JPH01140701A - Magnetic polycrystalline substance and its manufacture - Google Patents

Magnetic polycrystalline substance and its manufacture

Info

Publication number
JPH01140701A
JPH01140701A JP62299207A JP29920787A JPH01140701A JP H01140701 A JPH01140701 A JP H01140701A JP 62299207 A JP62299207 A JP 62299207A JP 29920787 A JP29920787 A JP 29920787A JP H01140701 A JPH01140701 A JP H01140701A
Authority
JP
Japan
Prior art keywords
magnetic
alloy
coating layer
polycrystalline body
magnetic polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62299207A
Other languages
Japanese (ja)
Other versions
JP2828978B2 (en
Inventor
Hiromi Nibu
丹生 ひろみ
Masashi Sahashi
政司 佐橋
Yoichi Tokai
陽一 東海
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62299207A priority Critical patent/JP2828978B2/en
Publication of JPH01140701A publication Critical patent/JPH01140701A/en
Application granted granted Critical
Publication of JP2828978B2 publication Critical patent/JP2828978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To make a magnetic thermal-value effect and a thermal-conductive characteristic at a low temperature excellent by a method wherein a fine crystal particle of a magnetic alloy where a specific coating layer has been formed on its surface is molded under a high pressure. CONSTITUTION:A coating layer composed of a metal simple substance or an alloy which has a face-centered cubic structure and whose coefficient of thermal expansion at 400-700K is 8-14X10<-6>/ deg.C is formed on the surface of a fine crystal particle of a magnetic alloy by a plating method or a vapor growth method; an obtained powder is molded under a high pressure. Because the metal simple substance or the alloy which has the face-centered cubic structure displaying impact ductility is coated on the surface of the fine crystal particle of the magnetic alloy, it is possible to obtain a magnetic polycrystalline substance which enhances resistance to an impact during a high-pressure molding operation, whose density is high and which displays an excellent thermal- conductive characteristic. By this setup, it is possible to achieve a high magnetic thermal-value effect over a wide temperature range in a low-temperature region and, at the same time, the excellent thermal-conductive characteristic.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は磁性多結晶体及びその製造方法に関し、特に液
体窒素温度以下の極低温において広い温度範囲で優れた
磁気熱量効果及び熱伝導性を示す磁性多結晶体及びその
製造方法に係る。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a magnetic polycrystalline material and a method for producing the same, and particularly to a magnetic polycrystalline material and a method for producing the same, and particularly to a magnetic polycrystalline material having an excellent magnetocaloric effect over a wide temperature range at extremely low temperatures below liquid nitrogen temperature. and a magnetic polycrystalline body exhibiting thermal conductivity and a method for producing the same.

(従来の技術) 近年、超電導技術の発展は著しく、その応用分野が拡大
するに伴って、小型で高性能の冷凍機の開発が不可欠に
八つてきている。このような小型冷凍機は、軽量・小型
で熱効率の高いことが要求される。
(Prior Art) In recent years, superconducting technology has made remarkable progress, and as its application fields expand, the development of compact, high-performance refrigerators has become essential. Such small refrigerators are required to be lightweight, compact, and have high thermal efficiency.

そこで、気体冷凍に代わる磁気熱量効果を用いたエリク
ソンサイクルによる新たな冷凍方式(磁気冷凍)及びス
ターリングサイクルによる気体冷凍機の高性能化の研究
が盛んに行なわれている( P roceedlngs
 of’ I CE C9(1982) 。
Therefore, research is actively being conducted on a new refrigeration method (magnetic refrigeration) using the Ericsson cycle that uses the magnetocaloric effect to replace gas refrigeration, and on improving the performance of gas refrigerators using the Stirling cycle.
of' I CE C9 (1982).

pp、 26−29、A dvances in  C
ryogenicsE  nglneerlnL  1
984.  vol、29.  pp、581−587
  、Proceedings of I CE Ct
o (1984) 、3rdCryo−cooler 
 Conf’erence  (1984) ) 。
pp, 26-29, Advances in C
ryogenicsEnglneerlnL 1
984. vol, 29. pp, 581-587
, Proceedings of I CE Ct.
o (1984), 3rd Cryo-cooler
Conf'erence (1984)).

磁気冷凍方式は、磁性体に磁場を加えたときのスピン配
列状態と、磁場を解除したときのスピンが乱雑な状態と
のエントロピーの変化(68M)による吸熱、放熱反応
を利用することを基本原理とするものである。したがっ
て、この68Mが大きければ大きいほど、それだけ大き
な冷却効果を発揮することができるため、各種の磁性体
が検討されている。
The basic principle of the magnetic refrigeration method is to utilize heat absorption and heat release reactions due to entropy changes (68M) between the state in which the spins are aligned when a magnetic field is applied to a magnetic material and the state in which the spins are disordered when the magnetic field is removed. That is. Therefore, the larger 68M is, the greater the cooling effect can be exerted, and therefore various magnetic materials are being considered.

また、スターリングサイクルによる気体冷凍機の高性能
化にとっては、蓄冷器、圧縮部及び膨張部の構成が重要
となり、特に蓄冷器を構成する蓄冷材料はその性能を左
右する( P roceedlngs ofI CE 
C10(1,984) )。このような蓄冷材料として
は、銅や鉛の比熱が激減する20Kにおいても高い比熱
を有する材料が要望されており、これについても各種の
磁性体が検討されている。
In addition, in order to improve the performance of a gas refrigerator using the Stirling cycle, the configuration of the regenerator, compression section, and expansion section is important, and the regenerator material that makes up the regenerator particularly affects its performance.
C10(1,984)). As such a cold storage material, there is a demand for a material that has a high specific heat even at 20 K, where the specific heat of copper and lead is drastically reduced, and various magnetic materials are being considered for this as well.

更に、磁気作業物質には吸収した熱を効率よく外部に放
散せしめることも要求されるので、熱伝導性にも優れて
いなければならない。
Furthermore, since the magnetic working material is required to efficiently dissipate absorbed heat to the outside, it must also have excellent thermal conductivity.

