JPH0792286B2 - refrigerator - Google Patents

refrigerator

Info

Publication number
JPH0792286B2
JPH0792286B2 JP4048517A JP4851792A JPH0792286B2 JP H0792286 B2 JPH0792286 B2 JP H0792286B2 JP 4048517 A JP4048517 A JP 4048517A JP 4851792 A JP4851792 A JP 4851792A JP H0792286 B2 JPH0792286 B2 JP H0792286B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
magnetic
storage material
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4048517A
Other languages
Japanese (ja)
Other versions
JPH0571816A (en
Inventor
政司 佐橋
陽一 東海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Publication of JPH0571816A publication Critical patent/JPH0571816A/en
Publication of JPH0792286B2 publication Critical patent/JPH0792286B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蓄熱材料を充填した低
温蓄熱器を備えた冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator provided with a low temperature heat storage device filled with a heat storage material.

【0002】[0002]

【従来の技術】近年、超電導技術の発展は著しく、その
応用分野が拡大するに伴って小型で高性能の冷凍機の開
発が不可欠になってきている。かかる小型冷凍機は、軽
量・小型で熱効率の高いことが要求されている。
2. Description of the Related Art In recent years, the development of superconducting technology has been remarkable, and with the expansion of its application fields, it has become indispensable to develop a small and high-performance refrigerator. Such a small refrigerator is required to be lightweight, small and have high thermal efficiency.

【0003】このようなことから、気体冷凍に代わる磁
気熱量効果を用いた熱サイクル(例えばカルノ―、エリ
クソン)による新たな冷凍方式(磁気冷凍)及びスタ―
リングサイクルによる気体冷凍の高性能化の研究が盛ん
に行われている。
From the above, a new refrigeration system (magnetic refrigeration) and a star by a heat cycle (for example, Carno-Ericsson) using a magnetocaloric effect instead of gas refrigeration is used.
Researches for improving the performance of gas refrigeration by the ring cycle are being actively conducted.

【0004】前記スタ―リング等の熱サイクルによる気
体冷凍機の高性能化を図るには、蓄熱器、圧縮部及び膨
張部の改良が重要な課題となっている。特に、蓄熱器を
構成する蓄熱材料はその性能を大きく左右する。かかる
蓄熱材料は、銅や鉛の比熱が著しく低下する20K以下
においても高い比熱を有する材料が要望されており、こ
れについても各種の磁性体が検討されている。
In order to improve the performance of the gas refrigerator by the heat cycle such as the Stirling, improvement of the heat accumulator, the compression section and the expansion section has become an important issue. In particular, the heat storage material that constitutes the heat storage device greatly affects its performance. As such a heat storage material, a material having a high specific heat even at 20 K or less at which the specific heat of copper or lead is remarkably reduced is demanded, and various magnetic materials are also being studied for this material.

【0005】また、前記蓄熱器は冷凍機に組込まれて使
用されることが多く、例えばスタ―リングサイクル作動
する装置、ブイルロイミ―ルサイクルで作動する装置或
いはギフォ―ド―マクマホン型の装置に用いられてい
る。これらの装置においては、圧縮された作動媒質が蓄
熱器内を一方向に流れてその熱エネルギ―を充填物質に
供給し、ここで膨張した作動媒質が反対方向に流れ、充
填された蓄熱材料から熱エネルギ―を受取る。こうした
過程で復熱効果が良好になるに伴って作動媒質サイクル
の熱効率が良好となり、一層低い温度を実現することが
可能となる。
Further, the regenerator is often used by being incorporated in a refrigerator, and is used in, for example, a device that operates in a Stirling cycle, a device that operates in a Beilroy-Mille cycle, or a device of the Gifoed-McMahon type. Has been. In these devices, the compressed working medium flows in one direction in the regenerator to supply its thermal energy to the filling material, where the expanded working medium flows in the opposite direction, from the filled heat storage material. Receive heat energy. In this process, as the recuperation effect becomes better, the thermal efficiency of the working medium cycle becomes better, and it becomes possible to realize a lower temperature.

【0006】ところで、低温蓄熱器においては従来より
前記蓄熱材料として鉛又は青銅のボ―ル、或いは銅、燐
青銅の金網層が用いられている。しかしながら、かかる
蓄熱材料は20K以下の極低温における比熱が過度に小
さいため、上述した冷凍機での作動に際して極低温下で
1サイクル毎に蓄熱材料に充分な熱エネルギ―を貯蔵す
ることができず、かつ作動媒質が前記蓄熱材料から充分
な熱エネルギ―を受取ることができなくなる。その結
果、前記蓄熱材料を有する蓄熱器を組込んだ冷凍機では
極低温に到達させることができない問題があった。
By the way, in a low temperature heat storage device, a lead or bronze ball or a copper or phosphor bronze wire mesh layer has been conventionally used as the heat storage material. However, since the specific heat of such heat storage material at an extremely low temperature of 20 K or less is too small, it is not possible to store sufficient heat energy in the heat storage material at each cycle under the extremely low temperature when operating in the refrigerator described above. Also, the working medium cannot receive sufficient heat energy from the heat storage material. As a result, there is a problem that a refrigerator incorporating a heat storage device having the heat storage material cannot reach an extremely low temperature.

【0007】このようなことから、前記蓄熱器の極低温
での復熱特性を向上する目的で、蓄熱材料として20K
以下の温度において最大値の比熱を有し、かつその値が
単位体積当りの比熱(体積比熱)で充分に大きいR・R
h金属間化合物(R;Sm、Gd、Tb、Dy、Ho、
Er、Tm、Yb)を用いることが提案されている(特
開昭51−52378号)。しかしながら、かかる蓄熱
材料はその一成分として極めて高価Rh(ロジウム)を
用いているため、数百グラムオ―ダで使用する蓄熱器の
蓄熱材料としては実用化の点で問題である。
From the above, in order to improve the recuperative characteristics of the above-mentioned heat storage device at extremely low temperatures, a 20 K heat storage material is used.
It has the maximum specific heat at the following temperatures, and its value is sufficiently large in specific heat per unit volume (volume specific heat).
h Intermetallic compound (R; Sm, Gd, Tb, Dy, Ho,
It has been proposed to use Er, Tm, Yb) (JP-A-51-52378). However, since such a heat storage material uses extremely expensive Rh (rhodium) as one component thereof, there is a problem in practical use as a heat storage material for a heat storage device used on the order of several hundred grams.

【0008】[0008]

【発明が解決しようとする課題】本発明は、前記従来の
問題点を解決するためになされたもので、優れた熱伝達
特性および復熱特性を有する小型で熱効率の高い低温蓄
熱器を備えた冷凍機を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and has a small-sized low-temperature heat storage device having excellent heat transfer characteristics and recuperation characteristics and high thermal efficiency. It is intended to provide a refrigerator.

