製した。得られた蓄冷材粒子の反射率を測定したところ、400−600nmの波長域における最小値は、波長460nmにおける53%であった。
【0068】
次に得られた蓄冷材粒子100gを2段膨張式GM冷凍機の2段目蓄冷器の最低温側に充填した。その高温側にはHoCu蓄冷材を150g充填し、さらにその高温側にはPb蓄冷材を250g充填することにより、実施例3に係る冷凍機を組み立てた。そして実施例1と同様に、運転周波数1Hzで冷凍試験を実施したところ、4.2Kにおける冷凍能力として、0.77Wが得られた。
【0069】
次に、本発明に係る蓄冷式冷凍機を使用した超電導MRI装置、磁気浮上列車用超電導磁石、クライオポンプ、および磁界印加式単結晶引上げ装置の実施例について述べる。
【0070】
図2は、本発明を適用した超電導MRI装置の概略構成を示す断面図である。図2に示す超電導MRI装置30は、人体に対して空間的に均一で時間的に安定な静磁界を印加する超電導静磁界コイル31、発生磁界の不均一性を補正する図示を省略した補正コイル、測定領域に磁界勾配を与える傾斜磁界コイル32、およびラジオ波送受信用プローブ33等により構成されている。そして、超電導静磁界コイル31の冷却用として、前述したような本発明に係る蓄冷式冷凍機34が用いられている。なお、図中35はクライオスタット、36は放射断熱シールドである。
【0071】
本発明に係る蓄冷式冷凍機34を用いた超電導MRI装置30においては、超電導静磁界コイル31の動作温度を長期間に亘って安定に保証することができるため、空間的に均一で時間的に安定な静磁界を長期間に亘って得ることができる。したがって、超電導MRI装置30の性能を長期間に亘って安定して発揮させることが可能となる。
【0072】
図3は、本発明に係る蓄冷式冷凍機を使用した磁気浮上列車用超電導磁石の要部概略構成を示す斜視図であり、磁気浮上列車用超電導マグネット40の部分を示している。図3に示す磁気浮上列車用超電導マグネット40は、超電導コイル41、この超電導コイル41を冷却するための液体ヘリウムタンク42、この液体ヘリウムタンクの揮散を防ぐ液体窒素タンク43および本発明に係る蓄冷式冷凍機44等により構成されている。なお、図中45は積層断熱材、46はパワーリード、47は永久電流スイッチである。
【0073】
本発明に係る蓄冷式冷凍機44を用いた磁気浮上列車用超電導マグネット40においては、超電導コイル41の動作温度を長期間に亘って安定に保証することができるため、列車の磁気浮上および推進に必要な磁界を長期間に亘って安定して得ることができる。特に、磁気浮上列車用超電導マグネット40では加速度が作用するが、本発明に係る蓄冷式冷凍機44は加速度が作用した場合においても長期間に亘って優れた冷凍能力を維持できることから、磁界強度等の長期安定化に大きく貢献する。したがって、このような超電導マグネット40を用いた磁気浮上列車は、その信頼性を長期間に亘って発揮させることが可能となる。
【0074】
図4は、本発明に係る蓄冷式冷凍機を使用したクライオポンプの概略構成を示す断面図である。図4に示すクライオポンプ50は、気体分子を凝縮または吸着するクライオパネル51、このクライオパネル51を所定の極低温に冷却する本発明に係る蓄冷式冷凍機52、これらの間に設けられたシールド53、吸気口に設けられたバッフル54、およびアルゴン、窒素、水素等の排気速度を変化させるリング55等により構成されている。
【0075】
本発明に係る蓄冷式冷凍機52を用いたクライオポンプ50においては、クライオパネル51の動作温度を長期間に亘って安定に保証することができる。したがって、クライオポンプ50の性能を長期間に亘って安定して発揮させることが可能となる。
【0076】
図5は、本発明に係る蓄冷式冷凍機を使用した磁界印加式単結晶引上げ装置の概略構成を示す斜視図である。図5に示す磁界印加式単結晶引上げ装置60は、原料溶融用るつぼ、ヒータ、単結晶引上げ機構等を有する単結晶引上げ部61、原料融液に対して静磁界を印加する超電導コイル62、および単結晶引上げ部61の昇降機構63等により構成されている。そして、超電導コイル62の冷却用として、前述したような本発明に係る蓄冷式冷凍機64が用いられている。なお、図中65は電流リード、66は熱シールド板、67はヘリウム容器である。
【0077】
本発明に係る蓄冷式冷凍機64を用いた磁界印加式単結晶引上げ装置60においては、超電導コイル62の動作温度を長期間に亘って安定に保証することができるため、単結晶の原料融液の対流を抑える良好な磁界を長期間に亘って得ることができる。したがって、磁界印加式単結晶引上げ装置60の性能を長期間に亘って安定して発揮させることが可能となる。
【0078】
【発明の効果】
以上説明の通り、本発明に係る蓄冷材によれば、極低温域において急峻な体積比熱のピークを有する希土類酸硫化物系磁性材料(RS系磁性材料)で構成しているため、体積比熱ピークの温度位置がより低温側にシフトするとともに、比熱ピークの半値幅が拡大され、比熱特性が良好な蓄冷材が得られる。そして、その蓄冷材を冷凍機の最終冷却段を構成する蓄冷器内の低温端側に充填することにより、温度4K領域における冷凍能力が高く、かつ長期間に亘って安定した冷凍性能が維持できる冷凍機を提供することができる。
【0079】
そして、MRI装置、クライオポンプ、磁気浮上列車用超電導磁石、および磁界印加式単結晶引上げ装置は、いずれも冷凍機性能が各装置の性能を左右することから、上述したような冷凍機を用いた本発明のMRI装置、クライオポンプ、磁気浮上列車用超電導磁石、および磁界印加式単結晶引上げ装置は、いずれも長期間に亘って優れた性能を発揮させることができる。
【図面の簡単な説明】
【図1】本発明に係る蓄冷式冷凍機(GM冷凍機)の要部構成を示す断面図。
【図2】本発明の一実施例による超電導MRI装置の概略構成を示す断面図。
【図3】本発明の一実施例による超電導磁石(磁気浮上列車用)の要部概略構成を示す斜視図。
【図4】本発明の一実施例によるクライオポンプの概略構成を示す断面図。
【図5】本発明の一実施例による磁界印加式単結晶引上げ装置の要部概略構成を示す斜視図。
【符号の説明】
10 GM冷凍機(蓄冷式冷凍機)
11 第1シリンダ
12 第2シリンダ
13 真空容器
14 第1蓄冷器
15 第2蓄冷器
16,17 シールリング
18 第1蓄熱材
19 第2蓄熱材(極低温用蓄冷材)
20 第1膨張室
21 第2膨張室
22 第1冷却ステージ
23 第2冷却ステージ
24 コンプレッサ
30 超電導MRI装置
31 超電導静磁界コイル
32 傾斜磁界コイル
33 ラジオ波送受信用プローブ
34 蓄冷式冷凍機
35 クライオスタット
36 放射断熱シールド
40 超電導磁石(マグネット)
41 超電導コイル
42 液体ヘリウムタンク
43 液体窒素タンク
44 蓄冷式冷凍機
45 積層断熱材
46 パワーリード
47 永久電流スイッチ
50 クライオポンプ
51 クライオパネル
52 蓄冷式冷凍機
53 シールド
54 バッフル
55 リング
60 磁界印加式単結晶引上げ装置
61 単結晶引上げ部
62 超電導コイル
63 昇降機構
64 蓄冷式冷凍機
65 電流リード
66 熱シールド板
67 ヘリウム容器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a regenerator material, a method for manufacturing the same, and a regenerative refrigerator, and more particularly to a regenerator material capable of exhibiting a remarkable refrigerating ability in an extremely low temperature range of 20 K or less, a method for producing the regenerator, a regenerator using the regenerator material, and the like. About.