以上のような要求のもとで、例えば特開昭60−204
852号公報には、キュリー温度の異なる3種以上の磁
性体粉末を混合して焼結した多孔質の磁性体が記載され
ている。このような磁性体では、磁性体粉末の種類に応
じた異なるキュリー温度近傍のエントロピー変化の大き
い範囲が連続して、広い温度範囲にわたってほぼ一定し
た大きいエントロピー変化を示すため、磁気冷凍機の性
能を向上させることが期待できる。
Under the above requirements, for example, Japanese Patent Application Laid-Open No. 60-204
No. 852 describes a porous magnetic material obtained by mixing and sintering three or more types of magnetic powders having different Curie temperatures. In such magnetic materials, the range of large entropy changes near the Curie temperature, which differs depending on the type of magnetic material powder, is continuous, and the large entropy change is almost constant over a wide temperature range, so the performance of the magnetic refrigerator is We can expect it to improve.

し、かじながら、上記公報に記載されている磁性体は多
孔質の焼結体であるため熱伝導性が悪く、上記のような
優れた磁気熱量効果を有効に発揮させることが困難であ
る。一方、磁性体粉末の充填率が高い磁性体を得ようと
して高い圧力で圧縮成形して焼結すると、均一固溶体が
形成されるため、広い温度範囲でほぼ一定した大きいエ
ントロピー変化が得られなくなる。
However, since the magnetic material described in the above-mentioned publication is a porous sintered body, it has poor thermal conductivity, making it difficult to effectively exhibit the excellent magnetocaloric effect described above. On the other hand, if compression molding and sintering is performed at high pressure in an attempt to obtain a magnetic material with a high filling rate of magnetic powder, a uniform solid solution is formed, making it impossible to obtain a large entropy change that is almost constant over a wide temperature range.

そこで本発明者らは、上記目的を達成すべく鋭意研究を
重ねた結果、極低温で磁気熱量効果を有する磁性合金粉
末を金属バインダで被覆した被覆粉末を成形して得られ
た磁性多結晶体は熱伝導性に優れており、しかも複数種
の磁性合金粉末の混合からなる場合には異種の磁性合金
粉末間での相互拡散が抑制され、したがって複数の異な
る磁気転移点を有するものとなるとの事実を見出し、特
願昭BO−214817号として特許出願を行った。
Therefore, as a result of intensive research to achieve the above object, the present inventors have discovered a magnetic polycrystalline material obtained by molding a coated powder in which a magnetic alloy powder having a magnetocaloric effect at extremely low temperatures is coated with a metal binder. It has excellent thermal conductivity, and when it is made of a mixture of multiple types of magnetic alloy powders, mutual diffusion between different types of magnetic alloy powders is suppressed, and therefore it has multiple different magnetic transition points. After discovering the facts, a patent application was filed as Japanese Patent Application No. BO-214817.

ただし、この技術では、焼結時に金属バインダが磁性合
金粉末中に拡散し、磁性合金粉末の磁気熱量効果が低下
してしまうという新たな問題が生じてきた。このため、
上記磁性多結晶体は高熱伝導性を有するにもかかわらず
、その効果を生かしきれないという問題があった。
However, with this technique, a new problem has arisen in that the metal binder diffuses into the magnetic alloy powder during sintering, reducing the magnetocaloric effect of the magnetic alloy powder. For this reason,
Although the above-mentioned magnetic polycrystalline material has high thermal conductivity, there is a problem in that the effect cannot be fully utilized.

(発明が解決しようとする問題点) 本発明は以上の点を考慮してなされたものであり、低温
での磁気熱量効果に優れ、かつ熱伝導性に優れた磁性多
結晶体及びその製造方法を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention has been made in consideration of the above points, and provides a magnetic polycrystalline body having excellent magnetocaloric effect at low temperatures and excellent thermal conductivity, and a method for producing the same. The purpose is to provide

[発明の構成] (問題点を解決するための手段と作用)本発明の磁性多
結晶体は、表面に被覆層が形成された磁性合金の微結晶
粒子を高圧成形してなる磁性多結晶体において、上記被
覆層が、面心立方構造を有し、400〜700Kにおけ
る熱膨張係数が8〜14X 10″6/℃である金属単
体又は合金からなり、かつ上記被覆層の存在割合が10
〜40体積%であることを特徴とするものである。
[Structure of the invention] (Means and effects for solving the problems) The magnetic polycrystalline body of the present invention is a magnetic polycrystalline body formed by high-pressure molding of microcrystalline particles of a magnetic alloy having a coating layer formed on the surface. The coating layer has a face-centered cubic structure and is made of a metal element or alloy having a coefficient of thermal expansion of 8 to 14×10″6/°C at 400 to 700 K, and the coating layer has an abundance ratio of 10
~40% by volume.

また、本発明の磁性多結晶体の製造方法は、磁性合金の
微結晶粒子の表面に、面心立方構造を有し、400〜7
00 Kにおける熱膨張係数が8〜14×1.0−6/
’Cである金属単体又は合金からなる被覆層をメッキ法
又は気相成長法により形成し、得られた粉末を高圧成形
することを特徴とするものである。
Further, in the method for producing a magnetic polycrystalline body of the present invention, the surface of the microcrystalline particles of the magnetic alloy has a face-centered cubic structure, and
Thermal expansion coefficient at 00 K is 8 to 14 x 1.0-6/
It is characterized in that a coating layer made of a simple metal or an alloy of 'C is formed by a plating method or a vapor phase growth method, and the obtained powder is molded under high pressure.

以下、本発明の磁性多結晶体について更に詳細に説明す
る。
Hereinafter, the magnetic polycrystalline body of the present invention will be explained in more detail.