【0009】[0009]

【課題を解決するための手段】本発明に係わる冷凍機
は、蓄熱材料が冷却ガスを流通できるように充填された
低温蓄熱器を備えた冷凍機において、前記蓄熱材料は、
一般式(I) AMz …(I)
A refrigerator according to the present invention is a refrigerator provided with a low temperature heat storage device filled with a heat storage material so that a cooling gas can flow, wherein the heat storage material is
General formula (I) AM z (I)

【0010】(ただし、式中のAはY、La、Ce、P
r、Nd、Pm、Sm、Eu、Gd、Tb、Dy、H
o、Er、Tm、Ybから選ばれる少なくとも1種の希
土類元素を示し、MはNi、Co及びCuから選ばれる
少なくとも1種の金属を示し、zは0.001≦z≦
9.0を示す)にて表わされ、平均粒径が1〜2000
μmの粒状磁性体から選ばれる1種又は2種以上からな
り、かつ温度が77K未満に比熱ピークを有することを
特徴とするものである。また、本発明に係わる別の冷凍
機は、蓄熱材料が冷却ガスを流通できるように充填され
た低温蓄熱器を備えた冷凍機において、 前記蓄熱材料
は、一般式(I) AMz …(I)(ただし、式中のAはY、La、Ce、Pr、Nd、P
m、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、Ybから選ばれる少なくとも1種の希土類元素を示
し、MはNi、Co及びCuから選ばれる少なくとも1
種の金属を示し、zは0.001≦z≦9.0を示す)
にて表わされ、平均径が1〜2000μmの繊維状磁性
体から選ばれる1種又は2種以上からなり、かつ温度が
77K未満に比熱ピークを有することを特徴とするもの
である。
(Where A is Y, La, Ce, P
r, Nd, Pm, Sm, Eu, Gd, Tb, Dy, H
At least one rare earth element selected from o, Er, Tm, and Yb is shown, M is at least one metal selected from Ni, Co, and Cu, and z is 0.001 ≦ z ≦.
The average particle diameter is 1 to 2000.
It consists of one or more selected from the magnetic particles of μm.
And has a specific heat peak at a temperature of less than 77K . In addition, another refrigeration according to the present invention
The machine is filled so that the heat storage material can pass the cooling gas.
In a refrigerator having a cold heat accumulator, the heat storage material
Is the general formula (I) AM z (I) (where A is Y, La, Ce, Pr, Nd, P
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
at least one rare earth element selected from m and Yb
And M is at least 1 selected from Ni, Co and Cu.
(Indicates a metal of a kind, z is 0.001 ≦ z ≦ 9.0)
And fibrous magnetic with an average diameter of 1 to 2000 μm
It consists of one or more selected from the body, and the temperature is
Characterized by having a specific heat peak below 77K
Is.

【0011】前記磁性体の組成を表わす一般式(I) にお
けるzの値を前記範囲にしたのは、次のような理由によ
るものである。前記zを0.001未満にすると、希土
類原子間の直接交換相互作用により比熱のピ―クを示す
温度が77K以上の高温になる。一方、前記zが9.0
を越えると磁性原子(希土類原子密度)が著しく低下し
て磁気比熱が低下する。
The reason why the value of z in the general formula (I) representing the composition of the magnetic material is set within the above range is as follows. When z is less than 0.001, the temperature at which the peak of specific heat reaches 77 K or higher due to direct exchange interaction between rare earth atoms. On the other hand, z is 9.0.
If it exceeds, the magnetic atom (rare earth atom density) is remarkably lowered and the magnetic specific heat is lowered.

【0012】このようなzの値を規定することによっ
て、優れた蓄熱特性を有する磁性体が得られる。また、
前記一般式(I) のzとして、特に0.01≦z<2.0
の範囲とすることによって、前記磁性体からなる蓄熱材
料の高温側での格子比熱を向上できる利点を有する。こ
れは、前記一般式(I) のAで示される希土類元素とMで
示されるNi等の遷移金属との状態相図において0.0
1≦z<2.0の範囲内で共晶反応が存在し、融点が著
しく低下し、結果的には優れた格子比熱が得られること
によるものと推定される。
By defining such a value of z, a magnetic material having excellent heat storage characteristics can be obtained. Also,
As z in the general formula (I), 0.01 ≦ z <2.0
Within the range, there is an advantage that the lattice specific heat on the high temperature side of the heat storage material composed of the magnetic material can be improved. This is 0.0 in the phase diagram of the rare earth element represented by A of the general formula (I) and the transition metal represented by M such as Ni.
It is presumed that the eutectic reaction is present within the range of 1 ≦ z <2.0, the melting point is significantly lowered, and as a result, excellent lattice specific heat is obtained.

【0013】具体例として、ErNiおよびErNi
1/3 のスピン配列をそれぞれ図1および図2に示す。こ
のように0.01≦z<2.0の範囲の磁性体は、複雑
なスピン配列を有し、それらの磁気配列(複数な交換相
互作用)によりその磁気転移近傍の比熱のピ―クが本質
的にブロ―ドになるという利点を有する。なお、前記一
般式(I) のzは実用上の点から下限値を0.01とする
ことが望ましい。更に、前記zの好ましい上限値は1.
5、より好ましくは1.0であり、特にzを1/3≦z
≦1.0の範囲にとすることによって前記効果を顕著に
発揮することができる。
As a specific example, ErNi and ErNi
The 1/3 spin arrangement is shown in FIGS. 1 and 2, respectively. As described above, the magnetic material in the range of 0.01 ≦ z <2.0 has a complicated spin arrangement, and the magnetic arrangement (plural exchange interactions) causes the peak of the specific heat near the magnetic transition. It has the advantage of essentially being a broad. From the practical point of view, it is desirable that the lower limit value of z in the general formula (I) is 0.01. Furthermore, the preferable upper limit of z is 1.
5, more preferably 1.0, and particularly z is 1/3 ≦ z
The effect can be remarkably exhibited by setting the range to ≦ 1.0.

【0014】前記粒状または繊維状の磁性体の大きさを
規定したのは、次のような理由によるものである。前記
磁性体の平均粒径又は平均径を1μm未満にすると、蓄
熱器に充填した際、高圧作動媒質(例えばヘリウムガ
ス)と共に蓄熱器の外部に流出し易くなる。一方、前記
磁性体の平均粒径又は平均径が2000μmを越えると
前記磁性体の熱伝導度は(磁性体)/(作動媒質)間の
熱伝達の律速要因となり、熱伝達性が著しく低下して復
熱効果の低下を招く恐れがある。
The size of the granular or fibrous magnetic material is
The reason is as follows. When the average particle diameter or the average diameter of the magnetic material is less than 1 μm, when filled in the heat accumulator, it easily flows out of the heat accumulator together with the high-pressure working medium (for example, helium gas). On the other hand, when the average particle diameter or the average diameter of the magnetic material exceeds 2000 μm, the thermal conductivity of the magnetic material becomes the rate-determining factor of the heat transfer between (magnetic material) / (working medium), and the heat transfer property remarkably deteriorates. There is a risk that the heat recovery effect will be reduced.

【0015】前記磁性体の平均粒径又は繊維径の上限値
を規定した理由をさらに具体的に説明すると、前記磁性
体からなる蓄熱材料の熱容量を100%活用するために
は、大きい体積比熱(ρCp;ρは蓄熱材料の密度、C
pは比熱)に見合う高熱伝導度が要求される。すなわ
ち、蓄熱に寄与する蓄熱材料の有効体積を決定する侵入
深さ(ld )は、次式で表される。 ld =λ/(ρCpπf)
The reason for defining the upper limit of the average particle diameter or fiber diameter of the magnetic material will be described more specifically. In order to utilize 100% of the heat capacity of the heat storage material composed of the magnetic material, a large volume specific heat ( ρCp; ρ is the density of the heat storage material, C
p is required to have high thermal conductivity commensurate with the specific heat. That is, the penetration depth (ld) that determines the effective volume of the heat storage material that contributes to heat storage is expressed by the following equation. ld = λ / (ρCpπf)

【0016】ここで、λは熱伝導度、ρは蓄熱材料の密
度、Cpは比熱、fは周波数示す。例えば、ρCpが6
K以上で0.3J/cm3 Kと大きいErNi1/3 のよ
うな磁性体を用いた場合には、その熱伝導度(80mW
/Kcm)との関係よりldは600μm程度となる。
したがって、この場合には表面から600ミクロン以上
離れた蓄熱材料は蓄熱に寄与しない。したがって、蓄熱
材料としてのErNi1/3 の平均粒径または繊維径の上
限は1200μm、好ましくは1000μmである。
Here, λ is the thermal conductivity, ρ is the density of the heat storage material, Cp is the specific heat, and f is the frequency. For example, ρCp is 6
0.3 J / cm 3 above K When a magnetic material such as ErNi 1/3 with a large K is used, its thermal conductivity (80 mW
From the relationship with / Kcm), ld is about 600 μm.
Therefore, in this case, the heat storage material separated by 600 μm or more from the surface does not contribute to heat storage. Therefore, the upper limit of the average particle diameter or fiber diameter of ErNi 1/3 as a heat storage material is 1200 μm, preferably 1000 μm.