[0002]
[Prior art]
2. Description of the Related Art In recent years, the development of superconducting technology has been remarkable, and the development of a small-sized and high-performance refrigerator has become indispensable as its application field has expanded. Such small refrigerators are required to be lightweight, small and have high thermal efficiency, and are being put to practical use in various application fields.
[0003]
For example, in a superconducting MRI apparatus or a cryopump, a refrigerator using a refrigeration cycle such as a Gifford McMahon (GM) system or a Stirling system is used. In addition, a high-performance refrigerator is required for a magnetic levitation train to generate magnetic force using a superconducting magnet. Further, recently, a high-performance refrigerator has been used in a superconducting power storage device (SMES), a single crystal pulling device in a magnetic field for producing a high quality silicon wafer, and the like.
[0004]
In such a refrigerator, a working medium such as a compressed He gas flows in one direction in a regenerator filled with a regenerator material, and supplies the thermal energy to the regenerator material, and the expanded operation medium here. The medium flows in the opposite direction and receives heat energy from the cold storage material. As the recuperation effect in such a process becomes better, the thermal efficiency in the working medium cycle is improved, and a lower temperature can be realized.
[0005]
Conventionally, Cu, Pb, or the like has been mainly used as a regenerator material to be filled in the regenerator of the refrigerator as described above. However, since such a regenerator material has a remarkably small specific heat at an extremely low temperature of 20 K or less, the recuperation effect described above does not function sufficiently. Cannot store enough heat energy, and the working medium cannot receive enough heat energy from the cold storage material. As a result, there is a problem that a refrigerator having a regenerator filled with the regenerator material cannot reach extremely low temperatures.
[0006]
Therefore, recently, in order to improve the recuperation characteristics at extremely low temperatures of the regenerator and to realize a refrigerating temperature closer to absolute zero, the regenerator has a maximum value of the volume specific heat particularly in an extremely low temperature region of 20 K or less, and A magnetic regenerative material mainly composed of an intermetallic compound composed of a rare earth element and a transition metal element, such as Er 3 Ni, ErNi, HoCu 2, and the like, is used. By using such a magnetic regenerator in a GM refrigerator, refrigeration at 4K is realized.
[0007]
As the application of such a refrigerator to various systems is studied, technical requirements for stably cooling a larger cooling object have resulted in further improvement of the refrigerating capacity of the refrigerator. It has been demanded. In order to respond to the request, recently, an attempt has been made to improve the refrigerating capacity by replacing a part of the conventional metal magnetic regenerator with an oxysulfide containing a rare earth element such as GdO 2 S.
[0008]
According to the findings of the present inventor, the rare earth oxysulfide represented by GdO 2 S has a steep and large volume specific heat peak in a cryogenic region of about 5 K, while a volume on a high temperature side of about 6 K or more is high. Specific heat is small. Therefore, improvement of the refrigerating capacity is realized to some extent by laminating and using a metal-based cold storage material such as HoCu 2 having a large volume specific heat in a temperature range of 6 K or more.
[0009]
Generally, the regenerator material is processed into spherical particles having a particle size of about 0.2 mm in order to efficiently carry out heat exchange with a working medium such as He gas and to enhance the efficiency of filling a regenerator of a refrigerator. Used. For example, in the case of a metal regenerator material such as HoCu 2 , for example, a raw material having a predetermined composition is melted, and the molten metal is finely dispersed by an atomizing method such as a centrifugal spray method, and at the same time, spheroidized by the surface tension of the molten metal. In many cases, it is cooled and solidified and processed into a spherical shape.
[0010]
[Problems to be solved by the invention]
However, rare earth oxysulfides such as GdO 2 S have a high melting point and are difficult to dissolve, and the spheroidization method by the molten metal quenching method as described above cannot be applied. Then, after the fine powder of GdO 2 S is granulated into granules by a rolling granulation method or the like, the granulated powder is formed into a sphere, and then sintered at a high temperature to be processed into spherical magnetic particles. It has been implemented. In the state of being sintered in a spherical shape, defects such as minute cracks remain on the surface of the magnetic particles, and the mechanical strength of the spherical magnetic particles is inevitably insufficient. In addition, there has been a problem that the magnetic particles are easily broken, and the refrigerating function is reduced in a short period of time.
[0011]
As a solution to the above problem, an effective measure is to remove the defective portion by polishing the particle surface layer in which a portion having a relatively low strength due to a residual defect or the like is formed. However, when a mechanical stress is applied to a rare earth oxysulfide such as GdO 2 S at the time of polishing, the sulfur (S) existing on the particle surface is liable to be volatilized and dropped, and the composition of the regenerator material is stoichiometric. There is a problem that the composition deviates greatly from the composition, and the specific heat characteristics of the cold storage material deteriorate.
[0012]
The present invention has been made in order to solve the above problems, and particularly has a large volume specific heat in a limited temperature range around 4 to 6K, and has a remarkable refrigeration capacity in a very low temperature range for a long period of time. It is an object of the present invention to provide a regenerative material that can be used as a regenerator, a method for producing the regenerative material, and a regenerative refrigerator using the regenerative material. Further, the use of the regenerative refrigerator as described above enables an MRI apparatus, a superconducting magnet for a magnetic levitation train, a cryopump, and a magnetic field applying type single crystal, which can exhibit excellent performance over a long period of time. It is an object to provide a pulling device.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present inventor prepares regenerator materials having various compositions and specific heat characteristics and fills the regenerator with the refrigerating machine. The effects on the service life and durability of the steel were compared by experiments.
[0014]
As a result, the refrigerating capacity of the refrigerator in the 4K temperature range is filled by filling the regenerator with a large volume specific heat in a limited temperature range around 4 to 6K in accordance with the specific heat characteristic of the high temperature side. Was found to be significantly improved. For example, when using a regenerator material having a high specific heat at 4K and a low specific heat at 10K, only the low temperature side of the regenerator is filled with the regenerator material in consideration of the temperature distribution inside the regenerator. As a result, it was found that the performance of the refrigerator was greatly improved by utilizing the high specific heat characteristics at 4K of the cold storage material.
[0015]
Further, the present inventor conducted a detailed comparative study of various characteristics of the rare earth oxysulfide regenerator material whose specific heat characteristics were reduced by the above-described polishing treatment. As a result, it has been found that there is a certain correlation between the specific heat characteristics of the cold storage material made of oxysulfide and the reflectance when the cold storage material is irradiated with light having a wavelength of 400 to 600 nm. In other words, the sulfur (S) component on the surface of the cold storage material volatilizes or falls off due to the mechanical stress due to the polishing treatment, and the composition of the cold storage material shifts, resulting in a decrease in specific heat characteristics. found. That is, the surface of the cold storage material is colored due to the atomic vacancies after the sulfur component (S) is volatilized, and the coloring lowers the reflectance of the surface of light having a wavelength of 400 to 600 nm on the surface to less than 30%. It is thought that it was.