本発明において、磁性合金の微結晶粒子としては、Y、
La、Ces P r、Nd、Pm、Sm5Eu、Gd
、Tb5Dy、HoSErSTm。
In the present invention, the microcrystalline particles of the magnetic alloy include Y,
La, CesPr, Nd, Pm, Sm5Eu, Gd
, Tb5Dy, HoSErSTm.

ybから選ばれる少なくとも1種の希土類元素(以下、
Rと記す)と、BSA、f’、Cu、Fe。
At least one rare earth element selected from yb (hereinafter referred to as
R), BSA, f', Cu, Fe.

Co、Niから選ばれる少なくとも1種の磁性元素(以
下、Mと記す)とからなるものを用いることが望ましい
It is desirable to use at least one magnetic element selected from Co and Ni (hereinafter referred to as M).

こうした磁性合金中のRの含有ft(Rが2種以上の場
合には両者の合計含有量)は20〜99重二%であるこ
とが望ましい。すなわち、Rの含有量が20重量%未満
では室温以下のいずれの温度においても68Mが大きく
ならず、充分な磁気熱量効果が11?られない。一方、
Rの含有量が99重量%を超えると、Mの含有量が少な
くなって合金粉砕特性が著しく劣化し、微粉末の製造が
困難となり、事実上粉末が得られない。上記含有量の条
件を満足する合金粉末は強磁性合金粉末となる。
It is desirable that the content ft of R (in the case of two or more types of R, the total content of both) in such a magnetic alloy is 20 to 99%. That is, when the R content is less than 20% by weight, 68M does not increase at any temperature below room temperature, and a sufficient magnetocaloric effect is achieved. I can't. on the other hand,
When the content of R exceeds 99% by weight, the content of M decreases and the alloy grinding properties are significantly deteriorated, making it difficult to produce fine powder and making it virtually impossible to obtain powder. An alloy powder that satisfies the above content conditions is a ferromagnetic alloy powder.

なお、良好な磁気熱量効果を得るためには、Gd5Tb
、Dy、Ho及びErのうち少なくとも1種(R3)を
必須とすることが好ましく、R1/Rは50%以上であ
ることが望ましい。
In addition, in order to obtain a good magnetocaloric effect, Gd5Tb
, Dy, Ho, and Er (R3) is preferably essential, and R1/R is preferably 50% or more.

また、磁性合金の微結晶粒子が1種類の場合には優れた
熱伝導性が得られるが、2種類以上の磁性合金の微結晶
粒子を成形すれば、結晶粒レベルで複数の異なる磁気転
移点を有する混合磁性多結晶体が得られる。ここで、R
の元素が異なる2種以上の磁性合金粉末を用いる場合、
各磁性合金粉末の残部金属は同一種又は異種のどちらで
もよい。
In addition, excellent thermal conductivity can be obtained when there is only one type of microcrystalline grain of a magnetic alloy, but if two or more types of microcrystalline grains of a magnetic alloy are formed, multiple different magnetic transition points can be obtained at the grain level. A mixed magnetic polycrystalline body having the following properties is obtained. Here, R
When using two or more magnetic alloy powders with different elements,
The remaining metals in each magnetic alloy powder may be of the same type or different types.

したがって、用いられる粉末(上例えばDyNi2、E
rNi2 、HoNi2 、DyHoNi2の組合せ;
DyNi2 、DyCo2の組合せのようになる。この
ように2種以上の磁性合金粉末を混合・成形することに
より、2つ以上の磁気転移点を有する磁性多結晶体を得
ることができ、広い温度範囲で磁気熱量効果を得ること
ができる。
Therefore, the powder used (e.g. DyNi2, E
Combination of rNi2, HoNi2, DyHoNi2;
The result is a combination of DyNi2 and DyCo2. By mixing and molding two or more kinds of magnetic alloy powders in this manner, a magnetic polycrystalline body having two or more magnetic transition points can be obtained, and a magnetocaloric effect can be obtained over a wide temperature range.

本発明において、磁性合金の表面に形成される被覆層は
、最終的な成形体(磁性多結晶体)中において、熱伝導
性を向上させる作用、及び2種以上の磁性合金の微結晶
粒子の混合粉末をそれぞれ分離独立した状態で結合させ
る作用を有する。
In the present invention, the coating layer formed on the surface of the magnetic alloy has the effect of improving thermal conductivity in the final molded body (magnetic polycrystalline body), and the effect of improving the thermal conductivity of the microcrystalline particles of two or more types of magnetic alloys. It has the effect of binding the mixed powders in a separate and independent state.

この被覆層としては、面心立方構造を有する金属単体又
は合金が用いられる。これは、面心立方構造を有する金
属単体又は合金は衝撃延性を示すため、後述する衝撃加
圧成形の際に、内部の磁性合金の微結晶粒子が歪みや格
子定数の変化等の悪影響を受けるのを防ぎ、かつ成形性
を向上させて高密度の成形体を得るためである。
As this coating layer, a single metal or an alloy having a face-centered cubic structure is used. This is because single metals or alloys with a face-centered cubic structure exhibit impact ductility, so during impact forming described later, the microcrystalline particles of the magnetic alloy inside are subject to adverse effects such as distortion and changes in lattice constant. This is to prevent this and improve moldability to obtain a high-density molded product.

被覆層を構成する金属単体又は合金について、400〜
700Kにおける熱膨張係数を8〜14X 10″6/
℃としたのは以下のような理由による。すなわち、上記
範囲をはずれると磁性合金の微結晶粒子と被覆層との熱
膨張係数の差が大きくなり、衝撃加圧成形前後の温度変
化により、両者の密着性が悪くなるおそれがある。
400~ for metals or alloys constituting the coating layer
Thermal expansion coefficient at 700K is 8~14X 10″6/
℃ was chosen for the following reasons. That is, if it is out of the above range, the difference in coefficient of thermal expansion between the microcrystalline particles of the magnetic alloy and the coating layer becomes large, and there is a risk that the adhesion between the two may deteriorate due to temperature changes before and after impact pressure forming.