【0017】前記球状磁性体は、三次元方向に規則的に
充填して均一な熱伝達性及び圧力損失の低減化を達成す
る観点から、特に前記平均粒径の範囲にある球状、前記
繊維径の範囲にある繊維状の形状とするとこが望まし
い。前記球状磁性体は、例えば以下の方法で製造するこ
とができる。 (1)溶融状態にしたものを水又は油中に滴下、凝固さ
せる方法、(2)溶融状態のものを液体又は気体の乱流
層中に射出する方法、(3)溶融状態のものを平板上又
は円筒上の金属冷媒上に滴下又は射出する方法、(4)
不定形粒子を加熱部(加熱源)を通して不活性ガス(例
えばアルゴンガス)中に射出する方法。
From the viewpoint of achieving uniform heat transfer and reduction of pressure loss by filling the spherical magnetic material regularly in the three-dimensional direction, the spherical magnetic material has a diameter within the range of the average particle diameter, and the fiber diameter described above. It is desirable to have a fibrous shape within the range. The spherical magnetic body can be manufactured, for example, by the following method. (1) A method of dropping a molten material into water or oil to solidify it, (2) A method of injecting a molten material into a turbulent flow layer of a liquid or a gas, (3) A flat material of a molten material Method of dropping or injecting onto the metal refrigerant on the top or cylinder, (4)
A method of injecting amorphous particles into an inert gas (for example, argon gas) through a heating unit (heating source).

【0018】前記(1)〜(4)の方法の中で(4)の
方法が実用的である。前記(4)の方法における加熱部
としては、熱プラズマ、ア―ク放電プラズマ、赤外線、
高周波誘導が考えられるが、プラズマスプレ―法が最も
簡便で実用的である。また、前記(4)の方法での不活
性ガスの圧力については1気圧以上にすることが望まし
い。不活性ガスの圧力については1気圧以上にすること
により、冷却効率を高められ、加熱部を通過した溶融飛
翔体がその表面張力により球状化した状態のまま凝固せ
しめることができる。
Among the methods (1) to (4), the method (4) is practical. The heating unit in the method (4) includes thermal plasma, arc discharge plasma, infrared ray,
High-frequency induction is possible, but the plasma spray method is the most simple and practical. Further, the pressure of the inert gas in the above method (4) is preferably 1 atm or more. By setting the pressure of the inert gas to 1 atm or more, the cooling efficiency can be improved, and the molten flying object that has passed through the heating section can be solidified in a spherical state due to its surface tension.

【0019】前記繊維状磁性体は、例えばW、Bなどの
金属繊維、ガラス繊維、カ―ボン繊維、プラスチック繊
維等からなる織布を芯材とし、これに前記一般式(I) に
て表わされる組成のものを溶射やスパッタなどの気相成
長、液相成長により被覆する方法により製造することが
できる。
The fibrous magnetic material is made of a woven fabric made of, for example, metal fibers such as W and B, glass fiber, carbon fiber, plastic fiber, etc., and is represented by the above general formula (I). It can be manufactured by a method of coating the above composition by vapor phase growth such as spraying or sputtering, or liquid phase growth.

【0020】前記蓄熱材料は、下記一般式(II)および一
般式(III) で表される組成を有し、かつ平均粒径又は繊
維径が1〜1000μmの磁性体からなる1種または2
種以上のものを用いることが好ましい。 ANiz …(II)
The heat storage material has a composition represented by the following general formula (II) and general formula (III), and is a magnetic substance having an average particle diameter or a fiber diameter of 1 to 1000 μm.
It is preferable to use one or more kinds. ANi z ... (II)

【0021】ただし、式中のAはY、La、Ce、P
r、Nd、Pm、Sm、Eu、Gd、Tb、Dy、H
o、Er、Tm、Ybから選ばれる少なくとも1種の希
土類元素を示し、zは0.001≦z≦9.0を示す。 A’1-x x z …(III)
However, A in the formula is Y, La, Ce, P
r, Nd, Pm, Sm, Eu, Gd, Tb, Dy, H
At least one rare earth element selected from o, Er, Tm, and Yb is shown, and z is 0.001 ≦ z ≦ 9.0. A'1 -x D x M z (III)

【0022】ただし、式中のA’は、Er、Ho、D
y、Tb、Gdから選ばれる少なくとも1種の希土類元
素を示し、DはPr、Nd、Sm、Ceから選ばれる少
なくとも1種の元素を示し、MはNi、Co及びCuか
ら選ばれる少なくとも1種の金属を示し、xは0≦x<
1、zは0.01≦z≦9.0を示す。前記一般式(II)
および(III) において、前述した理由からzが0.1≦
z<2.0であることが好ましい。
However, A'in the formula is Er, Ho, D
At least one rare earth element selected from y, Tb, and Gd is shown, D is at least one element selected from Pr, Nd, Sm, and Ce, and M is at least one selected from Ni, Co, and Cu. Of the metal, x is 0 ≦ x <
1 and z represent 0.01 ≦ z ≦ 9.0. The general formula (II)
And in (III), z is 0.1 ≦
It is preferable that z <2.0.

【0023】前記一般式(III) において、A´としてE
r、Ho、Dy、Tb、Gdの重希土類元素を用いるこ
とによってNi等のMとの合金により特に顕著な磁気比
熱を発揮でき、比熱のピ―クの最大値を大きくできる。
また、一般式(III) においてA´として示される重希土
類元素を置換するDとしてPr、Nd、Sm、Ceの軽
希土類元素を選択することによってショットキ―異常等
を利用して比熱のピ―クの最大値及び温度幅(半値幅)
を調整することが可能となる。
In the general formula (III), A'is E
By using heavy rare earth elements such as r, Ho, Dy, Tb, and Gd, particularly remarkable magnetic specific heat can be exhibited by the alloy with M such as Ni, and the maximum peak value of specific heat can be increased.
Further, by selecting a light rare earth element such as Pr, Nd, Sm, or Ce as D substituting the heavy rare earth element represented by A'in the general formula (III), the peak of specific heat is utilized by utilizing Schottky anomaly or the like. Maximum value and temperature range (half width)
Can be adjusted.

【0024】前記蓄熱材料は、前記一般式(I) のMの一
部をB、Al、Ga、In、Si等で置換された磁性体
から選ばれる1種または2以上からなることを許容す
る。かかる磁性体の組成を一般式(IV)、一般式(V) とし
て下記に示す。 A(M1-y y z …(IV)
The heat storage material is allowed to be composed of one or more magnetic materials selected from the magnetic materials in which a part of M in the general formula (I) is substituted with B, Al, Ga, In, Si or the like. . The compositions of such magnetic materials are shown below as general formulas (IV) and (V). A (M 1-y X y ) z (IV)

【0025】ただし、式中のAはY、La、Ce、P
r、Nd、Pm、Sm、Eu、Gd、Tb、Dy、H
o、Er、Tm、Ybから選ばれる少なくとも1種の希
土類元素を示し、MはNi、Co及びCuから選ばれる
少なくとも1種の金属を示し、XはB、Al、Ga、I
n、Si、Ge、Sn、Pb、Ag、Au、Mg、Z
n、Ru、Pd、Pt、Re、Cs、Ir、Fe、M
n、Cr、Cd、Hg、Osから選ばれる少なくとも1
種の化合物構成元素を示し、yは0≦y<1.0、好ま
しくはy≦0.5、zは0.001≦z≦9.0を示
す。 A’1-x x (M1-y y z …(V)
However, A in the formula is Y, La, Ce, P
r, Nd, Pm, Sm, Eu, Gd, Tb, Dy, H
at least one rare earth element selected from o, Er, Tm, and Yb, M represents at least one metal selected from Ni, Co, and Cu, and X represents B, Al, Ga, and I.
n, Si, Ge, Sn, Pb, Ag, Au, Mg, Z
n, Ru, Pd, Pt, Re, Cs, Ir, Fe, M
at least 1 selected from n, Cr, Cd, Hg, Os
The compound constituting elements of the species are shown, y is 0 ≦ y <1.0, preferably y ≦ 0.5, and z is 0.001 ≦ z ≦ 9.0. A ' 1-x D x (M 1-y X y ) z … (V)

【0026】ただし、式中のA’は、Er、Ho、D
y、Tb、Gdから選ばれる少なくとも1種の希土類元
素を示し、DはPr、Nd、Sm、Ceから選ばれる少
なくとも1種の元素を示し、XはB、Al、Ga、I
n、Si、Ge、Sn、Pb、Ag、Au、Mg、Z
n、Ru、Pd、Pt、Re、Cs、Ir、Fe、M
n、Cr、Cd、Hg、Osから選ばれる少なくとも1
種の化合物構成元素を示し、xは0≦x<1、yはXが
Feの場合、0≦y≦0.3、XがFe以外の場合、0
≦y<1.0、好ましくはy≦0.5、zは0.001
≦z≦9.0を示す。
However, A'in the formula is Er, Ho, D
It represents at least one rare earth element selected from y, Tb and Gd, D represents at least one element selected from Pr, Nd, Sm and Ce, and X represents B, Al, Ga and I.
n, Si, Ge, Sn, Pb, Ag, Au, Mg, Z
n, Ru, Pd, Pt, Re, Cs, Ir, Fe, M
at least 1 selected from n, Cr, Cd, Hg, Os
X represents 0 ≦ x <1, y represents 0 ≦ y ≦ 0.3 when X is Fe, and 0 represents X other than Fe.
≦ y <1.0, preferably y ≦ 0.5, z is 0.001
≦ z ≦ 9.0 is shown.

【0027】前記一般式(IV)および(V)において、
置換金属XがFeである場合には、yは0.3以下にす
ることが必要である。これは、Fe−Feの直接交換作
用が強く、Feが過剰に置換すると比熱ピ―クを示す温
度が77K以上と高温になるためである。本発明に係わ
る冷凍機のガス−サイクルを図3の(A)〜(C)を参
照して説明する。
In the above general formulas (IV) and (V),
When the substituted metal X is Fe, y needs to be 0.3 or less. This is because the direct exchange action of Fe-Fe is strong, and if Fe is excessively replaced, the temperature at which the specific heat peak appears becomes as high as 77K or higher. The gas cycle of the refrigerator according to the present invention will be described with reference to FIGS.

【0028】図3において、蓄熱器1は前述した蓄熱材
料2が充填されている。前記蓄熱器1の一端は、作動媒
体源(図示せず)にパイプ3を通して連結されている。
前記蓄熱器1の他端は、膨脹シリンダ4にパイプ5を通
して連結されている。ピストン6は、前記膨脹シリンダ
3内に摺動自在に取り付けられている。前記ピスト6が
動作すると、シリンダ3の内部体積が変化される。前記
蓄熱器1は、次の冷凍1サイクルをなす4工程(a)〜
(c)に従って冷却される。
In FIG. 3, the heat storage device 1 is filled with the heat storage material 2 described above. One end of the heat storage unit 1 is connected to a working medium source (not shown) through a pipe 3.
The other end of the heat storage unit 1 is connected to the expansion cylinder 4 through a pipe 5. The piston 6 is slidably mounted in the expansion cylinder 3. When the fixer 6 operates, the internal volume of the cylinder 3 is changed. The heat accumulator 1 has four steps (a) to form the following one refrigeration cycle.
It is cooled according to (c).

【0029】工程(a)において、図3の(A)に示す
ようにピストン6は矢印7方向に動作され、それによっ
て膨脹シリンダ4の内部体積を増加させると共に、作動
媒体源から高圧ガスが矢印8の方向に導入される。前記
高圧ガスは、前記膨脹シリンダ4に流れる前に前記蓄熱
器1を通過する。前記高圧ガスが前記蓄熱器1を通過す
る際、前記高圧ガスは蓄熱材料2によって冷却される。
冷却された前記ガスは、膨脹シリンダ3に蓄積される。
矢印9は、熱が前記ガスから蓄熱器1内の蓄熱材料2に
移行される方向を示す。
In step (a), as shown in FIG. 3 (A), the piston 6 is moved in the direction of the arrow 7, thereby increasing the internal volume of the expansion cylinder 4, and at the same time, the high pressure gas is fed from the working medium source by the arrow. It is introduced in the direction of 8. The high-pressure gas passes through the regenerator 1 before flowing into the expansion cylinder 4. When the high-pressure gas passes through the heat storage device 1, the high-pressure gas is cooled by the heat storage material 2.
The cooled gas is accumulated in the expansion cylinder 3.
The arrow 9 indicates the direction in which heat is transferred from the gas to the heat storage material 2 in the heat storage device 1.

【0030】工程(b)において、図3の(B)に示す
ようにパイプ3に連結された吸引手段(図示せず)によ
り矢印10方向に吸引することによって、ガスの一部は
膨脹シリンダ4から矢印10の方向に放出され、その
間、前記シリンダ4の内部体積を維持する。その結果、
前記シリンダ4に残存したガスは膨脹し、それにより前
記膨脹シリンダ4内の温度を低くする。前記シリンダ4
から放出されたガスは、パイプ5を通して蓄熱器1に供
給される。このガスが蓄熱器1を通過する際、前記ガス
は蓄熱材料2から熱を奪う。矢印11は、熱が蓄熱器1
内の蓄熱材料2から前記ガスに移行される方向を示す。
In the step (b), as shown in FIG. 3B, a part of the gas is expanded by sucking in a direction of an arrow 10 by a suction means (not shown) connected to the pipe 3 so that a part of the gas is expanded. Is discharged in the direction of the arrow 10 while maintaining the internal volume of the cylinder 4. as a result,
The gas remaining in the cylinder 4 expands, thereby lowering the temperature in the expansion cylinder 4. The cylinder 4
The gas released from is supplied to the heat storage device 1 through the pipe 5. When this gas passes through the heat storage device 1, the gas takes heat from the heat storage material 2. The arrow 11 indicates that the heat is the heat storage device 1.
The direction in which the heat storage material 2 inside is transferred to the gas is shown.

【0031】工程(c)において、図3の(C)に示す
ようにピストン6は矢印12の方向に作動され、これに
よって膨脹シリンダ4から低温、低圧ガスを矢印11の
方向にパイプ5を通して蓄熱器1に放出する。このガス
が蓄熱器1を通過して流れる際、そのガスは蓄熱材料2
の熱を奪う。換言すれば、前記ガスは蓄熱材料2を冷却
する。矢印13は、熱が蓄熱器1内の蓄熱材料2から前
記ガスに移行される方向を示す。最終工程(d)におい
て、操作は工程(a)に戻される。
In step (c), the piston 6 is actuated in the direction of arrow 12 as shown in FIG. 3 (C), whereby low temperature, low pressure gas from the expansion cylinder 4 accumulates heat in the direction of arrow 11 through the pipe 5. Discharge into vessel 1. When this gas flows through the heat storage device 1, the gas is stored in the heat storage material 2
Take away the heat. In other words, the gas cools the heat storage material 2. The arrow 13 indicates the direction in which heat is transferred from the heat storage material 2 in the heat storage device 1 to the gas. In the final step (d), the operation is returned to step (a).