[0016]
However, by subjecting the particles of the rare earth oxysulfide regenerator material after the polishing treatment to a predetermined heat treatment in an atmosphere containing a sulfur oxide such as SO 2 , a portion where the sulfur component (S) is deficient can be effectively treated. It has been found that since the sulfur component can be replenished and the original stoichiometric composition can be recovered, the volume specific heat of the regenerator material also recovers. Then, the reflectance is improved by recovering the deficiency of the sulfur component (S), and the minimum value of the reflectance of light having a wavelength range of 400 to 600 nm at the surface of the cold storage material is 30% or more and 95% or less. It was found that the specific heat characteristic of the regenerator material was recovered to a level where there was no problem in practical use. The present invention has been completed based on the above findings.
[0017]
That is, the regenerative material according to the present invention is characterized by comprising a rare earth oxysulfide having a minimum reflectance of 30% or more and 95% or less when irradiated with light having a wavelength of 400-600 nm.
[0018]
If the cold storage material particles are made of a rare earth oxysulfide having a minimum reflectance of 30% or more and 95% or less when irradiated with visible light having a wavelength of 400-600 nm, the sulfur component is missing from the surface of the particles. Is small even after the polishing treatment, the stoichiometric composition of the regenerator particles is properly maintained, and good specific heat characteristics can be exhibited.
[0019]
The method of measuring the reflectance is not particularly limited, but can be easily measured by a spectrophotometer using an integrating sphere having an aperture ratio of 7.8%. However, in this measurement method, it is necessary to remove errors caused by the apparatus such as the influence of the reflectance from the container filled with the sample, and measure the reflectance of the sample itself. For example, when the depth of the sample container is shallow or when the packing density of the sample is low, the reflectance from the inner surface of the sample container is also measured. In such a case, the measurement is performed in a state where a sufficiently deep container is filled with the sample at a high density. Specifically, the container preferably has a depth of 2 cm and a packing density of 55% or more. In the present invention, BaSO 4 was used as a reference for the method for measuring the reflectance.
[0020]
When the minimum value of the reflectance at the time of irradiation with the light having a wavelength of 400 to 600 nm is less than 30%, coloring due to volatilization or omission of the sulfur component (S) is remarkable, and the composition of the surface of the cold storage material particles is reduced. This means that the composition has shifted from the stoichiometric composition, and good specific heat characteristics cannot be obtained. On the other hand, in order to set the minimum value of the reflectance to 95% or more, it is necessary to perform a heat treatment operation for recovering the sulfur component lost due to volatilization or loss to the surface of the cold storage material particles for an extremely long time. It is not industrially preferable. A particularly preferable range for the minimum value of the reflectance of visible light at the wavelength of 400 to 600 nm is from 50% to 90%. A more preferable range is 60% or more and 85% or less.
[0021]
Further, in the cold storage material, the rare earth oxysulfide,
General formula: R 2 O 2 S (1)
(Wherein, R represents at least one rare earth element selected from Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er). The oxysulfide represented by the above general formula is preferable because it has a large specific heat in an extremely low temperature range.
[0022]
Further, in the above cold storage material, particularly when the R component in the above general formula is gadolinium (Gd), it is particularly preferable because it shows a large specific heat in a low temperature region around about 5K.
[0023]
It is more preferable that the regenerator material according to the present invention strictly satisfies the stoichiometric composition shown in the general formula (1), but the composition represented by the general formula shown in the following formula (2) based on the O component. May be formed.
[0024]
General formula: R 2 ± 0.1 O 2 S 1 ± 0.1 (2)
[0025]
Further, the regenerator material having the composition shown in the general formulas (1) and (2) may contain unavoidable impurities.
[0026]
In the cold storage material, the cold storage material is preferably made of magnetic compound particles, and the magnetic compound particles preferably have a particle size of 0.01 to 3 mm.
[0027]
Further, in the cold storage material, the ratio of the major axis to the minor axis (aspect ratio) is 5 or less and the particle diameter is 0.01 mm or more and 3 mm or less with respect to all the magnetic compound particles constituting the cold storage material. It is desirable that the ratio of the magnetic compound particles is 70% by mass or more.
[0028]
Further, the regenerative refrigerator according to the present invention has a plurality of cooling stages each composed of a regenerator filled with a regenerator material, and flows the operating medium from a high temperature side upstream of the regenerator of each cooling stage, thereby allowing the operating medium and the regenerator material to flow. In the regenerative refrigerator that obtains a lower temperature on the downstream side of the regenerator by heat exchange with the regenerator, at least a part of the regenerator material to be filled in the low-temperature side space of the regenerator in the final cooling stage is the general type. Formula: R 2 O 2 S It is characterized by comprising a cold storage material represented by the formula (1) or (2). In addition, it is preferable that the cold storage material of this invention is filled in the low-temperature side downstream of a regenerator.
[0029]
Further, the MRI (Magnetic Resonance Imaging) device, the superconducting magnet for a magnetic levitation train, the cryopump, and the magnetic field application type single crystal pulling device according to the present invention are all provided with the regenerative refrigerator according to the present invention described above. Features.
[0030]
As is clear from the general formula, the regenerator material according to the present invention is made of a magnetic material composed of a rare earth element (R component), oxygen (O), and sulfur (S).
[0031]
The R component is at least one rare earth element selected from Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er. When any of these R components is added as a cold storage material component, the temperature position of the volume specific heat peak of the magnetic substance is shifted to a lower temperature side, the half width of the peak is expanded, or the R component is adjusted according to the design specifications of the refrigerator. It is added in order to realize specific heat characteristics effective as a cold storage material by adjusting the specific heat characteristics.
[0032]
By appropriately selecting the rare earth element as the R component, the temperature position of the specific heat peak of the magnetic material can be set to a target temperature, that is, a 4 to 6K region.
[0033]
The R component represents at least one kind of rare earth element as described above, and Gd is particularly preferable.
[0034]
In addition to smoothing the flow of the working medium such as helium gas flowing through the regenerator filled with the cold storage material, increasing the heat exchange efficiency between the working medium and the cold storage material, and stably maintaining the heat exchange function. The regenerative material may be composed of spherical magnetic particles having a uniform particle size. Specifically, as described above, the ratio of the major axis to the minor axis (aspect ratio) is 5 or less, and has a particle diameter of 0.01 mm or more and 3 mm or less with respect to all the magnetic particles constituting the cold storage material. It is preferable to adjust the ratio of the magnetic particles to be 70% by weight or more.
[0035]
The particle size of the magnetic particles is a factor that greatly affects the strength of the particles, the cooling function of the refrigerator, and the heat transfer characteristics.When the particle size is less than 0.01 mm, the packing density when filling the regenerator becomes high. In addition, the passage resistance (pressure loss) of He gas, which is a cooling medium, rapidly increases, and in addition to the flowing He gas, it enters the compressor and wears components and the like at an early stage.
[0036]
On the other hand, when the particle size exceeds 3 mm, segregation occurs in the crystal structure of the particles, and the particles become brittle, and the heat transfer area between the magnetic particles and the He gas serving as the cooling medium decreases, resulting in remarkable heat transfer efficiency. There is a possibility that it will decrease. Moreover, when such coarse particles exceed 30% by weight, there is a possibility that the cold storage performance is reduced. Therefore, the average particle size is set to 0.01 mm or more and 3 mm or less, more preferably in the range of 0.05 to 1.0 mm, and further preferably 0.1 mm to 0.5 mm. In order to sufficiently exhibit the cooling function and strength in practical use, the particles having the average particle diameter of 0.01 mm or more and 3 mm or less are at least 70% by weight or more, preferably 80% by weight, based on the whole magnetic regenerator particles. %, More preferably 90% or more.
[0037]
The ratio of the major axis to the minor axis (aspect ratio) of the magnetic regenerator particles is adjusted to 5 or less, preferably 3 or less, more preferably 2 or less, and even more preferably 1.3 or less. The aspect ratio of the magnetic particles has a great effect on the strength of the particles and the packing density and uniformity when filling the regenerator. When the aspect ratio exceeds 5, the magnetic particles are deformed by mechanical action. It is easy to cause destruction, and it is difficult to uniformly and densely fill the regenerator so that the voids are homogeneous. If such particles exceed 30% by weight of all the particles of the regenerator, the efficiency of the regenerator decreases. May be caused.
[0038]
Even when the prepared magnetic particles have variations in particle diameter and variations in the ratio of the major axis to the minor axis, they can be easily classified and used as appropriate. In this case, the ratio of the magnetic particles having an aspect ratio within the above range to 70% or more, preferably 80% or more, more preferably 90% or more, of all the magnetic particles filled in the regenerator, is sufficiently practical. Can be used as a cold storage material.
[0039]
The surface roughness of the magnetic particles is a factor that has a great effect on mechanical strength, cooling characteristics, cooling medium passage resistance, cold storage efficiency, and the like. In general, the maximum height Rmax of irregularities defined by JIS B0601 is 10 μm or less, Preferably, it is set to 5 μm or less, more preferably 2 μm or less. The surface roughness can be measured with a scanning electron microscope (SEM roughness meter).
[0040]
When the surface roughness exceeds 10 μmRmax, micro-cracks, which are the starting points of destruction, are likely to occur in the particles, and the passage resistance of the cooling medium increases to increase the load on the compressor. The contact area increases, the transfer of cold heat between the magnetic particles increases, and the cold storage efficiency decreases.
[0041]
Practically, the proportion of magnetic particles having minute defects with a length of 10 μm or more that affects the mechanical strength of the magnetic particles is 30% or less, preferably 10% or less, and more preferably 10% or less of the whole. desirable.
[0042]
The method for producing a cold storage material according to the present invention includes a step of preparing magnetic compound particles comprising a rare earth oxysulfide, a step of polishing the magnetic compound particles into a spherical shape, and a step of polishing the spherical magnetic compound particles. Heat treatment at a temperature of 900 to 1200 ° C. for 1 to 12 hours in a sulfur oxide atmosphere.
[0043]
In the method for producing a cold storage material, as a raw material powder for forming the magnetic compound particles, a raw material powder having an average particle diameter of 0.3 to 30 μm in order to form a denser and high-strength cold storage material particle. It is preferred to use More preferably, it is desirable to use a raw material powder having a size of 0.5 to 20 μm, and more preferably, a raw material powder having an average particle size of 1 to 10 μm.
[0044]
The method for preparing the magnetic compound particles composed of the rare earth oxysulfide is not particularly limited. For example, a mixture of oxide fine particles having a predetermined composition is formed into a spherical shape by a rolling granulation method or the like. Then, a method of synthesizing and preparing particles of a predetermined oxysulfide by sintering the obtained spherical molded body under predetermined temperature conditions can be adopted. The sintering temperature is preferably in the range of 1200 to 1800 ° C. The sintering time is preferably 1 hour or more and 48 hours or less.
[0045]
However, in the case of the oxysulfide particles as sintered, the surface roughness of the particle surface may be large, which may increase the airflow resistance to the refrigerant gas and lower the refrigeration efficiency. Further, fine powder adheres to the particle surface, and the powder is detached by an impact acting during operation of the refrigerator to cause clogging of the refrigerator component, which causes deterioration of the performance of the refrigerator. Further, fine defects remaining on the particle surface may cause cracks, shortening the life of the cold storage material, or causing clogging as described above.
[0046]
Therefore, the surface layer of the sintered body particles obtained by sintering is polished to further increase the sphericity of the particles, and the powder fixed to the surface of the magnetic compound particles is removed, and the processing is performed with relatively weak strength. A step of removing a defective portion (scratch) is performed.
[0047]
However, when the above-mentioned polishing step is performed, the sulfur (S) existing on the particle surface is liable to be volatilized and dropped off due to the impact force (mechanical stress), and the composition of the cold storage material is largely shifted from the stoichiometric composition. As a result, the specific heat characteristic of the cold storage material is reduced.
[0048]
Therefore, in the method of the present invention, a predetermined heat treatment is performed after the above-mentioned polishing to recover the sulfur component (S) as described above. That is, by subjecting the particles of the rare earth oxysulfide regenerator material after the polishing treatment to a predetermined heat treatment in an atmosphere containing a sulfur oxide such as SO 2 , a portion where the sulfur component (S) is deficient can be effectively treated. Since the sulfur component can be replenished and the original stoichiometric composition can be restored, the volume specific heat of the regenerator can also be restored. Then, the reflectance is improved by recovering the deficiency of the sulfur component (S), and the minimum value of the reflectance of light having a wavelength range of 400 to 600 nm at the surface of the cold storage material is 30% or more and 95% or less. By recovering the heat storage material, the specific heat characteristic of the cold storage material can be recovered to a level that does not cause any practical problem.
[0049]
The atmosphere during the heat treatment is preferably an atmosphere containing, for example, about 1 to 5% by volume (vol)% of SO 2 gas, but the same effect can be obtained even when SO 3 gas is used. Alternatively, heat treatment may be performed in an atmosphere in which SO 2 or SO 3 is mixed with another gas such as O 2 or N 2 . In the atmosphere having the above sulfur component gas concentration, the heat treatment temperature is preferably in the range of 900 to 1200 ° C. The heat treatment time is preferably from 1 hour to 24 hours from the viewpoint of processing efficiency.
[0050]
A regenerative refrigerator according to the present invention includes a refrigerator having a plurality of cooling stages, wherein at least a part of a regenerator in a final cooling stage is filled with the magnetic regenerator particles. For example, in the two-stage expansion refrigerator, the magnetic field according to the present invention is provided on the low-temperature end side of the second-stage regenerator, and in the three-stage expansion refrigerator, on the low-temperature end side of the third-stage regenerator. While the cold storage material particles are filled, the other cold storage material filling space is filled with another cold storage material having a specific heat characteristic according to the temperature distribution.