磁性多結晶体中における被覆層の存在割合を10〜40
体積%と規定したのは以下のような理由による。すなわ
ち、被覆層の存在割合が10体積%未満では、被覆層の
結合能力が小さく成形が困難であるうえ、熱伝導性を向
上させることができない。
The abundance ratio of the coating layer in the magnetic polycrystalline body is 10 to 40.
The reason why it is defined as volume % is as follows. That is, when the proportion of the coating layer is less than 10% by volume, the bonding ability of the coating layer is small and molding is difficult, and the thermal conductivity cannot be improved.

一方、被覆層の存在割合が40体積%を超えると、成形
性は向上するが、磁性合金の微結晶粒子の割合が低下し
、単位体積あたりの磁気熱量効果が低下するうえ、磁界
制御時の渦電流損失に起因する発熱により冷却効果が著
しく低下してしまう。
On the other hand, when the proportion of the coating layer exceeds 40% by volume, the formability improves, but the proportion of microcrystalline particles in the magnetic alloy decreases, the magnetocaloric effect per unit volume decreases, and the The cooling effect is significantly reduced due to heat generation caused by eddy current loss.

また、この被覆層は熱伝導率の高いことが要求され、4
.2Kにおける熱伝導度がI W / cm K以上で
ある金属tIt体又は合金が好ましい。また、被覆′層
は8g/cZ!13以上の密度を有する金属単体又は合
金が好ましい。したがって、被覆層を構成する金属単体
又は合金としては、以上のような物性を有するP d 
−P t SRh % N t ST hのうち少な(
とも1種からなるものが望ましい。
In addition, this coating layer is required to have high thermal conductivity;
.. A metal tIt body or alloy having a thermal conductivity at 2K of I W / cm K or higher is preferred. Also, the coating' layer is 8g/cZ! A single metal or an alloy having a density of 13 or higher is preferred. Therefore, as a single metal or an alloy constituting the coating layer, P d having the above-mentioned physical properties is used.
-P t SRh % N t ST h less (
It is desirable that the material consists of only one type.

次に、本発明の磁性多結晶体の製造方法について更に詳
細に説明する。
Next, the method for manufacturing the magnetic polycrystalline body of the present invention will be explained in more detail.

磁性合金の微結晶粒子は以下のようにして製造する。ま
ず、例えばRA)2.RN i 2 、RC02、RF
e2合金をアーク溶融炉で溶製する。次に、得られた合
金を粉砕して微細な粉末とする。この粉末の粒径は0.
05〜1000uであることが望ましい。
The microcrystalline particles of the magnetic alloy are manufactured as follows. First, for example, RA)2. RN i 2, RC02, RF
The e2 alloy is melted in an arc melting furnace. The resulting alloy is then ground into a fine powder. The particle size of this powder is 0.
It is desirable that it is 05-1000u.

以上のようして得られた磁性合金微粉末の表面に、面心
立方構造を有する金属単体又は合金を被覆する。その形
成方法としては、薄くかつ均一な被覆層を形成すること
ができる、無電解メッキ法等のメッキ法、又はスパッタ
リング法、蒸着法等の気相成長法を用いる。なお、メッ
キ法を採用する場合、脱脂、活性化、洗浄等の前処理を
施すことが望ましい。
The surface of the magnetic alloy fine powder obtained as described above is coated with a metal element or alloy having a face-centered cubic structure. As a method for forming it, a plating method such as electroless plating, or a vapor growth method such as sputtering or vapor deposition, which can form a thin and uniform coating layer, is used. In addition, when employing the plating method, it is desirable to perform pre-treatments such as degreasing, activation, and cleaning.

次いで、金属被覆した磁性合金微粉末を、衝撃加圧成形
することにより目的とする成形体を得ることができる。
Next, the metal-coated magnetic alloy fine powder is subjected to impact pressure molding to obtain a desired molded body.

この衝撃加圧成形法は、金属被覆された磁性合金微粉末
をカプセルに挿入し、衝撃加圧成形することにより成形
体を得る方法である。
This impact pressing method is a method in which metal-coated magnetic alloy fine powder is inserted into a capsule and subjected to impact pressing to obtain a molded body.

例えば、レールガンによる 100万、1000万気圧
の衝撃加圧、ライフルガンによる衝撃加圧、火薬を用い
た爆発成形等が有効である。また、10万気LL以上の
超高圧プレスによる高圧成形も有効である。
For example, impact pressurization using a rail gun at 1 million or 10 million atmospheres, impact pressurization using a rifle gun, explosive molding using gunpowder, etc. are effective. Further, high-pressure molding using an ultra-high pressure press of 100,000 mL or more is also effective.

この衝撃加圧成形により得られる成形体の組織は、磁性
合金の微結晶粒子が被覆層をバインダとして結合した形
態となる。この際、被覆層を構成する金属単体又は合金
が衝撃延性を示す面心立方構造をaしているため、成形
性が向上し高密度の磁性多結晶体を得ることができる。
The structure of the compact obtained by this impact pressure forming is such that microcrystalline particles of the magnetic alloy are bonded with the coating layer as a binder. At this time, since the metal element or alloy constituting the coating layer has a face-centered cubic structure exhibiting impact ductility, formability is improved and a high-density magnetic polycrystalline body can be obtained.

また、成形性が向上したことにより、磁性合金の微結晶
粒子と被覆層との密着性がよくなり、熱抵抗も防ぐこと
ができるものと期待される。
Furthermore, due to improved formability, it is expected that the adhesion between the microcrystalline particles of the magnetic alloy and the coating layer will improve, and that thermal resistance can also be prevented.