【0032】[0032]

【作用】本発明において使用される蓄熱材料が一般式
(I) にて表わされる高希土類濃度の希土類元素とNi、
Co等のMで示される遷移金属をベ―スとした組成の磁
性体から選ばれる1種又は2種以上からなるため、比較
的安価で、10mW/cmK以上の優れた熱伝導度を有
し、かつ液体窒素温度以下、特に40K以下のような極
低温で優れた格子比熱と磁気熱量効果を示す。特に、前
記一般式(I) のzを0.01≦z<2.0の範囲とする
ことによって、前記高温側での格子比熱が向上された磁
性体からなる蓄熱材料を得ることができる。
The heat storage material used in the present invention has the general formula
The rare earth element with high rare earth concentration represented by (I) and Ni,
Since it is composed of one or more selected from magnetic materials having a composition based on a transition metal represented by M such as Co, it is relatively inexpensive and has an excellent thermal conductivity of 10 mW / cmK or more. In addition, it exhibits excellent lattice specific heat and magnetocaloric effect at a liquid nitrogen temperature or lower, particularly at an extremely low temperature of 40 K or lower. In particular, by setting z in the general formula (I) within the range of 0.01 ≦ z <2.0, it is possible to obtain a heat storage material made of a magnetic material having an improved lattice specific heat on the high temperature side.

【0033】本発明に使用する低温蓄熱器は、前記優れ
た特性を有する磁性体からなる蓄熱材料を冷却ガスを流
通できるように充填されているため、優れた熱伝達特
性、復熱特性を有する。特に、平均粒径又は繊維径が1
〜2000μmの磁性体からなる蓄熱材料を充填するこ
とによって、均一な熱伝達性を獲得し、作動媒質の圧力
損失を低減化することが可能になる。また、前記一般式
(I) のzが0.01≦z<2.0の範囲の磁性体からな
る蓄熱材料を充填することによって、前記蓄熱材料の高
温側での格子比熱を向上できるため、より一層優れた熱
伝達特性、復熱特性を発揮できる。
Since the low temperature heat storage device used in the present invention is filled with the heat storage material composed of the magnetic material having the above-mentioned excellent properties so that the cooling gas can flow therethrough, it has excellent heat transfer properties and recuperative properties. . Especially, the average particle diameter or fiber diameter is 1
By filling the heat storage material made of a magnetic substance of ˜2000 μm, it is possible to obtain uniform heat transfer properties and reduce the pressure loss of the working medium. In addition, the general formula
By filling the heat storage material made of a magnetic material in which z of (I) is in the range of 0.01 ≦ z <2.0, the lattice specific heat on the high temperature side of the heat storage material can be improved, and therefore, a more excellent heat Transfer characteristics and recuperative characteristics can be demonstrated.

【0034】また、一般式(I) で表わされる磁性体を2
種以上の混合集合物とした蓄熱材料を充填することによ
って、比熱ピ―クがブロ―ドとなり、熱容量が減少する
ものの、より広い温度範囲で比熱が大きくなるため、復
熱特性がより一層向上された低温蓄熱器を実現できる。
Further, the magnetic substance represented by the general formula (I) is
By filling the heat storage material as a mixed aggregate of more than one species, the specific heat peak becomes a blow and the heat capacity decreases, but the specific heat increases in a wider temperature range, so the recuperation characteristics are further improved. It is possible to realize a low temperature heat storage device.

【0035】更に、温度勾配に合せて磁気転移点(比熱
がピ―クを示す温度)の異なる複数種の磁性体を積層し
た形態で蓄熱材料を充填することによって、復熱特性が
一層向上された低温蓄熱器を実現できる。したがって、
本発明によれば前述した低温蓄熱器を備えているため、
蓄冷効率が著しく向上された8K、4K級の冷凍機を提
供することができる。
Further, the heat storage material is filled in the form of laminating a plurality of kinds of magnetic materials having different magnetic transition points (the temperature at which the specific heat shows a peak) according to the temperature gradient, whereby the recuperative characteristics are further improved. A low temperature heat storage device can be realized. Therefore,
According to the present invention, since the low temperature heat storage device described above is provided,
It is possible to provide an 8K or 4K class refrigerator with significantly improved cold storage efficiency.

【0036】[0036]

【実施例】以下、本発明の実施例を詳細に説明する。 実施例1〜3EXAMPLES Examples of the present invention will be described in detail below. Examples 1-3

【0037】まず、ア―ク溶解炉を用いてErNi1/3
の組成比の合金、ErNiの組成比の合金およびErN
2 の組成比の合金をそれぞれ調製し、これら合金を7
00℃、24時間の均一熱処理を施した後、ブラウンミ
ルで粉砕、分級して100〜200μmの微粉砕粉を作
製した。つづいて、これらの微粉砕粉200gをそれぞ
れアルゴンガス雰囲気中にてプラズマスプレ―すること
により3種の磁性体を製造した。なお、前記プラズマス
プレ―による最終到達アルゴンガス圧は1.8気圧であ
った。得られた本実施例1〜3の磁性体をSEM写真で
観察したところ、平均粒径が40〜100μmの球状体
であることが確認された。
First, using an arc melting furnace, ErNi 1/3
Alloy with composition ratio of Er, alloy with composition ratio of ErNi and ErN
Prepare alloys with the composition ratio of i 2 respectively, and
After uniformly heat-treated at 00 ° C. for 24 hours, it was pulverized and classified by a brown mill to prepare finely pulverized powder of 100 to 200 μm. Subsequently, 200 g of these finely pulverized powders were plasma-sprayed in an argon gas atmosphere to produce three kinds of magnetic materials. The final argon gas pressure reached by the plasma spray was 1.8 atm. When the obtained magnetic bodies of Examples 1 to 3 were observed by SEM photographs, it was confirmed that they were spherical bodies having an average particle diameter of 40 to 100 μm.

【0038】また、得られた各球状磁性体の体積比熱を
測定したところ、図4に示す特性図を得た。なお、図4
中には比較例としてのPb及びCuの体積比熱を併記し
た。この図4から明らかなように本実施例1〜3の蓄熱
材料としての球状磁性体はいずれも約15K以下の極低
温において従来の蓄熱材料であるPb、Cuに比べて優
れた体積比熱を有し、かつ15K以上の温度域において
優れた格子比熱を有することがわかる。特に、前記一般
式(I) のzが0.01≦z<2.0の範囲にある組成の
合金(実施例1;ErNi1/3 、実施例2;ErN
2 )は15K以上の温度域においてPbに匹敵する優
れた格子比熱を有することがわかる。
Further, the volume specific heat of each of the obtained spherical magnetic bodies was measured, and the characteristic diagram shown in FIG. 4 was obtained. Note that FIG.
The volume specific heats of Pb and Cu as comparative examples are also shown therein. As is clear from FIG. 4, the spherical magnetic bodies as the heat storage materials of Examples 1 to 3 all have a volume specific heat superior to that of the conventional heat storage materials Pb and Cu at an extremely low temperature of about 15 K or less. It is also found that the lattice specific heat is excellent in the temperature range of 15 K or higher. In particular, alloys having a composition in which z in the general formula (I) is in the range of 0.01 ≦ z <2.0 (Example 1; ErNi 1/3 , Example 2; ErN).
It can be seen that i 2 ) has an excellent lattice specific heat comparable to Pb in the temperature range of 15 K or higher.

【0039】さらに、前記球状磁性体の中でErNi
1/3 組成比の球状磁性体(平均粒径50〜100μm)
をフェノ―ル樹脂製の蓄熱器に充填(充填率;63%)
した後、熱容量25J/Kのヘリウムガスを3g/se
cの質量流量、16atmのガス圧の条件で供給するG
M冷凍サイクルを行なって蓄冷効率を測定した。その結
果、ErNi1/3 の組成比の球状磁性体を充填した蓄熱
器を備えた冷凍機は同一平均粒径、充填率とした球状鉛
(比較例)を充填した蓄熱器を備えた冷凍機に比べて4
0Kから4Kの温度域において効率が8倍以上向上する
ことが確認された。 実施例4〜7
Further, in the spherical magnetic material, ErNi
Spherical magnetic material with 1/3 composition ratio (average particle size 50-100 μm)
Filled in a phenol resin heat storage unit (filling rate: 63%)
After that, helium gas with a heat capacity of 25 J / K was added at 3 g / se
G supplied under the conditions of mass flow rate of c and gas pressure of 16 atm
The M refrigeration cycle was performed to measure the cold storage efficiency. As a result, a refrigerator equipped with a regenerator filled with a spherical magnetic material having a composition ratio of ErNi 1/3 is a refrigerator equipped with a regenerator filled with spherical lead (comparative example) having the same average particle size and filling rate. 4 compared to
It was confirmed that the efficiency was improved eight times or more in the temperature range of 0K to 4K. Examples 4-7

【0040】まず、ア―ク溶解炉を用いてDyNi1/3
の組成比の合金、Er0.5 Dy0.5Ni1/3 の組成比の
合金、Er0.75Dy0.25Ni1/3 の組成比の合金及びE
rNi1/3 の組成比の合金を夫々調製した後、これら合
金を実施例1と同様な方法により4種の磁性体を製造し
た。得られた本実施例4〜7の磁性体をSEM写真で観
察したところ、平均粒径が40〜100μmの球状体で
あることが確認された。
First, using an arc melting furnace, DyNi 1/3
Alloy with composition ratio of Er, alloy with composition ratio of Er 0.5 Dy 0.5 Ni 1/3 , alloy with composition ratio of Er 0.75 Dy 0.25 Ni 1/3 and E
After preparing alloys having the composition ratio of rNi 1/3 , four kinds of magnetic materials were produced from these alloys by the same method as in Example 1. When the obtained magnetic bodies of Examples 4 to 7 were observed by SEM photographs, it was confirmed that they were spherical bodies having an average particle diameter of 40 to 100 μm.

【0041】また、前記各球状磁性体の体積比熱を測定
したところ、図5に示す特性図を得た。なお、図5中に
は比較例としてのPbの体積比熱を併記した。この図5
から明らかなように本実施例4〜7の蓄熱材料としての
球状磁性体はいずれも約15K以下の極低温において従
来の蓄熱材料であるPbに比べて優れた体積比熱を有
し、かつ15K以上の温度域において優れた格子比熱を
有することがわかる。しかも、本実施例4〜7の球状磁
性体の中で体積比熱のピ―ク値を示す温度は合金の一成
分であるErの濃度の増加に伴って低温側にシフトする
ことがわかる。 実施例8〜10
Further, the volume specific heat of each spherical magnetic material was measured, and the characteristic diagram shown in FIG. 5 was obtained. The volume specific heat of Pb as a comparative example is also shown in FIG. This Figure 5
As is clear from the above, the spherical magnetic bodies as the heat storage materials of Examples 4 to 7 all have a volume specific heat superior to that of the conventional heat storage material Pb at an extremely low temperature of about 15 K or less, and 15 K or more. It can be seen that it has an excellent lattice specific heat in the temperature range of. Moreover, it can be seen that in the spherical magnetic bodies of Examples 4 to 7, the temperature showing the peak value of the volume specific heat shifts to the low temperature side as the concentration of Er, which is a component of the alloy, increases. Examples 8-10

【0042】まず、ア―ク溶解炉を用いて(Er0.8
0.2 )Ni1/3 の組成比の合金、(Er0.7
0.3 )Ni1/3 の組成比の合金および(Er0.6 Pr
0.4 )Ni1/3 の組成比の合金をそれぞれ調製した後、
これら合金を実施例1と同様な方法により3種の磁性体
を製造した。得られた本実施例8〜10の磁性体をSE
M写真で観察したところ、平均粒径が40〜100μm
の球状体であることが確認された。
First, using an arc melting furnace (Er 0.8 P
r 0.2 ) Ni 1/3 composition ratio alloy, (Er 0.7 P
r 0.3 ) Ni 1/3 alloy and (Er 0.6 Pr)
0.4 ) Ni 1/3 composition ratio alloys are prepared, respectively,
Three kinds of magnetic materials were produced from these alloys in the same manner as in Example 1. The obtained magnetic materials of Examples 8 to 10 were SE
Observed in the M photograph, the average particle size is 40 to 100 μm.
It was confirmed to be a spherical body.

【0043】以上のような実施例1〜10の各球状磁性
体をフェノ―ル樹脂製の蓄熱器にそれぞれ充填(充填
率;65%)した後、熱容量25J/Kのヘリウムガス
を3g/secの質量流量、16atmのガス圧の条件
で供給するGM冷凍サイクルを行なって冷凍試験を行な
った。その結果、実施例1〜10の球状磁性体を充填し
た蓄熱器を備えた冷凍機では、同一平均粒径、充填率と
した球状鉛(比較例)を充填した蓄熱器を備えた冷凍機
に比べて無負荷状態の最低到達温度が1K以上低下する
ことが確認された。 実施例11、12
After filling the spherical magnetic bodies of Examples 1 to 10 into the phenol resin heat accumulators respectively (filling rate: 65%), 3 g / sec of helium gas having a heat capacity of 25 J / K was obtained. A refrigeration test was performed by performing a GM refrigeration cycle in which the gas flow rate was 16 atm and the gas pressure was 16 atm. As a result, in the refrigerator provided with the heat storage device filled with the spherical magnetic bodies of Examples 1 to 10, the refrigerator provided with the heat storage device filled with spherical lead (comparative example) having the same average particle diameter and filling rate was used. By comparison, it was confirmed that the minimum temperature reached in the unloaded state was decreased by 1K or more. Examples 11 and 12

【0044】まず、ア―ク溶解炉を用いてErCo1/3
の組成比の合金及びErCoの組成比の合金をそれぞれ
調製し、これら合金を750℃、24時間の均一熱処理
を施した後、ブラウンミルで粉砕、分級して100〜2
00μmの微粉砕粉を作製した。つづいて、これらの微
粉砕粉200gをそれぞれアルゴンガス雰囲気中にてプ
ラズマスプレ―することにより2種の磁性体を製造し
た。なお、前記プラズマスプレ―での最終到達アルゴン
ガス圧は1.8気圧であった。得られた本実施例11、
12の磁性体をSEM写真で観察したところ、平均粒径
が40〜100μmの球状体であることが確認された。
First, using an arc melting furnace, ErCo 1/3
An alloy having the composition ratio of 1 and an alloy having the composition ratio of ErCo were prepared, and subjected to uniform heat treatment at 750 ° C. for 24 hours, and then pulverized and classified by a brown mill to 100 to 2
A finely pulverized powder of 00 μm was prepared. Subsequently, 200 g of these finely pulverized powders were plasma sprayed in an argon gas atmosphere to produce two kinds of magnetic materials. The final argon gas pressure in the plasma spray was 1.8 atm. The obtained Example 11,
As a result of observing the magnetic substance of No. 12 with an SEM photograph, it was confirmed that the magnetic substance was a spherical body having an average particle diameter of 40 to 100 μm.

【0045】また、前記各球状磁性体をフェノ―ル樹脂
製の蓄熱器にそれぞれ充填(充填率;65%)した後、
熱容量25J/Kのヘリウムガスを3g/secの質量
流量、16atmのガス圧の条件で供給するGM冷凍サ
イクルを行なって蓄冷効率を測定した。その結果、実施
例11、12の球状磁性体を充填した蓄熱器を備えた冷
凍機では、同一平均粒径、充填率とした球状鉛(比較
例)を充填した蓄熱器を備えた冷凍機に比べて効率が8
倍以上向上することが確認された。 実施例13〜15
Further, after filling each of the spherical magnetic bodies into a phenol resin heat storage unit (filling rate: 65%),
The GM refrigeration cycle in which a helium gas having a heat capacity of 25 J / K was supplied at a mass flow rate of 3 g / sec and a gas pressure of 16 atm was performed to measure the cold storage efficiency. As a result, in the refrigerator provided with the heat storage device filled with the spherical magnetic bodies of Examples 11 and 12, the refrigerator provided with the heat storage device filled with spherical lead (comparative example) having the same average particle size and the same filling rate was used. 8 efficiency compared to
It was confirmed to be more than doubled. Examples 13 to 15

【0046】まず、ア―ク溶解炉を用いて(Er0.8
0.2 )Co1/3 の組成比の合金、(Er0.7
0.3 )Co1/3 の組成比の合金および(Er0.6 Nd
0.4 )Co1/3 の組成比の合金をそれぞれ調製した後、
これら合金を実施例11と同様な方法により3種の磁性
体を製造した。得られた本実施例13〜15の磁性体を
SEM写真で観察したところ、平均粒径が40〜100
μmの球状体であることが確認された。
First, using an arc melting furnace (Er 0.8 N
d 0.2 ) Co 1/3 alloy composition, (Er 0.7 N
alloy with a composition ratio of d 0.3 ) Co 1/3 and (Er 0.6 Nd
After preparing the alloys with the composition ratio of 0.4 ) Co 1/3 ,
Three kinds of magnetic materials were produced from these alloys in the same manner as in Example 11. When the obtained magnetic materials of Examples 13 to 15 were observed by SEM photographs, the average particle diameter was 40 to 100.
It was confirmed to be a spherical body of μm.

