JPH06240241A - Cold-reserving agent for cryogenic temperature and cold-reserving apparatus for cryogenic temperature using the same - Google Patents

Cold-reserving agent for cryogenic temperature and cold-reserving apparatus for cryogenic temperature using the same

Info

Publication number
JPH06240241A
JPH06240241A JP5047549A JP4754993A JPH06240241A JP H06240241 A JPH06240241 A JP H06240241A JP 5047549 A JP5047549 A JP 5047549A JP 4754993 A JP4754993 A JP 4754993A JP H06240241 A JPH06240241 A JP H06240241A
Authority
JP
Japan
Prior art keywords
regenerator
cold
particles
main phase
cryogenic temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5047549A
Other languages
Japanese (ja)
Inventor
Masami Okamura
正己 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5047549A priority Critical patent/JPH06240241A/en
Publication of JPH06240241A publication Critical patent/JPH06240241A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To provide a cold-reserving agent for cryogenic temperature which is based on intermetallic compds. and has improved mechanical strengths against vibration, etc., during running, and provide a cold-reserving apparatus for cryogenic temperature which can long maintain an excellent refrigerating capability. CONSTITUTION:The agent comprises the main phase consisting of an intermetallic compd. at least one rare earth element and the subsidary phase consisting of an intermetallic compd. different from that of the main phase and contg. at least one rare earth element. The apparatus is filled with particles of the agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機等に使用される
極低温用蓄冷材、およびそれを用いた極低温用蓄冷器に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic regenerator material used in refrigerators and the like, and a cryogenic regenerator using the same.

【0002】[0002]

【従来の技術】近年、超電導技術の発展は著しく、その
応用分野が拡大するに伴って、小型で高性能の冷凍機の
開発が不可欠になってきている。このような冷凍機に
は、軽量・小型で、熱効率の高いことが要求されてい
る。
2. Description of the Related Art In recent years, the development of superconducting technology has been remarkable, and with the expansion of its application fields, it has become essential to develop a small-sized and high-performance refrigerator. Such refrigerators are required to be lightweight, compact and have high thermal efficiency.

【0003】例えば、超電導MRI装置等においては、
ギフォード・マクマホン方式(GM方式)やスターリン
グ方式等の冷凍サイクルによる冷凍機が用いられてい
る。このような冷凍機においては、圧縮されたHeガス等
の作動媒質が蓄冷器内を一方向に流れて、その熱エネル
ギーを充填物質(蓄冷材)に供給し、ここで膨張した作
動媒質が反対方向に流れ、蓄冷材から熱エネルギーを受
けとる。こうした過程で復熱効果が良好になるに伴っ
て、作動媒質サイクルの熱効率が向上し、一層低い温度
を実現することが可能となる。
For example, in a superconducting MRI apparatus and the like,
Gifford McMahon type (GM type) and Stirling type refrigeration cycle refrigerators are used. In such a refrigerator, a compressed working medium such as He gas flows in one direction in the regenerator to supply the heat energy to the filling material (cooling material), where the expanded working medium is the opposite. Flows in the direction and receives heat energy from the regenerator material. As the recuperation effect becomes better in such a process, the thermal efficiency of the working medium cycle is improved, and it becomes possible to realize a lower temperature.

【0004】上述したような冷凍機に用いられる蓄冷材
としては、従来、CuやPb等を構成材料とするものが主に
用いられてきた。しかし、このような蓄冷材は、 20K以
下の極低温で比熱が著しく小さくなるため、上述した復
熱効果が十分機能せず、極低温を実現することが困難で
あった。そこで、最近では、より絶対零度に近い温度を
実現するために、極低温域において大きな比熱を示す、
Er3 Ni等の希土類元素を含む化合物系の蓄冷材等(特開
平1-310269号公報参照)も用いられている。
As the regenerator material used in the refrigerator as described above, those having Cu or Pb as a constituent material have been mainly used conventionally. However, such a regenerator material has a very small specific heat at an extremely low temperature of 20 K or less, so that the above-mentioned recuperative effect does not sufficiently function, and it has been difficult to realize an extremely low temperature. Therefore, recently, in order to realize a temperature closer to absolute zero, a large specific heat is exhibited in a very low temperature range.
A compound-based cold storage material containing a rare earth element such as Er 3 Ni (see JP-A-1-310269) is also used.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述したよ
うな蓄冷器の使用状態においては、Heガス等の作動媒質
が高圧かつ高速で、その流れの向きが頻繁に変わるよう
に、蓄冷機内に充填された蓄冷材間の空隙を通過するた
め、蓄冷材には振動をはじめとする種々な力が加えられ
る。このような動作状況に対して、上述したEr3 Ni等の
希土類元素を含む化合物からなる蓄冷材は、材質的に脆
弱であるため、運転中の振動等により微粉を発生させ、
ガスシールを阻害する等、蓄冷器の性能に悪影響を及ぼ
すという問題を有していた。
By the way, when the regenerator is used as described above, the working medium such as He gas is charged at high pressure and high speed, and the flow direction is frequently changed so as to fill the regenerator. Since the cold storage materials pass through the gaps between them, various forces such as vibration are applied to the cold storage materials. Against such an operating condition, the regenerator material made of a compound containing a rare earth element such as Er 3 Ni described above is fragile in terms of material, and therefore generates fine powder due to vibration during operation,
There is a problem that it adversely affects the performance of the regenerator, such as obstructing the gas seal.