以上のように、本発明に係る磁性多結晶体は、高圧成形
することにより得られたものであり、成形時の温度は5
00に前後までしか上がらず、しかも高速で瞬時に成形
されるので、被覆層と磁性合金の微結晶粒子との間での
拡散を防ぐことができ、磁性合金の磁気特性の低下を防
止することができる。しかも、磁性合金の微結晶粒子の
表面に、衝撃延性を示す面心立方構造を有する金属単体
又は合金が被覆されているので、高圧成形時の耐衝撃性
が向上し、高密度で優れた熱伝導性を示す磁性多結晶体
が得られる。したがって、低温度域の広い温度範囲にわ
たる高い磁気熱量効果と、優れた熱伝導性とを同時に達
成することができる。
As described above, the magnetic polycrystalline body according to the present invention is obtained by high-pressure molding, and the temperature during molding is 5.
00, and is molded instantly at high speed, it is possible to prevent diffusion between the coating layer and the microcrystalline particles of the magnetic alloy, thereby preventing deterioration of the magnetic properties of the magnetic alloy. Can be done. Moreover, since the surface of the microcrystalline particles of the magnetic alloy is coated with a single metal or alloy having a face-centered cubic structure that exhibits impact ductility, impact resistance during high-pressure forming is improved, and high density and excellent thermal properties are achieved. A magnetic polycrystalline body exhibiting conductivity is obtained. Therefore, a high magnetocaloric effect over a wide low temperature range and excellent thermal conductivity can be achieved at the same time.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

まず、E r 75.8重量%、残部AI!からなる合
金(A) 、Ho75J重量%、残部Aノからなる合金
CB)及びD Y 75.1重量%、残部Aノからなる
合金(C)をそれぞれアーク溶融炉を用いて調製した。
First, E r 75.8% by weight, balance AI! An alloy (A) consisting of 75% by weight of Ho, the balance CB) consisting of 75.1% by weight of DY, the balance A, and an alloy (C) consisting of 75.1% by weight of DY, the balance A were prepared using an arc melting furnace.

次に、これらの合金をそれぞれジェットミルを用いて粒
径的3pの微粉末に粉砕した。得られた3種の微粉末を
混合機を用い、アルゴン雰囲気中で約5時間混合して混
合粉体を得た。なお、AlB、Cの各合金微粉末の重量
比は3:1:4とした。
Next, each of these alloys was ground into fine powder with a particle size of 3p using a jet mill. The three types of fine powders obtained were mixed for about 5 hours in an argon atmosphere using a mixer to obtain a mixed powder. The weight ratio of the AlB and C alloy fine powders was 3:1:4.

つづいて、得られた混合粉体を1.1.1−)リクロロ
エタンを用いて脱脂し、pH10〜11の活性化液で活
性化し、エタノールで洗浄した後、無電解パラジウム(
日本エンゲルハルト社製)をpH4〜10.90℃、強
攪拌の条件下で無電解メッキし、Pdを被覆した粉末を
調製した。更に、この粉末をエタノールで洗浄し、乾燥
した。このメッキ処理により、合金粉末の表面には0.
11JJR厚のPd被覆層が形成された。また、混合粉
体中のPd被覆層の存在割合は20体積%であった。
Subsequently, the obtained mixed powder was degreased using 1.1.1-)lichloroethane, activated with an activation solution of pH 10 to 11, washed with ethanol, and then electroless palladium (
(manufactured by Nippon Engelhard Co., Ltd.) was subjected to electroless plating under conditions of pH 4 to 10.90° C. and strong stirring to prepare Pd-coated powder. Furthermore, this powder was washed with ethanol and dried. Through this plating process, the surface of the alloy powder has a 0.
A Pd coating layer having a thickness of 11JJR was formed. Moreover, the existence ratio of the Pd coating layer in the mixed powder was 20% by volume.

次いで、メッキを施した混合粉体を軟鋼製の円筒容器内
に充填し、1トン/cm2のプレス圧で予備成形した後
、真空封止した。この真空封止された円筒容器を火薬中
に設置し、円筒上部より点火することにより爆発衝撃波
を発生させ、衝撃加圧成形した。成形時の衝撃波の伝播
速度は5000m /秒であった。
Next, the plated mixed powder was filled into a cylindrical container made of mild steel, preformed under a press pressure of 1 ton/cm2, and then vacuum sealed. This vacuum-sealed cylindrical container was placed in gunpowder, and by igniting it from the top of the cylinder, an explosive shock wave was generated and impact pressure molding was performed. The propagation velocity of the shock wave during molding was 5000 m/s.

得られた成形体の寸法は直径15 mm %高さ30m
mであった。また、理論密度を100とすると、その充
填率は99,9%の高密度成形体であった。
The dimensions of the obtained molded body are 15 mm in diameter and 30 m in height.
It was m. Further, assuming the theoretical density to be 100, the compact was a high-density molded product with a filling rate of 99.9%.

得られた成形体について、SEM−EDX元索分析を行
った結果を第1図及び第2図(a)〜(e)に示す。第
1図に模式的に示すように、各微結晶粒子は、初期の粒
径(平均3uJR)を維持したまま密実化しており、P
d被覆層1を境界として、へ合金の微結晶粒子2、B合
金の微結晶粒子3、C合金の微結晶粒子4がそれぞれ結
晶粒単位で独立した状態で均一混合していた。また、第
2図(a)〜(e)に示すEDX元素分析の結果から、
Pd被覆層と各磁性合金の微結晶粒子との間で拡散が起
きていないことが確認された。
The results of SEM-EDX analysis of the obtained molded body are shown in FIGS. 1 and 2 (a) to (e). As schematically shown in Figure 1, each microcrystalline particle has become dense while maintaining its initial particle size (average 3uJR), and P
With the d coating layer 1 as a boundary, the microcrystalline particles 2 of the He alloy, the microcrystalline particles 3 of the B alloy, and the microcrystalline particles 4 of the C alloy were uniformly mixed in an independent state in each crystal grain unit. Furthermore, from the results of EDX elemental analysis shown in Figures 2(a) to (e),
It was confirmed that no diffusion occurred between the Pd coating layer and the microcrystalline particles of each magnetic alloy.