【0047】また、前記各球状磁性体をフェノ―ル樹脂
製の蓄熱器にそれぞれ充填(充填率;65%)した後、
熱容量25J/Kのヘリウムガスを3g/secの質量
流量、16atmのガス圧の条件で供給するGM冷凍サ
イクルを行なって蓄冷効率を測定した。その結果、実施
例13〜15の球状磁性体を充填した蓄熱器を備えた冷
凍機では、同一平均粒径、充填率とした球状鉛(比較
例)を充填した蓄熱器を備えた冷凍機に比べて効率が8
倍以上向上することが確認された。 実施例16、17
After filling each spherical magnetic material into a phenol resin heat storage unit (filling rate: 65%),
The GM refrigeration cycle in which a helium gas having a heat capacity of 25 J / K was supplied at a mass flow rate of 3 g / sec and a gas pressure of 16 atm was performed to measure the cold storage efficiency. As a result, in the refrigerator provided with the heat storage device filled with the spherical magnetic bodies of Examples 13 to 15, the refrigerator provided with the heat storage device filled with spherical lead (comparative example) having the same average particle diameter and filling rate was used. 8 efficiency compared to
It was confirmed to be more than doubled. Examples 16 and 17

【0048】まず、ア―ク溶解炉を用いてErCu2
組成比の合金及びErCuの組成比の合金をそれぞれ調
製し、これら合金を850℃、24時間の均一熱処理を
施した後、ブラウンミルで粉砕、分級して100〜20
0μmの微粉砕粉を作製した。つづいて、これらの微粉
砕粉200gをそれぞれアルゴンガス雰囲気中にてプラ
ズマスプレ―することにより2種の磁性体を製造した。
なお、前記プラズマスプレ―での最終到達アルゴンガス
圧は1.8気圧であった。得られた本実施例16、17
の磁性体をSEM写真で観察したところ、平均粒径が4
0〜100μmの球状体であることが確認された。
First, an alloy having a composition ratio of ErCu 2 and an alloy having a composition ratio of ErCu were prepared using an arc melting furnace, and these alloys were subjected to uniform heat treatment at 850 ° C. for 24 hours, and then subjected to a brown mill. Crush and classify with 100 to 20
A 0 μm finely pulverized powder was prepared. Subsequently, 200 g of these finely pulverized powders were plasma sprayed in an argon gas atmosphere to produce two kinds of magnetic materials.
The final argon gas pressure in the plasma spray was 1.8 atm. Obtained Examples 16 and 17
When the magnetic substance of No. 4 was observed with the SEM photograph, the average particle size was 4
It was confirmed to be a spherical body of 0 to 100 μm.

【0049】また、前記各球状磁性体をフェノ―ル樹脂
製の蓄熱器にそれぞれ充填(充填率;65%)した後、
熱容量25J/Kのヘリウムガスを3g/secの質量
流量、16atmのガス圧の条件で供給するGM冷凍サ
イクルを行なって蓄冷効率を測定した。その結果、実施
例16、17の球状磁性体を充填した蓄熱器を備えた冷
凍機では、同一平均粒径、充填率とした球状鉛(比較
例)を充填した蓄熱器を備えた冷凍機に比べて効率が7
倍以上向上することが確認された。 実施例18〜23
After filling each spherical magnetic material into a phenol resin heat storage unit (filling rate: 65%),
The GM refrigeration cycle in which a helium gas having a heat capacity of 25 J / K was supplied at a mass flow rate of 3 g / sec and a gas pressure of 16 atm was performed to measure the cold storage efficiency. As a result, in the refrigerator provided with the heat storage device filled with the spherical magnetic material of Examples 16 and 17, the refrigerator provided with the heat storage device filled with spherical lead (comparative example) having the same average particle size and filling rate was used. 7 compared to efficiency
It was confirmed to be more than doubled. Examples 18-23

【0050】まず、ア―ク溶解炉を用いてErNi1/3
の組成比の合金、ErNiの組成比の合金、ErCo
1/3 の組成比の合金、ErCoの組成比の合金、ErC
1/3の組成比の合金及びErCuの組成比の合金をそ
れぞれ調製した。つづいて、繊維径が10μmのタング
ステン(W)繊維の織布に前記各合金を溶射して6種の
繊維状磁性体を製造した。得られた本実施例18〜23
の繊維状磁性体の平均繊維径を測定したところ、40〜
100μmであることが確認された。
First, using an arc melting furnace, ErNi 1/3
Alloy with a composition ratio of Er, alloy with a composition ratio of ErNi, ErCo
Alloy with composition ratio of 1/3 , alloy with composition ratio of ErCo, ErC
An alloy having a composition ratio of u 1/3 and an alloy having a composition ratio of ErCu were prepared. Subsequently, each of the above alloys was sprayed onto a woven fabric of tungsten (W) fibers having a fiber diameter of 10 μm to manufacture six types of fibrous magnetic bodies. Obtained Examples 18 to 23
The average fiber diameter of the fibrous magnetic substance of
It was confirmed to be 100 μm.

【0051】また、前記各繊維状磁性体をフェノ―ル樹
脂製の蓄熱器にそれぞれ積層、充填(充填率;75%)
した後、熱容量25J/Kのヘリウムガスを3g/se
cの質量流量、16atmのガス圧の条件で供給するG
M冷凍サイクルを行なって蓄冷効率を測定した。その結
果、実施例18〜23の繊維状磁性体を積層、充填した
蓄熱器を備えた冷凍機では、同一繊維径、充填率とした
鉛単独からなる繊維の織布(比較例)を充填した蓄熱器
を備えた冷凍機に比べて効率が10倍以上向上すること
が確認された。
Further, the fibrous magnetic materials were laminated and filled in a phenol resin heat storage unit (filling rate: 75%).
After that, helium gas with a heat capacity of 25 J / K was added at 3 g / se
G supplied under the conditions of mass flow rate of c and gas pressure of 16 atm
The M refrigeration cycle was performed to measure the cold storage efficiency. As a result, in the refrigerator provided with the heat accumulator in which the fibrous magnetic materials of Examples 18 to 23 were laminated and filled, a woven fabric (comparative example) of fibers having the same fiber diameter and filling rate and made of lead alone was filled. It was confirmed that the efficiency was improved 10 times or more as compared with the refrigerator equipped with the heat storage device.

【0052】[0052]

【発明の効果】以上詳述した如く、本発明によれば10
mW/cmK以上の優れた熱伝導度を有し、かつ液体窒
素温度以下、特に40K以下のような極低温で優れた格
子比熱と磁気熱量効果を示す蓄熱材料か充填された熱伝
達特性、復熱特性を有する比較的安価な低温蓄熱器を備
え、蓄冷効率が向上された8K、4K級の冷凍機を提供
できる。また、特に前記蓄熱材料である磁性体を所定の
平均粒径の球状や所定の繊維径の繊維状とすることによ
って、三次元方向に規則的に充填でき、充填率、ヘリウ
ムガス等の作動媒質との熱伝達特性をより一層向上さ
れ、かつ圧力損失の低減化を達成した低温蓄熱器を備え
た冷凍機を提供することができる。
As described above in detail, according to the present invention, 10
A heat storage material having excellent thermal conductivity of mW / cmK or more and excellent lattice specific heat and magnetocaloric effect at liquid nitrogen temperature or lower, especially at extremely low temperature of 40K or lower, filled heat transfer characteristic, recovery It is possible to provide an 8K or 4K class refrigerator having a relatively inexpensive low temperature heat storage device having thermal characteristics and having improved cold storage efficiency. In addition, in particular, by making the magnetic material that is the heat storage material into a spherical shape having a predetermined average particle diameter or a fibrous shape having a predetermined fiber diameter, it is possible to regularly fill in the three-dimensional direction, the filling rate, the working medium such as helium gas. It is possible to provide a refrigerator having a low-temperature heat storage device which has further improved heat transfer characteristics with and has achieved reduction in pressure loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】ErNiのスピン構造を示す説明図。FIG. 1 is an explanatory diagram showing a spin structure of ErNi.

【図2】ErNi1/3 のスピン構造を示す説明図。FIG. 2 is an explanatory diagram showing a spin structure of ErNi 1/3 .

【図3】本発明に係わる冷凍機のガス−サイクルを説明
するための概略図。
FIG. 3 is a schematic diagram for explaining a gas-cycle of the refrigerator according to the present invention.

【図4】本実施例1〜3の球状磁性体(蓄熱材料)およ
び従来のPb、Cuの蓄熱材料における低温度下での体
積比熱を示す特性図。
FIG. 4 is a characteristic diagram showing the volume specific heat at low temperatures of the spherical magnetic bodies (heat storage materials) of Examples 1 to 3 and the conventional Pb and Cu heat storage materials.

【図5】本実施例4〜7の球状磁性体(蓄熱材料)およ
び従来のPbの蓄熱材料における低温度下での体積比熱
を示す特性図。
FIG. 5 is a characteristic diagram showing the volume specific heat under low temperature in the spherical magnetic bodies (heat storage materials) of Examples 4 to 7 and the conventional Pb heat storage material.

【符号の説明】[Explanation of symbols]

1…蓄熱器、2…蓄熱材料、4…膨脹シリンダ、5…ピ
ストン。
1 ... Heat storage device, 2 ... Heat storage material, 4 ... Expansion cylinder, 5 ... Piston.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 蓄熱材料が冷却ガスを流通できるように
充填された低温蓄熱器を備えた冷凍機において、 前記蓄熱材料は、一般式(I) AMz …(I) (ただし、式中のAはY、La、Ce、Pr、Nd、P
m、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、Ybから選ばれる少なくとも1種の希土類元素を示
し、MはNi、Co及びCuから選ばれる少なくとも1
種の金属を示し、zは0.001≦z≦9.0を示す)
にて表わされ、平均粒径が1〜2000μmの粒状磁性
体から選ばれる1種又は2種以上からなり、かつ温度が
77K未満に比熱ピークを有することを特徴とする冷凍
機。
1. A refrigerator provided with a low temperature heat storage device filled with a heat storage material so that a cooling gas can flow therethrough, wherein the heat storage material is represented by the general formula (I) AM z ... (I) (wherein A is Y, La, Ce, Pr, Nd, P
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
represents at least one rare earth element selected from m and Yb, and M represents at least 1 selected from Ni, Co and Cu.
(Indicates a metal of a kind, z is 0.001 ≦ z ≦ 9.0)
Represented by an average particle size Ri Do from one or more members selected from the granular magnetic material 1~2000Myuemu, and the temperature is
A refrigerator having a specific heat peak below 77K .
【請求項2】 蓄熱材料が冷却ガスを流通できるように
充填された低温蓄熱器を備えた冷凍機において、 前記蓄熱材料は、一般式(I) AMz …(I) (ただし、式中のAはY、La、Ce、Pr、Nd、P
m、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、Ybから選ばれる少なくとも1種の希土類元素を示
し、MはNi、Co及びCuから選ばれる少なくとも1
種の金属を示し、zは0.001≦z≦9.0を示す)
にて表わされ、平均径が1〜2000μmの繊維状磁性
体から選ばれる1種又は2種以上からなり、かつ温度が
77K未満に比熱ピークを有することを特徴とする冷凍
機。
2. A refrigerator provided with a low temperature heat storage device filled with a heat storage material so that a cooling gas can flow therethrough, wherein the heat storage material is represented by the general formula (I) AM z ... (I) (wherein A is Y, La, Ce, Pr, Nd, P
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
represents at least one rare earth element selected from m and Yb, and M represents at least 1 selected from Ni, Co and Cu.
(Indicates a metal of a kind, z is 0.001 ≦ z ≦ 9.0)
Expressed by the average diameter Ri Do from one or more selected from fibrous magnetic material 1~2000Myuemu, and the temperature is
A refrigerator having a specific heat peak below 77K .
JP4048517A 1988-02-02 1992-03-05 refrigerator Expired - Lifetime JPH0792286B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2121888 1988-02-02
JP63-21218 1988-02-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63225916A Division JPH07101134B2 (en) 1988-02-02 1988-09-09 Heat storage material and low temperature heat storage

Publications (2)

Publication Number Publication Date
JPH0571816A JPH0571816A (en) 1993-03-23
JPH0792286B2 true JPH0792286B2 (en) 1995-10-09

Family

ID=12048869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4048517A Expired - Lifetime JPH0792286B2 (en) 1988-02-02 1992-03-05 refrigerator

Country Status (1)

Country Link
JP (1) JPH0792286B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107735628B (en) * 2015-06-19 2021-07-06 永磁电机有限公司 Improved filling screen type magnetic heating element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
「CRYOGENICS」MAY1975P.261〜264
橋本巍洲著「超伝導を支える新低温技術磁気冷凍と磁性材料の応用」(昭62−7−20)工業調査会P.227〜233

Also Published As

Publication number Publication date
JPH0571816A (en) 1993-03-23

Similar Documents

Publication Publication Date Title
US6336978B1 (en) Heat regenerative material formed of particles or filaments
US5332029A (en) Regenerator
JP2609747B2 (en) Cold storage material and method for producing the same
JP5455536B2 (en) Refrigerator using cryogenic regenerator material
JP4551509B2 (en) Cold storage material and cold storage type refrigerator
US5593517A (en) Regenerating material and refrigerator using the same
JP5468380B2 (en) Cold storage material and manufacturing method thereof
WO1999020956A1 (en) Cold-accumulating material and cold-accumulating refrigerator
JPH11325628A (en) Cold storage material and cold storage type refrigerating machine
JP3055674B2 (en) Heat storage materials and low-temperature heat storage
JP3381953B2 (en) Heat storage and refrigerator
JP2941865B2 (en) Low temperature storage
EP0477917B1 (en) Magnetic substances for refrigeration at very low temperatures
CN110168043B (en) Rare earth regenerator material, regenerator and refrigerator having the same
JP6495546B1 (en) HoCu-based regenerator material and regenerator and refrigerator equipped with the same
JPH0792286B2 (en) refrigerator
JP3751646B2 (en) Cold storage material and refrigerator using the same
JP4564161B2 (en) refrigerator
JP4170703B2 (en) Rare earth oxysulfide ceramic regenerator material and method for producing the same, and cryogenic regenerator using the regenerator material
JP2002249763A (en) Cold storage material, method for producing the same and refrigerator using the same cold storage material
JP2004099822A (en) Cold storage material and regenerative refrigerator using the same
JPH031050A (en) Cold heat storage apparatus
JPH06240241A (en) Cold-reserving agent for cryogenic temperature and cold-reserving apparatus for cryogenic temperature using the same
JP2004143341A (en) Cold storage material and cold storage type refrigerator using the same
JPH11294882A (en) Storage medium and cold storage type refrigerating machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071009

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 13

EXPY Cancellation because of completion of term