[0051]
When the filling amount of the magnetic regenerator material particles of the present invention in the low-temperature side space of the regenerator in the final cooling stage described above is too small at a volume ratio of less than 3%, no improvement in the regenerative efficiency of the refrigerator is observed, and Machine capacity is not improved. On the other hand, when the filling amount is excessively larger than 70% by volume, the above-mentioned drawback of the specific heat characteristics of the magnetic regenerator material particles becomes remarkable, and similarly, the cold storage efficiency is lowered. In other words, a relatively small volume specific heat in a temperature range other than the temperature at which the volume specific heat reaches a peak, particularly in a high temperature range, adversely affects the entire regenerator, resulting in a decrease in cool storage efficiency. Therefore, the filling volume ratio of the magnetic regenerator particles of the present invention to the total volume of the regenerator in the final cooling stage is in the range of 3 to 70% by volume, preferably in the range of 5 to 50% by volume, Further, the range of 10 to 30% by volume is particularly desirable.
[0052]
According to the regenerator material according to the above configuration, since the regenerative material is made of a rare earth oxysulfide-based magnetic material (R 2 O 2 magnetic material) having a steep volume specific heat peak in an extremely low temperature range, the temperature position of the volume specific heat peak Is shifted to a lower temperature side, the half-value width of the specific heat peak is expanded, and a regenerator material having good specific heat characteristics is obtained. Then, by filling the regenerator material into the low-temperature end of the regenerator constituting the final cooling stage of the refrigerator, the refrigerating capacity in the temperature 4K region is high and stable refrigerating performance can be maintained for a long period of time. A refrigerator can be provided.
[0053]
The MRI apparatus, the cryopump, the superconducting magnet for the magnetic levitation train, and the magnetic field applying type single crystal pulling apparatus all use the above-described refrigerator because the performance of the refrigerator affects the performance of each apparatus. The MRI apparatus, the cryopump, the superconducting magnet for the magnetic levitation train, and the magnetic field applying type single crystal pulling apparatus of the present invention can exhibit excellent performance over a long period of time.
[0054]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be specifically described based on examples shown below.
[0055]
(Example 1)
A raw material powder of Gd 2 O 2 S having an average particle diameter of 3 μm was charged into a tumbling granulator and granulated to prepare granulated particles having a particle diameter of about 0.1 to 0.4 mm. Magnetic particles were prepared by sintering the granulated particles at a temperature of 1800 ° C. for 2 hours in an Ar atmosphere. Next, the sintered magnetic particles are placed on a rotating disk containing diamond abrasive grains and rolled to polish the surface layer of each particle to form a spheroid, and the adhesion formed on the surface layer Powder and defective portions were removed. The removal amount in this polishing step was about 3% of the particle size of the magnetic particles. Then, about 3 vol. The heat storage material according to Example 1 was prepared by performing a heat treatment at a temperature of 1100 ° C. for 5 hours in an N 2 gas atmosphere containing% SO 2 gas. When the reflectance of the obtained regenerator material particles was measured, the minimum value in the wavelength range of 400 to 600 nm was 72% at the wavelength of 460 nm.
[0056]
On the other hand, in order to evaluate the characteristics of the cold storage material prepared as described above, a two-stage expansion type GM refrigerator as shown in FIG. 1 was prepared. The two-stage GM refrigerator 10 shown in FIG. 1 shows an embodiment of the refrigerator of the present invention. A two-stage GM refrigerator 10 shown in FIG. 1 includes a vacuum vessel 13 in which a large-diameter first cylinder 11 and a small-diameter second cylinder 12 coaxially connected to the first cylinder 11 are installed. Have. The first cylinder 11 has a first regenerator 14 arranged reciprocally, and the second cylinder 12 has a second regenerator 15 arranged reciprocally. Seal rings 16 and 17 are arranged between the first cylinder 11 and the first regenerator 14 and between the second cylinder 12 and the second regenerator 15, respectively.
[0057]
The first regenerator 14 contains a first regenerator 18 such as a Cu mesh. The low-temperature side of the second regenerator 15 is filled with the extremely low-temperature regenerative material of the present invention as the second regenerative material 19 at a predetermined ratio. Each of the first regenerator 14 and the second regenerator 15 has a passage for a working medium such as He gas provided in a gap between the first regenerator 18 and the cryogenic regenerator 19.
[0058]
A first expansion chamber 20 is provided between the first regenerator 14 and the second regenerator 15. Further, a second expansion chamber 21 is provided between the second regenerator 15 and the end wall of the second cylinder 12. A first cooling stage 22 is formed at the bottom of the first expansion chamber 20, and a second cooling stage 23 having a lower temperature than the first cooling stage 22 is formed at the bottom of the second expansion chamber 21.
[0059]
A high-pressure working medium (for example, He gas) is supplied from the compressor 24 to the two-stage GM refrigerator 10 as described above. The supplied working medium passes between the first regenerators 18 accommodated in the first regenerator 14, reaches the first expansion chamber 20, and further reaches the cryogenic regenerator material accommodated in the second regenerator 15. (Second regenerative material) passes through the space 19 and reaches the second expansion chamber 21. At this time, the working medium is cooled by supplying thermal energy to each of the cold storage materials 18 and 19. The working medium that has passed between the cold storage materials 18 and 19 expands in the expansion chambers 20 and 21 to generate cold, and the cooling stages 22 and 23 are cooled. The expanded working medium flows between the cold storage materials 18 and 19 in the opposite direction. The working medium is discharged after receiving heat energy from each of the cold storage materials 18 and 19. In such a process, as the recuperation effect becomes better, the thermal efficiency of the working medium cycle is improved, and a lower temperature is realized.
[0060]
Then, 100 g of the cold storage material according to Example 1 prepared as described above was charged into the lowest temperature side of the second-stage regenerator of the two-stage expansion GM refrigerator. Further, 150 g of HoCu 2 was charged on the high temperature side, and 250 g of Pb was further charged on the high temperature side, thereby assembling the refrigerator according to Example 1.
[0061]
Then, the refrigerator according to Example 1 assembled as described above was subjected to a refrigeration test at an operation frequency of 1 Hz, and the refrigeration capacity after continuous operation for 3000 hours was measured. As a result, the refrigeration capacity at 4.2K was 1.11 W. was gotten.
[0062]
Note that the refrigerating capacity in the present embodiment was defined as a heat load when a heat load was applied to the second cooling stage by the heater during the operation of the refrigerator and the temperature rise in the second cooling stage stopped at 4.2K.
[0063]
(Comparative Example 1)
Gd 2 O 2 S raw material powder having an average particle size of 3 μm was charged into a tumbling granulator to perform granulation, and granulated particles having a particle size of about 0.1 to 0.4 mm were prepared. Magnetic particles were prepared by sintering the granulated particles at a temperature of 1800 ° C. for 2 hours in an Ar atmosphere. Next, the sintered magnetic particles are placed on a rotating disk containing diamond abrasive grains and tumbled to polish the surface layer of each particle to form a spheroid, and to adhere to the surface layer. Powder and defective portions were removed. The removal amount in this polishing step was about 3% of the particle size of the magnetic particles. Thereafter, the heat storage material according to Comparative Example 1 was directly used without performing heat treatment in an atmosphere containing a sulfur component. When the reflectance of the obtained regenerator material particles was measured, the minimum value in the wavelength range of 400 to 600 nm was 28% at the wavelength of 460 nm.
[0064]
Then, 100 g of the obtained regenerator particles were charged into the lowest temperature side of the second regenerator of the two-stage expansion GM refrigerator. The high-temperature side was filled with 150 g of HoCu 2 cold storage material, and the high-temperature side was further filled with 250 g of Pb cold storage material to assemble the refrigerator according to Comparative Example 1. Then, a refrigeration test was performed at an operation frequency of 1 Hz as in Example 1, and a refrigeration capacity at 4.2 K of 0.53 W was obtained.
[0065]
(Example 2)
The magnetic particles according to the second embodiment were subjected to a heat treatment at a temperature of 1000 ° C. for 5 hours in a N 2 atmosphere containing 3 vol% of SO 2 gas for the magnetic particles whose surface was polished in the same manner as the first embodiment. Materials were prepared. When the reflectance of the obtained regenerator particles was measured, the minimum value in the wavelength range of 400 to 600 nm was 44% at the wavelength of 460 nm.
[0066]
Next, 100 g of the obtained regenerator particles were charged into the lowest temperature side of the second stage regenerator of the two-stage expansion GM refrigerator. The refrigerator according to Example 2 was assembled by filling 150 g of HoCu 2 cold storage material on the high temperature side and 250 g of Pb cold storage material on the high temperature side. Then, a refrigeration test was performed at an operation frequency of 1 Hz in the same manner as in Example 1. As a result, 0.89 W was obtained as the refrigeration capacity at 4.2 K.
[0067]
(Example 3)
The magnetic particles subjected to the surface polishing in the same manner as in Example 1 were subjected to a heat treatment at a temperature of 1100 ° C. for 3 hours in an N 2 gas atmosphere containing 3 vol% of SO 2 gas, thereby obtaining Example 3 of the present invention. A cold storage material was prepared. When the reflectance of the obtained regenerator particles was measured, the minimum value in the wavelength region of 400 to 600 nm was 53% at the wavelength of 460 nm.
[0068]
Next, 100 g of the obtained regenerator particles were charged into the lowest temperature side of the second stage regenerator of the two-stage expansion GM refrigerator. The refrigerator according to Example 3 was assembled by filling 150 g of HoCu 2 regenerator material on the high temperature side and 250 g of Pb regenerator material on the high temperature side. Then, as in Example 1, a refrigeration test was performed at an operating frequency of 1 Hz. As a result, 0.77 W was obtained as a refrigeration capacity at 4.2 K.
[0069]
Next, embodiments of a superconducting MRI apparatus using a regenerative refrigerator according to the present invention, a superconducting magnet for a magnetic levitation train, a cryopump, and a magnetic field applying type single crystal pulling apparatus will be described.
[0070]
FIG. 2 is a sectional view showing a schematic configuration of a superconducting MRI apparatus to which the present invention is applied. The superconducting MRI apparatus 30 shown in FIG. 2 includes a superconducting static magnetic field coil 31 for applying a spatially uniform and temporally stable static magnetic field to a human body, and a correction coil (not shown) for correcting non-uniformity of a generated magnetic field. , A gradient magnetic field coil 32 for giving a magnetic field gradient to the measurement area, a radio wave transmitting / receiving probe 33 and the like. The regenerative refrigerator 34 according to the present invention as described above is used for cooling the superconducting static magnetic field coil 31. In the drawing, reference numeral 35 denotes a cryostat, and reference numeral 36 denotes a radiation insulation shield.
[0071]
In the superconducting MRI apparatus 30 using the regenerative refrigerator 34 according to the present invention, since the operating temperature of the superconducting static magnetic field coil 31 can be stably ensured over a long period of time, it is spatially uniform and time-dependent. A stable static magnetic field can be obtained for a long period of time. Therefore, the performance of the superconducting MRI apparatus 30 can be stably exhibited over a long period of time.
[0072]
FIG. 3 is a perspective view showing a schematic configuration of a main part of a superconducting magnet for a magnetic levitation train using a regenerative refrigerator according to the present invention, and shows a part of a superconducting magnet 40 for a magnetic levitation train. The superconducting magnet 40 for a magnetic levitation train shown in FIG. 3 includes a superconducting coil 41, a liquid helium tank 42 for cooling the superconducting coil 41, a liquid nitrogen tank 43 for preventing the volatilization of the liquid helium tank, and a regenerative storage system according to the present invention. It is constituted by a refrigerator 44 and the like. In the figure, 45 is a laminated heat insulating material, 46 is a power lead, and 47 is a permanent current switch.
[0073]
In the superconducting magnet 40 for a magnetic levitation train using the regenerative refrigerator 44 according to the present invention, the operating temperature of the superconducting coil 41 can be stably guaranteed for a long period of time, so The required magnetic field can be stably obtained over a long period of time. In particular, although the acceleration acts on the superconducting magnet 40 for the magnetic levitation train, the regenerative refrigerator 44 according to the present invention can maintain excellent refrigerating capacity for a long period of time even when the acceleration acts. Greatly contribute to the long-term stabilization of Therefore, the magnetic levitation train using such a superconducting magnet 40 can exhibit its reliability over a long period of time.
[0074]
FIG. 4 is a sectional view showing a schematic configuration of a cryopump using the regenerative refrigerator according to the present invention. A cryopump 50 shown in FIG. 4 includes a cryopanel 51 for condensing or adsorbing gas molecules, a regenerative refrigerator 52 according to the present invention for cooling the cryopanel 51 to a predetermined cryogenic temperature, and a shield provided therebetween. 53, a baffle 54 provided at the intake port, and a ring 55 for changing the exhaust speed of argon, nitrogen, hydrogen and the like.
[0075]
In the cryopump 50 using the regenerative refrigerator 52 according to the present invention, the operating temperature of the cryopanel 51 can be stably guaranteed over a long period of time. Therefore, the performance of the cryopump 50 can be stably exhibited over a long period of time.
[0076]
FIG. 5 is a perspective view showing a schematic configuration of a magnetic field application type single crystal pulling apparatus using the regenerative refrigerator according to the present invention. The magnetic field applying type single crystal pulling apparatus 60 shown in FIG. 5 includes a crucible for melting a raw material, a heater, a single crystal pulling section 61 having a single crystal pulling mechanism, a superconducting coil 62 for applying a static magnetic field to the raw material melt, and The single crystal pulling section 61 is configured by a lifting mechanism 63 and the like. The regenerative refrigerator 64 according to the present invention as described above is used for cooling the superconducting coil 62. In the figure, 65 is a current lead, 66 is a heat shield plate, and 67 is a helium container.
[0077]
In the magnetic field application type single crystal pulling apparatus 60 using the regenerative refrigerator 64 according to the present invention, the operating temperature of the superconducting coil 62 can be stably ensured over a long period of time. A good magnetic field that suppresses convection can be obtained over a long period of time. Therefore, the performance of the magnetic field applying type single crystal pulling apparatus 60 can be stably exhibited over a long period of time.
[0078]
【The invention's effect】
As described above, according to the regenerator material of the present invention, the regenerative material is composed of a rare earth oxysulfide-based magnetic material (R 2 O 2 S-based magnetic material) having a steep peak in volume specific heat in an extremely low temperature region. In addition, the temperature position of the volume specific heat peak shifts to a lower temperature side, and the half width of the specific heat peak is expanded, so that a regenerator material having excellent specific heat characteristics can be obtained. Then, by filling the regenerator material into the low-temperature end of the regenerator constituting the final cooling stage of the refrigerator, the refrigerating capacity in the temperature 4K region is high and stable refrigerating performance can be maintained for a long period of time. A refrigerator can be provided.
[0079]
The MRI apparatus, the cryopump, the superconducting magnet for the magnetic levitation train, and the magnetic field applying type single crystal pulling apparatus all use the above-described refrigerator because the performance of the refrigerator affects the performance of each apparatus. The MRI apparatus, the cryopump, the superconducting magnet for the magnetic levitation train, and the magnetic field applying type single crystal pulling apparatus of the present invention can exhibit excellent performance over a long period of time.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a main part of a regenerative refrigerator (GM refrigerator) according to the present invention.
FIG. 2 is a sectional view showing a schematic configuration of a superconducting MRI apparatus according to one embodiment of the present invention.
FIG. 3 is a perspective view showing a schematic configuration of a main part of a superconducting magnet (for a magnetic levitation train) according to an embodiment of the present invention.
FIG. 4 is a sectional view showing a schematic configuration of a cryopump according to one embodiment of the present invention.
FIG. 5 is a perspective view showing a schematic configuration of a main part of a magnetic field application type single crystal pulling apparatus according to an embodiment of the present invention.
[Explanation of symbols]
10 GM refrigerator (cool storage refrigerator)
11 First cylinder 12 Second cylinder 13 Vacuum container 14 First regenerator 15 Second regenerator 16, 17 Seal ring 18 First heat storage material 19 Second heat storage material (Cryogenic storage material for extremely low temperature)
Reference Signs List 20 First expansion chamber 21 Second expansion chamber 22 First cooling stage 23 Second cooling stage 24 Compressor 30 Superconducting MRI apparatus 31 Superconducting static magnetic field coil 32 Gradient magnetic field coil 33 Radio wave transmitting / receiving probe 34 Cool storage refrigerator 35 Cryostat 36 Radiation Heat insulation shield 40 Superconducting magnet (magnet)
41 superconducting coil 42 liquid helium tank 43 liquid nitrogen tank 44 regenerative refrigerator 45 laminated heat insulator 46 power lead 47 permanent current switch 50 cryopump 51 cryopanel 52 regenerative refrigerator 53 shield 54 baffle 55 ring 60 magnetic field applied single crystal Pulling device 61 Single crystal pulling unit 62 Superconducting coil 63 Elevating mechanism 64 Cold storage refrigerator 65 Current lead 66 Heat shield plate 67 Helium container

Claims (11)

波長400−600nmの光線を照射した時の反射率の最小値が30%以上95%以下の範囲にある希土類酸硫化物から成ることを特徴とする蓄冷材。A cold storage material comprising a rare earth oxysulfide having a minimum reflectance of 30% or more and 95% or less when irradiated with light having a wavelength of 400 to 600 nm. 請求項1記載の蓄冷材において、前記希土類酸硫化物が、
一般式:RS ……(1)
(式中、RはCe,Pr,Nd,Sm,Gd,Tb,Dy,HoおよびErから選択される少なくとも一種の希土類元素を示す。)で表わされる磁性体化合物であることを特徴とする蓄冷材。
The cold storage material according to claim 1, wherein the rare earth oxysulfide is:
General formula: R 2 O 2 S (1)
(Wherein R represents at least one rare earth element selected from Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er). Wood.
請求項2記載の蓄冷材において、前記一般式におけるR成分がガドリニウム(Gd)であることを特徴とする蓄冷材。The cold storage material according to claim 2, wherein the R component in the general formula is gadolinium (Gd). 請求項1記載の蓄冷材において、前記蓄冷材は磁性体化合物粒子からなり、この磁性体化合物粒子の粒径が0.01〜3mmであることを特徴とする蓄冷材。2. The regenerator material according to claim 1, wherein the regenerator material is made of magnetic compound particles, and the particle diameter of the magnetic compound particles is 0.01 to 3 mm. 請求項4記載の蓄冷材において、前記蓄冷材を構成する全磁性体化合物粒子に対して、長径の短径に対する比(アスペクト比)が5以下であり、かつ0.01mm以上3mm以下の粒径を有する磁性体化合物粒子の割合が70質量%以上であることを特徴とする蓄冷材。5. The regenerator material according to claim 4, wherein the ratio of the major axis to the minor axis (aspect ratio) is 5 or less and the particle diameter is 0.01 mm or more and 3 mm or less with respect to all the magnetic compound particles constituting the cold storage material. The ratio of the magnetic compound particles having the following is 70 mass% or more. 希土類酸硫化物から成る磁性体化合物粒子を調製する工程と、この磁性体化合物粒子を球状に研磨加工する工程と、この球状化した磁性体化合物粒子を、硫黄酸化物雰囲気中において温度900〜1200℃で1〜12時間の範囲で熱処理する工程とを備えることを特徴とする蓄冷材の製造方法。A step of preparing magnetic compound particles comprising a rare earth oxysulfide; a step of polishing the magnetic compound particles into a spherical form; A heat treatment at 1 ° C. for 1 to 12 hours. 蓄冷材を充填した蓄冷器から成る冷却段を複数個有し、各冷却段の蓄冷器の上流高温側から作動媒質を流して上記作動媒質と蓄冷材との熱交換によって蓄冷器の下流側にて、より低温度を得る蓄冷式冷凍機において、最終冷却段の蓄冷器の低温側空間に充填される蓄冷材の少なくとも一部の蓄冷材が請求項1ないし5のいずれかに記載の蓄冷材から成ることを特徴とする蓄冷式冷凍機。It has a plurality of cooling stages composed of regenerators filled with regenerator material, and the working medium flows from the upstream high-temperature side of the regenerators of the respective cooling stages to the downstream side of the regenerator by heat exchange between the operating medium and the regenerator materials. In a regenerative refrigerator that obtains a lower temperature, at least a part of the regenerator material filled in the low-temperature side space of the regenerator in the final cooling stage is a regenerator material according to any one of claims 1 to 5. A regenerative refrigerator comprising: 請求項7記載の蓄冷式冷凍機を具備したことを特徴とする超電導磁石。A superconducting magnet comprising the regenerative refrigerator according to claim 7. 請求項7記載の蓄冷式冷凍機を具備したことを特徴とするMRI(核磁気共鳴イメージング)装置。An MRI (nuclear magnetic resonance imaging) apparatus comprising the regenerative refrigerator according to claim 7. 請求項7記載の蓄冷式冷凍機を具備したことを特徴とするクライオポンプ。A cryopump comprising the regenerative refrigerator according to claim 7. 請求項7記載の蓄冷式冷凍機を具備したことを特徴とする磁界印加式単結晶引上げ装置。A magnetic field applying type single crystal pulling apparatus comprising the regenerative refrigerator according to claim 7.