更に、この磁性多結晶体について、各種測定を行なった
結果を第3図〜第6図に示す。第3図は2テスラの磁場
中における磁化の温度依存性を調べた結果である。第4
図は無磁場状態での比熱(Cp)の温度依存性を調べた
結果である。第5図は5テスラの磁場印加状態及び無磁
場状態でそれぞれ測定された比熱(Cp )の温度依存
性から、計算によって磁気エントロピー変化tEt(6
3M)の温度依存性を求めた結果である。第6図は熱伝
導度の温度依存性を調べた結果である。
Furthermore, the results of various measurements performed on this magnetic polycrystal are shown in FIGS. 3 to 6. Figure 3 shows the results of investigating the temperature dependence of magnetization in a 2 Tesla magnetic field. Fourth
The figure shows the results of investigating the temperature dependence of specific heat (Cp) in the absence of a magnetic field. Figure 5 shows the magnetic entropy change tEt (6
These are the results of determining the temperature dependence of 3M). FIG. 6 shows the results of investigating the temperature dependence of thermal conductivity.

第3図から明らかなように、この磁性多結晶体では有意
の磁化が得られる温度範囲が28に程度までと広く、磁
化は温度上昇とともに減少するがその曲線には2つの変
曲点が観察される。
As is clear from Figure 3, the temperature range in which significant magnetization can be obtained in this magnetic polycrystal is as wide as 28°C, and the magnetization decreases as the temperature rises, but two inflection points are observed in the curve. be done.

また、第4図から明らかなように、この磁性多結晶体で
は比熱の曲線は8に、 IIIK及び27にで3つのピ
ークを示す。
Moreover, as is clear from FIG. 4, the specific heat curve of this magnetic polycrystalline body shows three peaks at 8, IIIK, and 27.

また、第5図から明らかなように、この磁性多結晶体で
はエントロピー変化の曲線は3〜28にの比較的広い範
囲でほぼ一定となっている。
Furthermore, as is clear from FIG. 5, in this magnetic polycrystalline material, the curve of entropy change is almost constant over a relatively wide range of 3 to 28.

更に、第6図から明らかなように、この磁性多結晶体で
は熱伝導度が15W/cm−にと高い。
Furthermore, as is clear from FIG. 6, this magnetic polycrystalline material has a high thermal conductivity of 15 W/cm.

[発明の効果〕 以上詳述した如く本発明によれば、77に以下の低温度
域において広い温度範囲にわたって高い磁気熱量効果を
示し、熱伝導性に優れた磁性多結晶体及びこのような磁
性多結晶体を簡便に製造し得る方法を提供することがで
き、エリクソンサイクルによる磁気冷凍機の磁性体やス
ターリングサイクルによる気体冷凍機の蓄冷材料として
優れた性能を得ることができる。
[Effects of the Invention] As detailed above, according to the present invention, a magnetic polycrystalline body exhibiting a high magnetocaloric effect over a wide temperature range in a low temperature range of 77 or below and having excellent thermal conductivity, and such a magnetic polycrystalline body A method for easily producing a polycrystalline body can be provided, and excellent performance can be obtained as a magnetic material for a magnetic refrigerator using an Ericsson cycle or as a cold storage material for a gas refrigerator using a Stirling cycle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における磁性多結晶体について
のSEM観察による表面状態を示す模式図、第2図(a
)〜(e)は同磁性多結晶体のEDX元素分析によるス
ペクトル図、第3図は同磁性多結晶体の2テスラの磁場
中における磁化の温度依存性を示す線図、第4図は同磁
性多結晶体の無磁場状態での比熱の温度依存性を示す線
図、第5図は同磁性多結晶体の磁気エントロピー変化の
温度依存性を示す線図、第6図は同磁性多結晶体の熱伝
導度の温度依存性を示す線図である。 1・・・Pd被覆層、2・・・A合金の微結晶粒子、3
・・B合金の微結晶粒子、4・・・C合金の微結晶粒子
。 出願人代理人 弁理士 鈴江武彦 ■(に) 第3図 丁(に) 第4 図 0     5     10           
0     5      t。 (a)Total Area          (b
)5potl(c) 5pot 2       (d
) 5po+ 3      (e) 5pot 4第
2図 第5 図 ″ 第1頁の続き
Fig. 1 is a schematic diagram showing the surface state of a magnetic polycrystalline body according to an example of the present invention, as observed by SEM, and Fig. 2 (a
) to (e) are spectrum diagrams obtained by EDX elemental analysis of the same magnetic polycrystalline body, Figure 3 is a diagram showing the temperature dependence of magnetization of the same magnetic polycrystalline body in a 2 Tesla magnetic field, and Figure 4 is a diagram showing the temperature dependence of magnetization of the same magnetic polycrystalline body in a 2 Tesla magnetic field. A diagram showing the temperature dependence of the specific heat of a magnetic polycrystal in the absence of a magnetic field. Figure 5 is a diagram showing the temperature dependence of magnetic entropy change in the same magnetic polycrystal. Figure 6 is a diagram showing the temperature dependence of the magnetic entropy change in the same magnetic polycrystal. FIG. 2 is a diagram showing the temperature dependence of thermal conductivity of a body. DESCRIPTION OF SYMBOLS 1... Pd coating layer, 2... Microcrystalline particles of A alloy, 3
... Microcrystalline particles of B alloy, 4... Microcrystalline particles of C alloy. Applicant's representative Patent attorney Takehiko Suzue ■(ni) Figure 3 (ni) Figure 4 0 5 10
05t. (a) Total Area (b
)5potl(c) 5pot2(d
) 5po+ 3 (e) 5pot 4Figure 2Figure 5'' Continued from page 1

Claims (16)