【0006】本発明は、このような課題に対処するため
になされたもので、運転中の振動等に対する機械的強度
の向上を図った化合物系の極低温用蓄冷材、およびその
ような蓄冷材を用いることによって、優れた冷凍性能を
長期間にわたって維持することが可能な蓄冷器を提供す
ることを目的としている。
The present invention has been made in order to solve such a problem, and is a compound-based cold storage material for cryogenic temperature, which has improved mechanical strength against vibration during operation, and such a cold storage material. The purpose of the present invention is to provide a regenerator that can maintain excellent refrigeration performance for a long period of time.

【0007】[0007]

【課題を解決するための手段と作用】本発明の極低温用
蓄冷材は、少なくとも 1種の希土類元素を含む金属間化
合物からなる主相と、少なくとも 1種の希土類元素を含
み、前記主相と組成の異なる金属間化合物からなる副相
とから構成されていることを特徴としている。
The cryogenic regenerator material for cryogenic use of the present invention comprises a main phase composed of an intermetallic compound containing at least one rare earth element and at least one rare earth element. And a subphase composed of an intermetallic compound having a different composition.

【0008】また、本発明の極低温用蓄冷器は、極低温
用蓄冷材が充填された蓄冷器において、前記極低温用蓄
冷材の少なくとも一部として、上記本発明の極低温用蓄
冷材の粒体を用いたことを特徴としている。
The cryogenic regenerator of the present invention is a regenerator filled with a cryogenic regenerator material, wherein at least a part of the cryogenic regenerator material is the cryogenic regenerator material of the present invention. It is characterized by using granules.

【0009】本発明の蓄冷材は、上述したように、主相
と副相とからなる微細組織を有するものである。これら
主相および副相は、例えばRMz (Rは Y、La、Ce、Pr、N
d、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、TmおよびYbから
選ばれる少なくとも 1種の希土類元素を、 MはNi、Co、
CuおよびRuから選ばれる少なくとも 1種の金属元素を示
し、 zは 0.001〜 9.0の範囲の数を示す)で表される、
少なくとも 1種の希土類元素を含む金属間化合物(以
下、希土類元素系金属間化合物と記す)からなるもので
あって、異なる組成を有するものである。
The regenerator material of the present invention has a fine structure composed of a main phase and a sub phase, as described above. The main phase and the sub phase are, for example, RM z (R is Y, La, Ce, Pr, N
At least one rare earth element selected from d, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb, M is Ni, Co,
Represents at least one metal element selected from Cu and Ru, and z represents a number in the range of 0.001 to 9.0).
It is composed of an intermetallic compound containing at least one kind of rare earth element (hereinafter referred to as a rare earth element-based intermetallic compound) and has a different composition.

【0010】上記主相を構成する希土類元素系金属間化
合物は、適用する蓄冷器の種類や使用用途等に応じて選
択するものとし、例えば R3 M 、RM、RM2 等が例示され
る。また、副相を構成する希土類元素系金属間化合物
は、上記したような主相の作製時に副次的に形成される
ものであって、主相とは異なる組成を有するものであ
る。また、副相は単相である必要はなく、複数の組織か
ら構成されていてもよい。
The rare earth element-based intermetallic compound forming the main phase is selected according to the type of the regenerator to be applied and the intended use, and examples thereof include R 3 M, RM and RM 2 . Further, the rare earth element-based intermetallic compound forming the sub phase is a sub-product formed during the production of the main phase as described above, and has a composition different from that of the main phase. Further, the subphase does not have to be a single phase and may be composed of a plurality of tissues.

【0011】このような副相は、基本的には主相の粒界
部に存在し、主相粒子の微細化を促進すると共、主相粒
子間の結合材的な機能を有する。蓄冷材を構成する希土
類元素系金属間化合物の金属組織を、上記したような主
相と副相とからなる組織とすることによって、機械的強
度の向上を図ることができる。上記主相粒子の粒径は、
1〜 100μm 程度とすることが好ましい。
Such a sub-phase is basically present in the grain boundary part of the main phase, promotes the miniaturization of the main phase particles, and has a function as a binder between the main phase particles. It is possible to improve the mechanical strength by making the metal structure of the rare earth element-based intermetallic compound that constitutes the cold storage material a structure that includes the main phase and the subphase as described above. The particle size of the main phase particles is
It is preferably about 1 to 100 μm.

【0012】本発明の極低温用蓄冷材を構成する主相と
副相の割合は、面積が最も大きくなるようにして選んだ
断面における面積比で、副相が1%以上となるような割合
とすることが好ましい。副相の面積比が1%未満では、強
度向上効果が十分に得られない。副相のより好ましい面
積比は3%以上である。また、副相の極低温域における比
熱が主相に比べて小さい場合に、副相の面積比があまり
大きいと、極低温域における比熱特性が低下するおそれ
がある。従って、このような場合には、副相の面積比を
40%以下とすることが好ましく、より好ましくは 30%未
満である。
The proportion of the main phase and the sub-phase constituting the cryogenic regenerator material of the present invention is the area ratio in the cross section selected so that the area is the largest, and the proportion such that the sub-phase is 1% or more. It is preferable that If the area ratio of the subphase is less than 1%, the strength improving effect cannot be sufficiently obtained. A more preferable area ratio of the subphase is 3% or more. Further, when the specific heat in the cryogenic region of the sub-phase is smaller than that in the main phase and the area ratio of the sub-phase is too large, the specific heat characteristic in the cryogenic region may be deteriorated. Therefore, in such a case, the area ratio of the sub-phase is
It is preferably 40% or less, and more preferably less than 30%.

【0013】ところで、副相も極低温域において、大き
な比熱を示す場合、すなわち比熱がピークを示す温度が
主相と異なる場合には、上記金属組織を有する蓄冷材
は、極低温域の比較的幅広い温度範囲で大きな比熱を示
すことになる。このような場合は、得ようとする比熱特
性に応じて、主相と副相の割合を設定すればよい。
By the way, when the sub-phase also has a large specific heat in the cryogenic temperature range, that is, when the temperature at which the specific heat shows a peak is different from that of the main phase, the regenerator material having the above-mentioned metal structure has a relatively low temperature in the cryogenic temperature range. It shows a large specific heat in a wide temperature range. In such a case, the proportion of the main phase and the sub phase may be set according to the specific heat characteristic to be obtained.

【0014】本発明の極低温用蓄冷器は、それに充填さ
れる極低温用蓄冷材の少なくとも一部として、上述した
ような金属組織を有す蓄冷材の粒体を用いたものであ
る。本発明の蓄冷器は、充填物質の全てを本発明の蓄冷
材粒体としてもよいし、また従来の蓄冷材との混合物と
して使用することも可能である。
The cryogenic regenerator of the present invention uses, as at least a part of the cryogenic regenerator material filled therein, the particles of the regenerator material having the above-described metal structure. In the regenerator of the present invention, all of the filling substances may be the regenerator material granules of the present invention, or may be used as a mixture with a conventional regenerator material.

【0015】ここで、蓄冷材の粒体は、その形状が球状
に近く、かつその粒径が揃っているほど、ガスの流れを
円滑にすることができるため、全粒体の70重量% 以上を
短径に対する長径の比(アスペクト比)が 5以下である
蓄冷材粒子で構成し、かつ全粒体の70重量% 以上を粒径
が0.01〜 3.0mmの範囲の蓄冷材粒子で構成することが好
ましい。
Here, the particles of the regenerator material have a shape closer to a sphere, and the more uniform the particle size thereof, the smoother the gas flow, and therefore 70% by weight or more of the whole particles. Is composed of regenerator particles having a ratio of major axis to minor axis (aspect ratio) of 5 or less, and 70% by weight or more of all particles are composed of regenerator particles having a particle diameter range of 0.01 to 3.0 mm. Is preferred.

【0016】蓄冷材粒子のアスペクト比が 5を超える
と、空隙が均質となるように充填することが困難とな
る。よって、このような粒子が全粒体の30重量% を超え
ると、蓄冷性能の低下等を招くこととなる。より好まし
いアスペスクト比は 3以下、さらに好ましくは 2以下で
あり、できる限り真球に近いことが望ましい。また、ア
スペクト比が 5以下の粒子の全粒体中における比率は、
80重量% 以上とすることがより好ましく、さらに好まし
くは90重量%以上である。
When the aspect ratio of the regenerator material particles exceeds 5, it becomes difficult to fill the voids so as to be uniform. Therefore, if such particles exceed 30% by weight of the whole particles, the cold storage performance is deteriorated. A more preferable aspect ratio is 3 or less, more preferably 2 or less, and it is desirable that the aspect ratio be as close to a true sphere as possible. Also, the ratio of particles with an aspect ratio of 5 or less in the whole particle is
The amount is more preferably 80% by weight or more, further preferably 90% by weight or more.

【0017】また、蓄冷材質粒子の粒径が0.01mm未満で
あると、充填密度が高くなりすぎ、ヘリウム等の作動媒
質の圧力損失が増大し、また粒径が 3.0mmを超えると、
蓄冷材と作動媒質間の伝熱面積が小さくなり、熱伝達効
率が低下する。よって、このような粒子が全粒体の30重
量% を超えると、蓄冷性能の低下等を招くこととなる。
より好ましい粒径は、 0.1〜 2mmの範囲である。粒径が
0.01〜 3.0mmの範囲の粒子の全粒体中における比率は、
80重量% 以上とすることがより好ましく、さらに好まし
くは90重量% 以上である。
If the particle size of the cold accumulating material particles is less than 0.01 mm, the packing density becomes too high, the pressure loss of the working medium such as helium increases, and if the particle size exceeds 3.0 mm,
The heat transfer area between the regenerator material and the working medium is reduced, and the heat transfer efficiency is reduced. Therefore, if such particles exceed 30% by weight of the whole particles, the cold storage performance is deteriorated.
A more preferable particle size is in the range of 0.1 to 2 mm. Particle size is
The ratio of particles in the range of 0.01 to 3.0 mm in the whole particle is
The amount is more preferably 80% by weight or more, further preferably 90% by weight or more.

【0018】上述したような蓄冷材粒子の製造方法は、
特に限定されるものではなく、種々の製造方法を適用す
ることができ、例えば希土類元素を含む所定の組成の溶
湯を、遠心噴霧法、ガスアトマイズ法、回転電極等によ
り急冷凝固させて粒体化する方法が適用できる。このよ
うな製造方法において、急冷雰囲気ガスの種類や溶湯温
度等の急冷条件を調整することで、様々な金属組織を実
現することができる。
The method for producing the regenerator material particles as described above is
It is not particularly limited, and various manufacturing methods can be applied. For example, a molten metal having a predetermined composition containing a rare earth element is rapidly solidified by a centrifugal atomizing method, a gas atomizing method, a rotating electrode or the like to be granulated. The method can be applied. In such a manufacturing method, various metal structures can be realized by adjusting the quenching conditions such as the type of quenching atmosphere gas and the temperature of the molten metal.

【0019】そして、上記したような急冷凝固を適用し
た製造方法において、急冷速度を若干低下させる、例え
ば急冷雰囲気ガスとしてAr等の熱伝導率が低いガスを用
いることにより、微細な主相の粒界部に、主相と組成が
異なる副相が存在する金属組織が得られる。これによっ
て、機械的強度の向上を図った、希土類元素系金属間化
合物からなる蓄冷材粒体を得ることが可能となる。ここ
で、従来の蓄冷材粒子の製造方法においては、急冷雰囲
気ガスとして、熱伝導率の高いHe等が用いられてきた
が、このような場合には主相の粒界部に副相がほとんど
存在しない金属組織となる。
In the manufacturing method using the rapid solidification as described above, fine quenching of the grains of the main phase is achieved by slightly reducing the rapid cooling rate, for example, by using a gas having a low thermal conductivity such as Ar as the quenching atmosphere gas. It is possible to obtain a metallographic structure in which a subphase having a composition different from that of the main phase exists in the interface. As a result, it becomes possible to obtain a cold storage material granule made of a rare earth element-based intermetallic compound with improved mechanical strength. Here, in the conventional method for manufacturing the regenerator material particles, He or the like having high thermal conductivity has been used as the quenching atmosphere gas, but in such a case, the sub-phase is mostly present in the grain boundary part of the main phase. The metallic structure does not exist.

【0020】[0020]

【実施例】以下、本発明の実施例について説明する。 実施例1 まず、高周波溶解によりEr3 Ni母合金を作製した。この
Er3 Ni母合金を約1100℃で溶融し、この溶湯をAr雰囲気
中で回転円板上に滴下して急冷凝固させた。得られた粒
体を形状分級ならびに篩分し、粒径 200〜 300μm の球
状粒体を得た。この球状粒体は、アスペクト比が 5以下
の粒子が、全粒体の99重量% 以上の割合で存在してい
た。
EXAMPLES Examples of the present invention will be described below. Example 1 First, an Er 3 Ni mother alloy was produced by high frequency melting. this
The Er 3 Ni mother alloy was melted at about 1100 ° C., and this molten metal was dropped onto a rotating disk in an Ar atmosphere and rapidly solidified. The obtained granules were classified and sieved to obtain spherical granules having a particle size of 200 to 300 μm. In this spherical particle, particles having an aspect ratio of 5 or less were present in a proportion of 99% by weight or more of the whole particle.

【0021】この蓄冷材球状粒体の断面金属組織のSE
M観察、EPMA分析、およびX線回折を行ったとこ
ろ、Er3 Niからなる主相の粒界部に、副相としてErNiが
存在することを確認した。上記蓄冷材粒子の外側の断面
金属組織の拡大写真(倍率1000倍)と、粒子中央部の断
面金属組織の拡大写真(倍率1000倍)とから、この実施
例による蓄冷材粒子は、均質的に主相と副相とから構成
されていることを確認した。また、ErNiからなる副相の
存在比率は、断面金属組織の面積比で 18%であった。
SE of the cross-sectional metallographic structure of the spherical particles of the regenerator material
As a result of M observation, EPMA analysis, and X-ray diffraction, it was confirmed that ErNi was present as a subphase in the grain boundary portion of the main phase composed of Er 3 Ni. From the enlarged photograph of the cross-sectional metallographic structure on the outside of the cold storage material particles (magnification: 1000 times) and the enlarged photograph of the cross-sectional metallographic structure of the central portion of the particle (magnification: 1000 times), the cold storage material particles according to this Example were homogeneously It was confirmed that it consisted of a main phase and a sub phase. Further, the abundance ratio of the subphase composed of ErNi was 18% in terms of the area ratio of the cross-section metallographic structure.

【0022】また、上記Er3 Ni主相とErNi副相とから構
成された蓄冷材球状粒体を、蓄冷容器に充填率 70%で充
填した後、GM冷凍機に組込み、冷凍試験を行った。そ
の結果、4.2Kにおける初期冷凍能力として 300mWが得ら
れ、また2000時間の連続運転の間、安定した冷凍能力が
得られた。 比較例1 He雰囲気中で急冷する以外は、上記実施例1と同様にし
て、Er3 Ni溶湯を急冷凝固させて球状粒体を得た。この
球状粒体の断面金属組織を、実施例1と同様にして観察
したところ、Er3 Ni主相の粒界部に、Er3 Ni以外の組成
の化合物は存在していなかった。
Further, the spherical particles of the regenerator material composed of the Er 3 Ni main phase and the Er Ni subphase were filled in a regenerator container at a filling rate of 70%, and then incorporated in a GM refrigerator to perform a freezing test. . As a result, 300 mW was obtained as the initial refrigeration capacity at 4.2 K, and stable refrigeration capacity was obtained during 2000 hours of continuous operation. Comparative Example 1 A spherical particle was obtained by rapidly solidifying an Er 3 Ni melt in the same manner as in Example 1 except that it was rapidly cooled in a He atmosphere. The cross-sectional metallic structure of the spherical granules was observed in the same manner as in Example 1, the grain boundary portion of the Er 3 Ni main phase, a compound of the composition other than the Er 3 Ni did not exist.

【0023】また、上記Er3 Ni球状粒体を、上記実施例
1と同様にして蓄冷容器に充填して冷凍試験を行った結
果、4.2Kにおける冷凍能力は、初期値として 300mWが得
られたが、2000時間の連続運転の後には 260mWに劣化し
た。 実施例2、3 実施例1と同様に、表1に示す蓄冷材基本組成の溶湯を
約1100℃〜1300℃で急冷凝固させ、それぞれ蓄冷材球状
粒体を得た。これら蓄冷材球状粒体のSEM観察を行
い、副相の存在比率を断面金属組織の面積比で求めた。
その結果を表1に示す。なお、表1中の各比較例は、同
組成の溶湯を用いて、比較例1と同様にして作製した蓄
冷材球状粒体である。これら各比較例の蓄冷材球状粒体
についても、副相の存在比率をSEM観察から求めた。
The Er 3 Ni spherical particles were filled in a cold storage container in the same manner as in Example 1 and a freezing test was conducted. As a result, the freezing capacity at 4.2K was 300 mW as an initial value. However, it deteriorated to 260 mW after 2000 hours of continuous operation. Examples 2 and 3 In the same manner as in Example 1, a molten metal having the basic composition of the regenerator material shown in Table 1 was rapidly solidified at about 1100 ° C to 1300 ° C to obtain regenerator spherical particles. SEM observation of these cold storage material spherical particles was performed, and the abundance ratio of the subphase was determined by the area ratio of the cross-sectional metallographic structure.
The results are shown in Table 1. In addition, each comparative example in Table 1 is a cold storage material spherical particle produced in the same manner as Comparative Example 1 using a molten metal having the same composition. With respect to the spherical particles of the cold accumulating material of each of these comparative examples, the existence ratio of the subphase was determined by SEM observation.

【0024】また、上記各実施例および比較例の蓄冷材
球状粒体を、それぞれ蓄冷容器に充填率 70%で充填した
後、GM冷凍機に組込んで冷凍試験を行い、4.2Kにおけ
る初期冷凍能力とまた2000時間の連続運転後の冷凍能力
を測定した。これらの測定結果を併せて表1に示す。
Further, the spherical particles of the regenerator material of each of the above Examples and Comparative Examples were filled in a regenerator container at a filling rate of 70%, and then incorporated in a GM refrigerator to perform a freezing test to carry out an initial freezing at 4.2K. The capacity and also the refrigerating capacity after 2000 hours of continuous operation were measured. The results of these measurements are also shown in Table 1.

【0025】[0025]

【表1】 表1から明らかなように、本発明の主相と副相とで構成
された蓄冷材球状粒体を用いた蓄冷器は、いずれも優れ
た冷凍能力を長期間にわたって維持することができるこ
とが分かる。 実施例4〜9 実施例1と同様に、表2に示す蓄冷材基本組成の溶湯を
約1100℃〜1300℃で急冷凝固させ、それぞれ蓄冷材球状
粒体を得た。これら蓄冷材球状粒体のSEM観察を行
い、副相の存在比率を断面金属組織の面積比で求めた。
その結果を表2に示す。なお、表2中の各比較例は、同
組成の溶湯を用いて、比較例1と同様にして作製した蓄
冷材球状粒体である。これら各比較例の蓄冷材球状粒体
についても、副相の存在比率をSEM観察から求めた。
[Table 1] As is clear from Table 1, any of the regenerators of the present invention, which uses the spherical particles of the regenerator material composed of the main phase and the subphase, can maintain an excellent refrigerating capacity for a long period of time. . Examples 4 to 9 In the same manner as in Example 1, the melt having the basic composition of the cold accumulating material shown in Table 2 was rapidly solidified at about 1100 ° C to 1300 ° C to obtain spherical particles of the cold accumulating material. SEM observation of these cold storage material spherical particles was performed, and the abundance ratio of the subphase was determined by the area ratio of the cross-sectional metallographic structure.
The results are shown in Table 2. In addition, each comparative example in Table 2 is a cold storage material spherical particle produced in the same manner as Comparative Example 1 using a molten metal having the same composition. With respect to the spherical particles of the cold accumulating material of each of these comparative examples, the existence ratio of the subphase was determined by SEM observation.

【0026】また、上記各実施例および比較例の蓄冷材
球状粒体を、それぞれ蓄冷容器に充填率 70%で充填した
後、GM冷凍機に組込んで冷凍試験を行い、 12Kにおけ
る初期冷凍能力とまた2000時間の連続運転後の冷凍能力
を測定した。これらの測定結果を併せて表2に示す。
The spherical particles of the regenerator material of each of the above Examples and Comparative Examples were filled in a regenerator container at a filling rate of 70%, and then incorporated in a GM refrigerator to perform a freezing test, and an initial freezing capacity at 12K was obtained. Also, the refrigerating capacity after 2000 hours of continuous operation was measured. The results of these measurements are also shown in Table 2.

【0027】[0027]

【表2】 実施例10 実施例1と同様に作製したEr3 Ni合金溶融を、圧力 500
TorrのAr雰囲気中で回転円板上に滴下して急冷凝固させ
た後、形状分級ならびに篩分して、粒径 200〜300μm
の球状粒体を得た。
[Table 2] Example 10 An Er 3 Ni alloy melt produced in the same manner as in Example 1 was subjected to pressure 500
Dropping on a rotating disk in a Torr Ar atmosphere to quench and solidify, then shape classification and sieving to obtain a particle size of 200-300 μm.
To obtain spherical particles.

【0028】この蓄冷材球状粒体の断面金属組織のSE
M観察、EPMA分析、およびX線回折を行ったとこ
ろ、Er3 Niからなる主相の粒界部に、副相としてErNiが
存在することを確認した。また、ErNiからなる副相の存
在比率は、断面金属組織の面積比で 42%であった。
SE of the cross-sectional metallographic structure of the spherical particles of the regenerator material
As a result of M observation, EPMA analysis, and X-ray diffraction, it was confirmed that ErNi was present as a subphase in the grain boundary portion of the main phase composed of Er 3 Ni. In addition, the abundance ratio of the subphase composed of ErNi was 42% in terms of the area ratio of the metal structure in cross section.

【0029】なお、本発明による蓄冷材粒子の外側の断
面金属組織の拡大写真(倍率1000倍)と、粒子中央部の
断面金属組織の拡大写真(倍率1000倍)を、図1および
図2に示す。これらの図から明らかなように、本発明の
蓄冷材粒子は、均質的に主相と副相とから構成されてい
ることが分かる。
1 and 2 are an enlarged photograph of the cross-sectional metallographic structure on the outside of the particles of the regenerator material according to the present invention (magnification: 1000 times) and an enlarged photograph of the cross-sectional metallographic structure of the central part of the particle (magnification: 1000 times). Show. As is clear from these figures, it is understood that the regenerator material particles of the present invention are homogeneously composed of the main phase and the sub phase.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、希
土類元素系金属間化合物からなる蓄冷材を、主相と組成
の異なる副相とで構成しているため、機械的強度の向上
を図った極低温用蓄冷材を提供することができる。よっ
て、このような蓄冷材を用いた極低温用蓄冷機は、優れ
た冷凍性能を長期間にわたって安定して維持することが
可能となる。
As described above, according to the present invention, the regenerator material composed of a rare earth element-based intermetallic compound is composed of the main phase and the subphase having a different composition, so that the mechanical strength is improved. It is possible to provide the intended cryogenic regenerator material. Therefore, the cryogenic regenerator using such a regenerator material can stably maintain excellent refrigeration performance for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蓄冷材粒子の外側の断面金属組織の一
例を示す拡大写真である。
FIG. 1 is an enlarged photograph showing an example of a cross-sectional metallographic structure on the outside of the regenerator material particles of the present invention.

【図2】図1に示す蓄冷材粒子の中央部の断面金属組織
を示す拡大写真である。
FIG. 2 is an enlarged photograph showing a cross-sectional metallographic structure of a central portion of the cold storage material particles shown in FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも 1種の希土類元素を含む金属
間化合物からなる主相と、少なくとも 1種の希土類元素
を含み、前記主相と組成の異なる金属間化合物からなる
副相とから構成されていることを特徴とする極低温用蓄
冷材。
1. A main phase composed of an intermetallic compound containing at least one rare earth element, and a subphase composed of an intermetallic compound containing at least one rare earth element and having a different composition from the main phase. A cryogenic cold storage material characterized by being
【請求項2】 極低温用蓄冷材が充填された蓄冷器にお
いて、 前記極低温用蓄冷材の少なくとも一部として、請求項1
記載の極低温用蓄冷材の粒体を用いたことを特徴とする
極低温用蓄冷器。
2. A regenerator filled with a cryogenic regenerator material, wherein at least a part of the cryogenic regenerator material is used.
A cryogenic regenerator characterized by using particles of the cryogenic regenerator material described above.
JP5047549A 1993-02-12 1993-02-12 Cold-reserving agent for cryogenic temperature and cold-reserving apparatus for cryogenic temperature using the same Withdrawn JPH06240241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5047549A JPH06240241A (en) 1993-02-12 1993-02-12 Cold-reserving agent for cryogenic temperature and cold-reserving apparatus for cryogenic temperature using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5047549A JPH06240241A (en) 1993-02-12 1993-02-12 Cold-reserving agent for cryogenic temperature and cold-reserving apparatus for cryogenic temperature using the same

Publications (1)

Publication Number Publication Date
JPH06240241A true JPH06240241A (en) 1994-08-30

Family

ID=12778243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5047549A Withdrawn JPH06240241A (en) 1993-02-12 1993-02-12 Cold-reserving agent for cryogenic temperature and cold-reserving apparatus for cryogenic temperature using the same

Country Status (1)

Country Link
JP (1) JPH06240241A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002148A (en) * 2005-05-23 2006-01-05 Toshiba Corp Cryogenic heat storage material, method for producing the cryogenic heat storage material, and method for producing cryogenic heat storage device
CN1312706C (en) * 2004-07-21 2007-04-25 华南理工大学 Rare earth iron-base room-temp mangnetic refrigerant material and preparation method thereof
KR100859347B1 (en) * 2001-06-18 2008-09-19 고노시마 가가쿠고교 가부시키가이샤 Rare earth metal oxysulfide cool storage material and cool storage device
JP2008275312A (en) * 2008-06-16 2008-11-13 Toshiba Corp Refrigerator
WO2018124256A1 (en) * 2016-12-28 2018-07-05 株式会社三徳 Rare earth regenerator material, and regenerator and refrigerator each provided with same
JP2018173268A (en) * 2012-10-09 2018-11-08 株式会社東芝 Manufacturing method for cold head

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100859347B1 (en) * 2001-06-18 2008-09-19 고노시마 가가쿠고교 가부시키가이샤 Rare earth metal oxysulfide cool storage material and cool storage device
CN1312706C (en) * 2004-07-21 2007-04-25 华南理工大学 Rare earth iron-base room-temp mangnetic refrigerant material and preparation method thereof
JP2006002148A (en) * 2005-05-23 2006-01-05 Toshiba Corp Cryogenic heat storage material, method for producing the cryogenic heat storage material, and method for producing cryogenic heat storage device
JP2008275312A (en) * 2008-06-16 2008-11-13 Toshiba Corp Refrigerator
JP2018173268A (en) * 2012-10-09 2018-11-08 株式会社東芝 Manufacturing method for cold head
WO2018124256A1 (en) * 2016-12-28 2018-07-05 株式会社三徳 Rare earth regenerator material, and regenerator and refrigerator each provided with same
JP6377880B1 (en) * 2016-12-28 2018-08-22 株式会社三徳 Rare earth regenerator material and regenerator and refrigerator provided with the same
CN110168043A (en) * 2016-12-28 2019-08-23 株式会社三德 Rare earth cool storage material and regenerator and refrigeration machine with it

Similar Documents

Publication Publication Date Title
JP5455536B2 (en) Refrigerator using cryogenic regenerator material
US6363727B1 (en) Cold accumulating material and cold accumulation refrigerator using the same
US6336978B1 (en) Heat regenerative material formed of particles or filaments
EP0882938B1 (en) Regenerator material for very low temperature use
JPH06240241A (en) Cold-reserving agent for cryogenic temperature and cold-reserving apparatus for cryogenic temperature using the same
WO1999020956A1 (en) Cold-accumulating material and cold-accumulating refrigerator
JP3015571B2 (en) Cryogenic regenerator material and cryogenic regenerator and refrigerator using the same
JPH11325628A (en) Cold storage material and cold storage type refrigerating machine
JP3980158B2 (en) Cold storage material and cold storage type refrigerator
JP3561023B2 (en) Cryogenic cool storage material and cryogenic cool storage device using the same
JP4170703B2 (en) Rare earth oxysulfide ceramic regenerator material and method for producing the same, and cryogenic regenerator using the regenerator material
JP3055674B2 (en) Heat storage materials and low-temperature heat storage
JP2836813B2 (en) Cool storage material and cool storage device
JP2004099822A (en) Cold storage material and regenerative refrigerator using the same
JP2006008999A (en) Method for producing regenerator material for extremely low temperatures and method for producing regenerator for extremely low temperatures
JPH031050A (en) Cold heat storage apparatus
JPH01140701A (en) Magnetic polycrystalline substance and its manufacture
JPS63179052A (en) Manufacture of magnetic polycrystalline substance
JPH10267442A (en) Cold heat storing material and cold heat storage type freezer
JP2002188866A (en) Cold stage material and refrigeration machine using the same
JPH07133480A (en) Cryogenic energy-storing material and refrigerator using the same
JP2004143341A (en) Cold storage material and cold storage type refrigerator using the same
JPH07234028A (en) Cold accumulating material for cryogenic temperature and cold accumulator for cryogenic temperature
JPH11294882A (en) Storage medium and cold storage type refrigerating machine
JPH04268032A (en) Electrode rod for rotating electrode method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509