JP2002360232A 2002-12-12 2002-12-12 Cold storage material, manufacturing method thereof, and cold storage type refrigerator Expired - Lifetime JP4582994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002360232A JP4582994B2 (en) 2002-12-12 2002-12-12 Cold storage material, manufacturing method thereof, and cold storage type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002360232A JP4582994B2 (en) 2002-12-12 2002-12-12 Cold storage material, manufacturing method thereof, and cold storage type refrigerator

Publications (2)

Publication Number Publication Date
JP2004189906A true JP2004189906A (en) 2004-07-08
JP4582994B2 JP4582994B2 (en) 2010-11-17

Family

ID=32759364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002360232A Expired - Lifetime JP4582994B2 (en) 2002-12-12 2002-12-12 Cold storage material, manufacturing method thereof, and cold storage type refrigerator

Country Status (1)

Country Link
JP (1) JP4582994B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092871A1 (en) 2005-03-03 2006-09-08 Sumitomo Heavy Industries, Ltd. Cold storage material, cold storage device and very-low-temperature cold storage refrigerator
JP2006349482A (en) * 2005-06-15 2006-12-28 Central Res Inst Of Electric Power Ind Photoluminescence mapping measuring instrument
JP2017058079A (en) * 2015-09-17 2017-03-23 株式会社東芝 Cold storage material for cryogenic refrigeration machine, cryogenic regenerator, cold storage type cryogenic refrigeration machine and system with cryogenic cold storage type cryogenic refrigeration machine
JP2018028045A (en) * 2016-08-19 2018-02-22 株式会社東芝 Cold storage material for cryogenic refrigerator, cold storage-type cryogenic refrigerator, and system having cold storage-type cryogenic refrigerator
JP2019196902A (en) * 2012-10-09 2019-11-14 株式会社東芝 Gm type refrigerator
WO2023145730A1 (en) * 2022-01-28 2023-08-03 株式会社 東芝 Cold storage material, cold storage material particles, granular particles, cold storage machine, refrigerator, cryo-pump, super-conducting magnet, nuclear magnetic resonance imaging device, nuclear magnetic resonance device, magnetic field application-type single crystal pulling device, helium recondensing device, and dilution refrigerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047419A1 (en) 2014-09-25 2016-03-31 株式会社東芝 Rare-earth cold storage material particles, refrigerator using same, superconducting magnet, inspection device, and cryopump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325628A (en) * 1998-05-11 1999-11-26 Toshiba Corp Cold storage material and cold storage type refrigerating machine
JP2003073661A (en) * 2001-06-18 2003-03-12 Konoshima Chemical Co Ltd Rare earth oxysulfide cold storage medium and cold storing machine
WO2003081145A1 (en) * 2002-03-22 2003-10-02 Sumitomo Heavy Industries, Ltd. Cryogenic temperature cool storage device and refrigerator
JP2004075884A (en) * 2002-08-20 2004-03-11 Konoshima Chemical Co Ltd Rare earth oxysulfide ceramic cold storage material, its manufacturing process, and cryogenic cold accumulator using the cold storage material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325628A (en) * 1998-05-11 1999-11-26 Toshiba Corp Cold storage material and cold storage type refrigerating machine
JP2003073661A (en) * 2001-06-18 2003-03-12 Konoshima Chemical Co Ltd Rare earth oxysulfide cold storage medium and cold storing machine
WO2003081145A1 (en) * 2002-03-22 2003-10-02 Sumitomo Heavy Industries, Ltd. Cryogenic temperature cool storage device and refrigerator
JP2004075884A (en) * 2002-08-20 2004-03-11 Konoshima Chemical Co Ltd Rare earth oxysulfide ceramic cold storage material, its manufacturing process, and cryogenic cold accumulator using the cold storage material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092871A1 (en) 2005-03-03 2006-09-08 Sumitomo Heavy Industries, Ltd. Cold storage material, cold storage device and very-low-temperature cold storage refrigerator
JP2006242484A (en) * 2005-03-03 2006-09-14 Sumitomo Heavy Ind Ltd Cold accumulating material, cold accumulator and cryogenic cold accumulating refrigerator
JP2006349482A (en) * 2005-06-15 2006-12-28 Central Res Inst Of Electric Power Ind Photoluminescence mapping measuring instrument
JP4633549B2 (en) * 2005-06-15 2011-02-16 財団法人電力中央研究所 Photoluminescence mapping measuring device
JP2019196902A (en) * 2012-10-09 2019-11-14 株式会社東芝 Gm type refrigerator
JP2017058079A (en) * 2015-09-17 2017-03-23 株式会社東芝 Cold storage material for cryogenic refrigeration machine, cryogenic regenerator, cold storage type cryogenic refrigeration machine and system with cryogenic cold storage type cryogenic refrigeration machine
US10393412B2 (en) 2015-09-17 2019-08-27 Kabushiki Kaisha Toshiba Cryocooler regenerator material, cryogenic regenerator, regenerative cryocooler and system comprising regenerative cryocooler
JP2018028045A (en) * 2016-08-19 2018-02-22 株式会社東芝 Cold storage material for cryogenic refrigerator, cold storage-type cryogenic refrigerator, and system having cold storage-type cryogenic refrigerator
WO2023145730A1 (en) * 2022-01-28 2023-08-03 株式会社 東芝 Cold storage material, cold storage material particles, granular particles, cold storage machine, refrigerator, cryo-pump, super-conducting magnet, nuclear magnetic resonance imaging device, nuclear magnetic resonance device, magnetic field application-type single crystal pulling device, helium recondensing device, and dilution refrigerator

Also Published As

Publication number Publication date
JP4582994B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
US6363727B1 (en) Cold accumulating material and cold accumulation refrigerator using the same
JP2013100509A (en) Method for producing cold-storage material for extremely low temperature
US6467277B2 (en) Cold accumulating material, method of manufacturing the same and refrigerator using the material
JP3769024B2 (en) Cryogenic regenerator material, cryogenic regenerator using the same, and refrigerator
JP4582994B2 (en) Cold storage material, manufacturing method thereof, and cold storage type refrigerator
JPH11325628A (en) Cold storage material and cold storage type refrigerating machine
EP0947785B1 (en) Cold-accumulating material and cold-accumulating refrigerator
JP5468380B2 (en) Cold storage material and manufacturing method thereof
US6334909B1 (en) Cold-accumulating material and cold-accumulating refrigerator using the same
US20190316814A1 (en) Rare earth regenerator material, and regenerator and refrigerator each provided with same
EP3617288A1 (en) Hocu-based cold-storage material, and cold-storage device and refrigerating machine each equipped therewith
JP2004099822A (en) Cold storage material and regenerative refrigerator using the same
JP4564161B2 (en) refrigerator
JP4170703B2 (en) Rare earth oxysulfide ceramic regenerator material and method for producing the same, and cryogenic regenerator using the regenerator material
JP4568170B2 (en) Method for producing cryogenic regenerator material and method for producing cryogenic regenerator
JP2002249763A (en) Cold storage material, method for producing the same and refrigerator using the same cold storage material
JP2004143341A (en) Cold storage material and cold storage type refrigerator using the same
EP4328284A1 (en) Magnetic cold storage material particle, cold storage device, refrigerating machine, cryopump, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, magnetic-field-application-type single crystal pulling apparatus, and helium re-condensation apparatus
JP4253686B2 (en) refrigerator
JP2006008999A (en) Method for producing regenerator material for extremely low temperatures and method for producing regenerator for extremely low temperatures
JPH11294882A (en) Storage medium and cold storage type refrigerating machine
TW386107B (en) Magnetic hold-over material for extremely low temperature and refrigerator using the same
JPH10267442A (en) Cold heat storing material and cold heat storage type freezer
JP2023064990A (en) Magnetic refrigeration material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R151 Written notification of patent or utility model registration

Ref document number: 4582994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

EXPY Cancellation because of completion of term