【特許請求の範囲】[Claims] (1)表面に被覆層が形成された磁性合金の微結晶粒子
を高圧成形してなる磁性多結晶体において、上記被覆層
が、面心立方構造を有し、400〜700Kにおける熱
膨張係数が8〜14×10^−^6/℃である金属単体
又は合金からなり、かつ上記被覆層の存在割合が10〜
40体積%であることを特徴とする磁性多結晶体。
(1) In a magnetic polycrystalline body formed by high-pressure molding of microcrystalline particles of a magnetic alloy having a coating layer formed on its surface, the coating layer has a face-centered cubic structure and a thermal expansion coefficient at 400 to 700K. Made of a single metal or alloy with a temperature of 8 to 14 x 10^-^6/°C, and the abundance ratio of the coating layer is 10 to 10.
A magnetic polycrystalline material having a content of 40% by volume.
(2)被覆層が8g/cm^3以上の密度を有する金属
単体又は合金からなることを特徴とする特許請求の範囲
第1項記載の磁性多結晶体。
(2) The magnetic polycrystalline body according to claim 1, wherein the coating layer is made of a single metal or an alloy having a density of 8 g/cm^3 or more.
(3)被覆層が4.2Kにおける熱伝導度が1W/cm
K以上である金属単体又は合金からなることを特徴とす
る特許請求の範囲第1項記載の磁性多結晶体。
(3) The thermal conductivity of the coating layer at 4.2K is 1W/cm
The magnetic polycrystalline body according to claim 1, characterized in that the magnetic polycrystalline body is made of a single metal or an alloy of K or more.
(4)被覆層がPd、Pt、Rh、Ni、Thのうち少
なくとも1種からなることを特徴とする特許請求の範囲
第1項記載の磁性多結晶体。
(4) The magnetic polycrystalline material according to claim 1, wherein the coating layer is made of at least one of Pd, Pt, Rh, Ni, and Th.
(5) 磁性合金の微結晶粒子がY、La、Ce、Pr
、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、
Er、Tm、Ybから選ばれる少なくとも1種の希土類
元素と、B、Al、Cu、Fe、Co、Niから選ばれ
る少なくとも1種の磁性元素とからなることを特徴とす
る特許請求の範囲第1項記載の磁性多結晶体。
(5) The microcrystalline particles of the magnetic alloy are Y, La, Ce, Pr.
, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho,
Claim 1 comprising at least one rare earth element selected from Er, Tm, and Yb and at least one magnetic element selected from B, Al, Cu, Fe, Co, and Ni. Magnetic polycrystalline body described in .
(6)磁性合金の微結晶粒子が2種以上み混合粉である
ことを特徴とする特許請求の範囲第1項記載の磁性多結
晶体。
(6) The magnetic polycrystalline body according to claim 1, characterized in that the microcrystalline particles of the magnetic alloy are a mixed powder of two or more types.
(7)磁性合金の微結晶粒子の粒径が0.05〜100
0μmであることを特徴とする特許請求の範囲第1項記
載の磁性多結晶体。
(7) The grain size of the microcrystalline particles of the magnetic alloy is 0.05 to 100.
The magnetic polycrystalline body according to claim 1, wherein the magnetic polycrystalline body has a diameter of 0 μm.
(8)磁性合金の微結晶粒子の表面に、面心立方構造を
有し、400〜700Kにおける熱膨張係数が8〜14
×10^−^6/℃である金属単体又は合金からなる被
覆層をメッキ法又は気相成長法により形成し、得られた
粉末を高圧成形することを特徴とする磁性多結晶体の製
造方法。
(8) The surface of the magnetic alloy microcrystalline particles has a face-centered cubic structure and has a thermal expansion coefficient of 8 to 14 at 400 to 700K.
A method for manufacturing a magnetic polycrystalline body, characterized by forming a coating layer made of a single metal or an alloy with a temperature of .
(9)被覆層が8g/cm^3以上の密度を有する金属
単体又は合金からなることを特徴とする特許請求の範囲
第8項記載の磁性多結晶体の製造方法。
(9) The method for manufacturing a magnetic polycrystalline body according to claim 8, wherein the coating layer is made of a single metal or an alloy having a density of 8 g/cm^3 or more.
(10)被覆層が4.2Kにおける熱伝導度が1W/c
mK以上である金属単体又は合金からなることを特徴と
する特許請求の範囲第8項記載の磁性多結晶体の製造方
法。
(10) The thermal conductivity of the coating layer at 4.2K is 1W/c
9. The method for manufacturing a magnetic polycrystalline body according to claim 8, characterized in that the magnetic polycrystalline body is made of a single metal or an alloy having a magnetic conductivity of mK or more.
(11)被覆層がPd、Pt、Rh、Ni、Thのうち
少なくとも1種からなることを特徴とする特許請求の範
囲第8項記載の磁性多結晶体の製造方法。
(11) The method for producing a magnetic polycrystalline body according to claim 8, wherein the coating layer is made of at least one of Pd, Pt, Rh, Ni, and Th.
(12)磁性合金の微結晶粒子がY、La、Ce、Pr
、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、
Er、Tm、Yb、から選ばれる少なくとも1種の希土
類元素と、B、Al、Cu、Fe、Co、Niから選ば
れる少なくとも1種の磁性元素とからなることを特徴と
する特許請求の範囲第8項記載の磁性多結晶体の製造方
法。
(12) The microcrystalline particles of the magnetic alloy are Y, La, Ce, Pr
, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho,
Claim No. 1, characterized in that it consists of at least one rare earth element selected from Er, Tm, and Yb, and at least one magnetic element selected from B, Al, Cu, Fe, Co, and Ni. The method for producing a magnetic polycrystalline body according to item 8.
(13)磁性合金の微結晶粒子が2種以上の混合粉であ
ることを特徴とする特許請求の範囲第8項記載の磁性多
結晶体の製造方法。
(13) The method for producing a magnetic polycrystalline body according to claim 8, wherein the microcrystalline particles of the magnetic alloy are a mixed powder of two or more types.
(14)磁性合金の微結晶粒子の粒径が0.05〜10
00μmであることを特徴とする特許請求の範囲第8項
記載の磁性多結晶体の製造方法。
(14) The particle size of the microcrystalline particles of the magnetic alloy is 0.05 to 10
9. The method for producing a magnetic polycrystalline material according to claim 8, wherein the magnetic polycrystalline material has a diameter of 00 μm.
(15)高圧成形を10万気圧以上の超高圧プレスにて
行うことを特徴とする特許請求の範囲第8項記載の磁性
多結晶体の製造方法。
(15) The method for producing a magnetic polycrystalline body according to claim 8, wherein the high-pressure molding is performed using an ultra-high pressure press of 100,000 atmospheres or more.
(16)高圧成形を衝撃加圧成形にて行うことを特徴と
する特許請求の範囲第8項記載の磁性多結晶体の製造方
法。
(16) The method for producing a magnetic polycrystalline body according to claim 8, wherein the high-pressure molding is performed by impact pressure molding.
JP62299207A 1987-11-27 1987-11-27 Cold storage material and method for producing the same Expired - Fee Related JP2828978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299207A JP2828978B2 (en) 1987-11-27 1987-11-27 Cold storage material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299207A JP2828978B2 (en) 1987-11-27 1987-11-27 Cold storage material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01140701A true JPH01140701A (en) 1989-06-01
JP2828978B2 JP2828978B2 (en) 1998-11-25

Family

ID=17869533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299207A Expired - Fee Related JP2828978B2 (en) 1987-11-27 1987-11-27 Cold storage material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2828978B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006959A (en) * 1999-06-17 2001-01-12 Sumitomo Special Metals Co Ltd Manufacture of pare-earth-iron-nitrogen permanent magnet
EP1384961A3 (en) * 1994-08-23 2004-08-04 Kabushiki Kaisha Toshiba Regenerator material for extremely low temperatures and regenerator for extremely low temperatures using the same
JP2009204234A (en) * 2008-02-28 2009-09-10 Toshiba Corp Magnetic material for magnetic refrigerator, heat exchange container and magnetic refrigerator
JP2010516042A (en) * 2007-02-12 2010-05-13 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Magnetic heat exchange structure and manufacturing method thereof
US10461238B2 (en) 2014-06-26 2019-10-29 Nec Corporation Thermoelectric conversion structure and method for making the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10421127B2 (en) 2014-09-03 2019-09-24 Raytheon Company Method for forming lanthanide nanoparticles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130436A (en) * 1984-11-30 1986-06-18 Fujitsu Ltd Manufacture of rare earth metal magnet
JPS62284002A (en) * 1986-05-02 1987-12-09 Tohoku Metal Ind Ltd Magnetic alloy powder consisting of rare earth element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130436A (en) * 1984-11-30 1986-06-18 Fujitsu Ltd Manufacture of rare earth metal magnet
JPS62284002A (en) * 1986-05-02 1987-12-09 Tohoku Metal Ind Ltd Magnetic alloy powder consisting of rare earth element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1384961A3 (en) * 1994-08-23 2004-08-04 Kabushiki Kaisha Toshiba Regenerator material for extremely low temperatures and regenerator for extremely low temperatures using the same
JP2001006959A (en) * 1999-06-17 2001-01-12 Sumitomo Special Metals Co Ltd Manufacture of pare-earth-iron-nitrogen permanent magnet
JP2010516042A (en) * 2007-02-12 2010-05-13 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Magnetic heat exchange structure and manufacturing method thereof
US9175885B2 (en) 2007-02-12 2015-11-03 Vacuumschmelze Gmbh & Co. Kg Article made of a granular magnetocalorically active material for heat exchange
JP2009204234A (en) * 2008-02-28 2009-09-10 Toshiba Corp Magnetic material for magnetic refrigerator, heat exchange container and magnetic refrigerator
US10461238B2 (en) 2014-06-26 2019-10-29 Nec Corporation Thermoelectric conversion structure and method for making the same

Also Published As

Publication number Publication date
JP2828978B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
EP0217347B1 (en) Use of polycrystalline magnetic substances for magnetic refrigeration
JP4331251B2 (en) Cryogenic storage material manufacturing method for cryogenic temperature and heat shield material manufacturing method using the same
EP0411591B1 (en) Cold accumulating material and method of manufacturing the same
EP1016701B1 (en) Cold accumulating material and cold accumulation refrigerator using the same
JPH01310269A (en) Low-temperature heat accumulator
JP4240380B2 (en) Manufacturing method of magnetic material
CN112113365A (en) Sheath-integrated magnetic refrigeration component, manufacturing method thereof and magnetic refrigeration system
JPS6355906A (en) Magnetic polycrystal and manufacture thereof
JP4399771B2 (en) Magnetic particle and method for producing the same, and magnetic particle unit
JP4322321B2 (en) Cold storage material for cryogenic temperature, refrigerator and heat shield material using it
JP2582753B2 (en) Manufacturing method of laminated magnetic body
JPH01140701A (en) Magnetic polycrystalline substance and its manufacture
WO1999020956A1 (en) Cold-accumulating material and cold-accumulating refrigerator
EP3617288A1 (en) Hocu-based cold-storage material, and cold-storage device and refrigerating machine each equipped therewith
JP2007057230A (en) Method of manufacturing cold accumulating material for extremely low temperature and method of manufacturing heat shield material using the same
JPH05203272A (en) Cryogenic cold accumulation material and cryogenic cold accumulator using same
JP2585240B2 (en) Manufacturing method of cold storage material
JP3055674B2 (en) Heat storage materials and low-temperature heat storage
JPS6277438A (en) Magnetic working substance for magnetic refrigeration and its production
JPH06240241A (en) Cold-reserving agent for cryogenic temperature and cold-reserving apparatus for cryogenic temperature using the same
JP2002249763A (en) Cold storage material, method for producing the same and refrigerator using the same cold storage material
JPS62242777A (en) Mixed magnetic polycrystalline substance and manufacture thereof
JPH031050A (en) Cold heat storage apparatus
JP2957294B2 (en) Cryogenic heat storage material and cryogenic heat storage
JPH0792286B2 (en) refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees