JP2941865B2 - Low temperature storage - Google Patents

Low temperature storage

Info

Publication number
JP2941865B2
JP2941865B2 JP1314436A JP31443689A JP2941865B2 JP 2941865 B2 JP2941865 B2 JP 2941865B2 JP 1314436 A JP1314436 A JP 1314436A JP 31443689 A JP31443689 A JP 31443689A JP 2941865 B2 JP2941865 B2 JP 2941865B2
Authority
JP
Japan
Prior art keywords
spherical
temperature
amorphous magnetic
heat
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1314436A
Other languages
Japanese (ja)
Other versions
JPH03177083A (en
Inventor
陽一 東海
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1314436A priority Critical patent/JP2941865B2/en
Publication of JPH03177083A publication Critical patent/JPH03177083A/en
Application granted granted Critical
Publication of JP2941865B2 publication Critical patent/JP2941865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、蓄熱物質を充填した低温蓄熱器に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a low-temperature heat storage device filled with a heat storage material.

(従来の技術) 近年、超電導技術の発展は著しく、その応用分野が拡
大するに伴って小型で高性能の冷凍機の開発が不可欠に
なってきている。かかる小型冷凍機は、軽量・小型で熱
効率の高いことが要求されている。
(Prior Art) In recent years, the development of superconducting technology has been remarkable, and the development of a small-sized and high-performance refrigerator has become indispensable as its application field has expanded. Such small refrigerators are required to be lightweight, small and have high thermal efficiency.

このようなことから、気体冷凍に代わる磁気熱量効果
を用いた熱サイクル(例えばカルノー、エリクソン)に
よる新たな冷凍方式(磁気冷凍)及びスターリングサイ
クルによる気体冷凍の高性能化の研究が盛んに行われて
いる。
For this reason, research has been actively conducted on a new refrigeration method (magnetic refrigeration) using a heat cycle (eg, Carnot and Ericsson) using the magnetocaloric effect instead of gas refrigeration and on improving the performance of gas refrigeration using the Stirling cycle. ing.

前記スターリング等の熱サイクルによる気体冷凍機の
高性能化を図るには、蓄熱器、圧縮部及び膨張部の良好
が重要な課題となっている。特に、蓄熱器を構成する蓄
熱材料はその性能を大きく左右する。かかる蓄熱材料
は、銅や鉛の比熱が著しく低下する20K以下においても
高い比熱を有する材料が要望されており、これについて
も各種の磁性体が検討されている。
In order to improve the performance of a gas refrigerator by a heat cycle such as the Stirling method, it is important to improve the heat storage unit, the compression unit, and the expansion unit. In particular, the performance of the heat storage material constituting the heat storage device is greatly affected. As such a heat storage material, a material having a high specific heat even at 20 K or less, at which the specific heat of copper or lead is remarkably reduced, has been demanded, and various magnetic materials have been studied.

また、前記蓄熱器は冷凍機に組込まれて使用されるこ
とが多く、例えばスターリングサイクル作動する装置、
ビルマイヤーサイクルで作動する装置或いはギフォード
ーマクマホン型の装置に用いられている。これらの装置
においては、圧縮された作動媒質が蓄熱器内を一方向に
流れてその熱エネルギーを充填物質に供給し、ここで膨
張した作動媒質が反対方向に流れ、充填物質から熱エネ
ルギーを受取る。こうした過程で復熱効果が良好になる
に伴って作動媒質サイクルの熱効率が良好となり、一層
低い温度を実現することが可能となる。
Further, the regenerator is often used by being incorporated into a refrigerator, for example, a device that operates a Stirling cycle,
It is used in devices that operate on the Billmeyer cycle or devices of the Gifford-McMahon type. In these devices, a compressed working medium flows unidirectionally through the regenerator and supplies its thermal energy to the filler material, where the expanded working medium flows in the opposite direction and receives thermal energy from the filler material. . In this process, as the recuperation effect becomes better, the thermal efficiency of the working medium cycle becomes better, and a lower temperature can be realized.

ところで、低温蓄熱器においては従来より充填物質を
鉛又は青銅のボール、或いは銅、燐青銅の金網層から形
成している。しかしながら、かかる充填物質は比熱が20
K以下の極低温で過度に小さいため、上述した冷凍機で
の作動に際して極低温下で1サイクル毎に充填物質に充
分な熱エネルギーを貯蔵することができず、かつ作動媒
質が充填物質から充分な熱エネルギーを受取ることがで
きなくなる。その結果、前記充填物質を有する蓄熱器を
組込んだ冷凍機では極低温に到達させることができない
問題があった。
By the way, in the low-temperature heat storage device, the filling material is conventionally formed of lead or bronze balls or a wire mesh layer of copper or phosphor bronze. However, such packing materials have a specific heat of 20.
Since it is excessively small at extremely low temperatures of K or less, sufficient thermal energy cannot be stored in the packing material every cycle at extremely low temperatures during operation with the above-described refrigerator, and the working medium is not sufficiently separated from the packing material. Can no longer receive high thermal energy. As a result, there is a problem that a refrigerator incorporating the regenerator having the filling material cannot reach extremely low temperatures.

そこで、上記蓄熱器の極低温での復熱特性を向上する
目的で、充填物質として20K以下に比熱の最大値を有
し、かつその値が単位体積当りの比熱(体積比熱)で充
分に大きいR・Rh金属間化合物(R;Sm,Gd,Tb,Dy,Ho,Er,
Tm,Yb)を用いることが提案されている(特開昭51−523
78号)。しかしながら、かかる充填物質は一構成成分と
してRh(ロジウム)を用い、極めて高価であるため、数
百グラムオーダで使用する蓄熱器の充填物質としては実
用化の点で問題がある。
Therefore, in order to improve the regenerative characteristics at extremely low temperatures of the regenerator, the filling material has a maximum value of specific heat of 20K or less, and the value is sufficiently large in specific heat per unit volume (volume specific heat). R-Rh intermetallic compound (R; Sm, Gd, Tb, Dy, Ho, Er,
Tm, Yb) has been proposed (JP-A-51-523).
No. 78). However, since such a filling material uses Rh (rhodium) as one component and is extremely expensive, there is a problem in practical use as a filling material for a regenerator used on the order of several hundred grams.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされた
もので、液体窒素温度以下のような極低温で優れた磁気
熱量効果を示し、かつ優れた熱伝達特性、復熱特性を有
する比較的安価な磁性体を蓄熱物質として充填された低
温蓄熱器を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and has an excellent magnetocaloric effect at an extremely low temperature such as liquid nitrogen temperature or lower, and has an excellent heat transfer. An object of the present invention is to provide a low-temperature heat storage device filled with a relatively inexpensive magnetic material having characteristics and recuperation characteristics as a heat storage material.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明は、蓄熱物質が充填された低温蓄熱器におい
て、一般式(I) AMz …(I) (但し、式中のAはSc,Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,
Ho,Er,Tm,Yb,Luから選ばれる少なくとも1種の希土類元
素、MはNi,Co,Cu,Ag,Au,Mn,Fe,Al,Zr,Pd,B,Si,P,Cから
選ばれる少なくとも1種、zは0.001≦z≦9.0を示す)
にて表わされる1種又は2種以上からなるアモルファス
磁性体を蓄熱物質として充填したことを特徴とする低温
蓄熱器である。
(Means for Solving the Problems) The present invention relates to a low-temperature heat storage device filled with a heat storage material, wherein a general formula (I) AMz ... (I) (where A is Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy,
At least one rare earth element selected from Ho, Er, Tm, Yb, Lu; M is selected from Ni, Co, Cu, Ag, Au, Mn, Fe, Al, Zr, Pd, B, Si, P, C At least one species, z represents 0.001 ≦ z ≦ 9.0)
A low-temperature heat storage device characterized by being filled as a heat storage material with one or two or more kinds of amorphous magnetic materials represented by the following formula:

上記蓄熱物質をアモルファス磁性体とした理由は化合
物磁性体に対して以下の利点による。
The reason why the heat storage material is made of an amorphous magnetic material is as follows with respect to a compound magnetic material.

極低温域において大きな磁気比熱を実現するために
は、磁気転移点を極低温域まで下げなければならないが
そのためには、希土類濃度を高くする必要がある。とこ
ろが化合物系,たとえばRMrzでは、z値が2未満という
高希土類濃度の化合物は存在せず最適のz値の範囲(0.
001z<2)の磁性体を得られない。その点アモルフ
ァスではz値に任意性があるため高稀土類濃度のものが
得られ、極低温域で大きい磁気比熱を有する磁性体を得
ることができる。
In order to realize a large magnetic specific heat in a cryogenic temperature range, the magnetic transition point must be lowered to the cryogenic temperature range. To that end, it is necessary to increase the rare earth concentration. However, in a compound system, for example, RMrz, there is no compound having a high rare earth concentration having a z value of less than 2, and an optimum z value range (0.
001z <2) cannot be obtained. On the other hand, in the amorphous state, the z value is arbitrary, so that a material having a high rare earth concentration can be obtained, and a magnetic material having a large magnetic specific heat in an extremely low temperature region can be obtained.

極低温域での格子比熱は、物質に固有なデバイ温度に
より決まる。デバイ温度も稀土類濃度が高まるにつれ低
下し、それに伴い極低温域での格子比熱は増大する。上
述と同じ理由でアモルファスでは化合物としては存在
しない組成での低デバイ温度のものが得られ、極低温域
で大きい格子比熱を有する磁性体を得ることかができ
る。
The lattice specific heat in the cryogenic temperature range is determined by the Debye temperature unique to a substance. The Debye temperature also decreases as the rare earth concentration increases, and the lattice specific heat in the cryogenic region increases accordingly. For the same reason as described above, an amorphous material having a low Debye temperature with a composition not existing as a compound can be obtained, and a magnetic material having a large lattice specific heat in an extremely low temperature region can be obtained.

アモルファスとすることで機械強度のすぐれたものが
得られる。たとえば気体冷凍機における10気圧をこえる
繰り返しの圧力変化による衝撃・摩耗に対して、高い耐
久性を有する磁性体が得られる。
By making it amorphous, a material having excellent mechanical strength can be obtained. For example, it is possible to obtain a magnetic material having high durability against impact and abrasion due to repeated pressure changes exceeding 10 atm in a gas refrigerator.

以上の理由により、本発明によるアモルファス磁性体
を用い、高い蓄熱特性と、高耐久力を合わせもつ蓄冷器
の構成が可能となる。
For the above reasons, it is possible to use the amorphous magnetic material according to the present invention to configure a regenerator having high heat storage characteristics and high durability.

なお、z値を0.001以上としたのは、アモルファス製
造を容易とするためである。
The reason why the z value is set to 0.001 or more is to facilitate the production of amorphous.

上記アモルファス磁性体は、平均粒径又は繊維径又は
厚さが1〜2000μmの形状にすることが望ましい。この
理由は、その平均粒径又は繊維径を1μm未満にすると
蓄熱器に充填した際、高圧作動媒質(例えばヘリウムガ
ス)と共に蓄熱器の外部に流出し易くなり、かといって
その平均粒径又は繊維径が2000μmを超えるとアモルフ
ァス磁性体の熱伝導度が(磁性体)/(作動媒質)間の
熱伝達の律速要因となり、熱伝達性が著しく低下して復
熱効果の低下を招く恐れがあるからである。こうした平
均粒径又は繊維径の上限値を規定した理由をさらに具体
的に説明すると、蓄熱物質の熱容量を100%活用するた
めには、大きい体積比熱(ρCp;ρは蓄熱物質の密度、C
pは比熱)に見合う高熱伝導度が要求される。即ち、蓄
熱に寄与する蓄熱物質の有効体積を決定する侵入深さ
(ld)は、ld=λ/(ρCpπf)で表わされる。ここで
λは熱伝導度、ρは作動媒質の密度、Cpは比熱、πfは
冷凍サイクルを示す。従って、例えばρCpが6K以上で0.
3J/cm3Kと大きいErNi1/3のような蓄熱物質を用いた場合
には、その熱伝導度(80mW/Kcm)との関係よりldは600
μm程度となることから、かかる蓄熱物質の粒径の上限
は1000μmとすることが必要となる。
It is desirable that the amorphous magnetic material has an average particle diameter, a fiber diameter or a thickness of 1 to 2000 μm. The reason for this is that if the average particle size or fiber diameter is less than 1 μm, when the regenerator is filled, it tends to flow out of the regenerator together with the high-pressure working medium (for example, helium gas). If the fiber diameter exceeds 2000 μm, the thermal conductivity of the amorphous magnetic material becomes a rate-determining factor for heat transfer between (magnetic material) and (working medium), and the heat transferability may be significantly reduced, leading to a decrease in the recuperative effect. Because there is. The reason for defining the upper limit of the average particle diameter or the fiber diameter will be described more specifically. In order to utilize 100% of the heat capacity of the heat storage material, a large volume specific heat (ρCp;
(p is specific heat) and high thermal conductivity is required. That is, the penetration depth (ld) that determines the effective volume of the heat storage material that contributes to heat storage is represented by ld = λ / (ρCpπf). Here, λ is the thermal conductivity, ρ is the density of the working medium, Cp is the specific heat, and πf is the refrigeration cycle. Therefore, for example, when ρCp is 6K or more, 0.
When a heat storage material such as ErNi 1/3 , which is as large as 3 J / cm 3 K, is used, ld is 600 due to its thermal conductivity (80 mW / Kcm).
Since it is about μm, it is necessary to set the upper limit of the particle diameter of the heat storage material to 1000 μm.

上記アモルファス磁性体は、三次元方向に規則的に充
填して均一な熱伝達性及び圧力損失の低減化を達成する
関連から、特に前記平均粒径の範囲にある球状、前
記繊維径の範囲にある繊維状の形状、1〜2000μm径
のスルーホールを複数設けた、厚さ方向にガス通過可能
なリボン形状とすることが望ましい。
The amorphous magnetic material is regularly filled in the three-dimensional direction to achieve uniform heat transfer and reduced pressure loss. It is desirable to use a certain fibrous shape, a ribbon shape having a plurality of through holes having a diameter of 1 to 2000 μm and capable of passing gas in the thickness direction.

上記の球状磁性体を製造するには、溶融液滴とした
後、不活性ガス又は液体で急冷する方法、金属冷媒上で
転がせながら冷却する方法がある。液滴とするには、た
とえば溶融液を高速回転する円板上に落とし、溶融液を
遠心力で液滴に引きちぎる方法、あるいは粉末を、高温
プラズマ、アーク放電、高周波誘導で溶融液滴とする方
法がある。溶融液滴が表面張力により球状となりその形
のまま急冷、凝固させるので、不活性ガスで急冷する場
合は1気圧以上とし冷却速度を高めることが望ましい。
In order to produce the above-mentioned spherical magnetic material, there are a method of cooling rapidly with an inert gas or liquid after forming a molten droplet, and a method of cooling while rolling on a metal refrigerant. For example, a method of dropping a molten liquid onto a high-speed rotating disk and tearing the molten liquid into droplets by centrifugal force, or converting powder into a molten droplet by high-temperature plasma, arc discharge, high-frequency induction There is a way. Since the molten droplet becomes spherical due to surface tension and rapidly cools and solidifies as it is, when cooling rapidly with an inert gas, it is desirable to increase the cooling rate to 1 atmosphere or more.

上記の繊維状アモルファス磁性体を製造するには、
例えばW,Bなどの金属繊維、ガラス繊維、カーボン繊
維、プラスチック繊維等からなる織布を芯材とし、これ
に溶射やスパッタなどの気相成長、液相成長により前記
一般式(I)にて表わされるアモルファスを被覆する方
法を挙げることができる。
To produce the above fibrous amorphous magnetic material,
For example, a woven fabric made of a metal fiber such as W or B, glass fiber, carbon fiber, plastic fiber, or the like is used as a core material, and vapor-phase growth such as thermal spraying or sputtering, and liquid-phase growth are performed using the general formula (I). A method of coating the expressed amorphous can be mentioned.

上記のスルーホールをほどこしたリボンを製造する
には、回転ロールを用いた溶湯急冷により作製したリボ
ンに、機械的あるいはレーザーでせん孔する方法を挙げ
ることができる。
In order to manufacture a ribbon having the above-described through-hole, a method of mechanically or laser-punching a ribbon produced by quenching a molten metal using a rotating roll can be used.

上記一般式(I)で表わされるアモルファス磁性体の
中で、以下に説明する,の組成のものが好ましい。
Among the amorphous magnetic materials represented by the general formula (I), those having the following composition are preferred.

.一般式 ANiz …(II) (但し、式中のAはSc,Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,
Ho,Er,Tm,Ybから選ばれる少なくとも1種の希土類元
素、zは0.1≦z≦9.0を示す)にて表わされる1種又は
2種以上からなり、かつ平均粒径又は繊維径が1〜1000
μmのアモルファス磁性体。かかる磁性体において、前
述した理由からzが0.1≦z≦2.0の組成を有するものが
より好ましい。
. General formula ANiz ... (II) (where A is Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy,
At least one rare earth element selected from Ho, Er, Tm, and Yb, z represents 0.1 ≦ z ≦ 9.0), and has an average particle diameter or fiber diameter of 1 to 2 1000
μm amorphous magnetic material. Among such magnetic materials, those having a composition in which z is 0.1 ≦ z ≦ 2.0 are more preferable for the above-mentioned reason.

.一般式 A′1-XDxMz …(III) (但し、式中のA′は、Er,Ho,Dy,Tb,Gdから選ばれる少
なくとも1種の希土類元素、DはPr,Nd,Sm,Ceから選ば
れる少なくとも1種の元素、MはNi,Co及びCuから選ば
れる少なくとも1種の金属、xは0≦x<1、zは0.01
≦z≦9.0を示す)にて表わされる1種又は2種以上か
らなり、かつ平均粒径又は繊維径が1〜2000μmアモル
ファス磁性体。かかる一般式(III)において、A′と
してEr,Ho,Dy,Tb,Gdの重希土類元素を用いることによっ
てNi等のMとの合金により特に顕著な磁気比熱を発揮で
き比熱のピークの最大値を大きくできる。また、これら
重希土類元素を置換するDとしてPr,Nd,Sm,Ceの軽希土
類元素を選択することによってショットキー異常等を利
用して比熱のピークの最大値及び温度幅(半値幅)を調
整することが可能となる。更に、前述した理由からzが
0.1≦z<2.0の組成を有するものがより好ましい。
. General formula A ′ 1-X DxMz (III) (where A ′ is at least one rare earth element selected from Er, Ho, Dy, Tb, and Gd, and D is Pr, Nd, Sm, Ce) M is at least one metal selected from Ni, Co and Cu, x is 0 ≦ x <1, and z is 0.01
≦ z ≦ 9.0), and an amorphous magnetic material having an average particle diameter or a fiber diameter of 1 to 2000 μm. In the general formula (III), by using a heavy rare earth element such as Er, Ho, Dy, Tb, or Gd as A ', an alloy with M, such as Ni, can exhibit a particularly remarkable magnetic specific heat, and the maximum value of the specific heat peak Can be increased. Also, by selecting light rare earth elements such as Pr, Nd, Sm, and Ce as D to replace these heavy rare earth elements, the maximum value of the specific heat peak and the temperature width (half width) are adjusted by utilizing the Schottky anomaly and the like. It is possible to do. Furthermore, for the reasons described above, z
Those having a composition of 0.1 ≦ z <2.0 are more preferable.

また、上記一般式(I)のMの一部をB,Al,Ga,In,Si
等で置換されたアモルファス磁性体を一般式(IV)、一
般式(V)として下記に示す。但し、これら置換金属の
中でFeはFe−Feの直接交換作用が強く、過剰に置換する
と比熱ピークを示す温度が77K以上とかなり高温になる
ため、Ni等のMへの置換量は0.3以下にすることが必要
である。
Further, part of M in the general formula (I) is represented by B, Al, Ga, In, Si.
The amorphous magnetic material substituted by, for example, is shown below as general formula (IV) and general formula (V). However, among these substituted metals, Fe has a strong direct exchange effect of Fe-Fe, and if it is excessively substituted, the temperature at which the specific heat peak appears becomes 77 K or higher, which is considerably high. It is necessary to

A(M1-yXy)z …(IV) (但し、式中のAはY,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,
Ho,Er,Tm,Ybから選ばれる少なくとも1種の希土類元
素、MはNi,Co及びCuから選ばれる少なくとも1種の金
属、XはB,Al,Ga,In,Si,Ge,Sn,Pb,Ag,Au,Mg,Zn,Ru,Pd,P
t,Re,Cs,Ir,Fe,Mn,Cr,Cd,Hg,Osから選ばれる少なくとも
1種のアモルファス磁性体構成元素、yは0≦y<1.
0、好ましくはy≦0.5、zは0.001≦z≦9.0を示す)に
て表わされる1種又は2種以上からなるアモルファス磁
性体。
A (M 1-y Xy) z (IV) (where A is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy,
At least one rare earth element selected from Ho, Er, Tm, Yb, M is at least one metal selected from Ni, Co and Cu, X is B, Al, Ga, In, Si, Ge, Sn, Pb , Ag, Au, Mg, Zn, Ru, Pd, P
t, Re, Cs, Ir, Fe, Mn, Cr, Cd, Hg, Os, at least one element constituting an amorphous magnetic material, y is 0 ≦ y <1.
0, preferably y ≦ 0.5, and z represents 0.001 ≦ z ≦ 9.0).

A1-XDx(M1-yXy)z …(V) (但し、式中のA′は、Er,Ho,Dy,Tb,Gdから選ばれる少
なくとも1種の希土類元素、DはPr,Nd,Sm,Ceから選ば
れる少なくとも1種の元素、XはB,Al,Ga,In,Si,Ge,Sn,
Pb,Ag,Au,Mg,Zn,Ru,Pd,Pt,Re,Cs,Ir,Fe,Mn,Cr,Cd,Hg,Os
から選ばれる少なくとも1種のアモルファス磁性体構成
元素、xは0≦x<1、yはXがFeの場合、0≦y≦0.
8、XがFe以外の場合、0≦y<1.0、好ましくはy≦0.
5、zは0.001≦z≦9.0を示す)にて表わされる1種又
は2種以上からなるアモルファス磁性体。
A 1−X Dx (M 1−y Xy) z (V) (where A ′ is at least one rare earth element selected from Er, Ho, Dy, Tb and Gd, and D is Pr, X is at least one element selected from Nd, Sm, and Ce, and X is B, Al, Ga, In, Si, Ge, Sn,
Pb, Ag, Au, Mg, Zn, Ru, Pd, Pt, Re, Cs, Ir, Fe, Mn, Cr, Cd, Hg, Os
X is 0 ≦ x <1, and y is 0 ≦ y ≦ 0 when X is Fe.
8, when X is other than Fe, 0 ≦ y <1.0, preferably y ≦ 0.
5, z represents 0.001 ≦ z ≦ 9.0), or an amorphous magnetic material composed of one or more kinds.

(作用) 本発明に使用する一般式(I)にて表わされる高希土
類濃度の希土類元素とNiCo等のMで示される遷移金属を
ベースとした一種又は2種以上からなるアモルファス磁
性体は、10mW/cmK以上の優れた熱伝導度を有し、かつ該
アモルファス磁性体を所定の粒径又は繊維径にして蓄熱
物質として充填することによって液体窒素温度以下(特
に40K以下)のような極低温で優れた格子比熱と磁気熱
量効果を示し、かつ優れた熱伝達特性、復熱特性を有す
る比較的安価な低温蓄熱器を得ることができる。特に、
zを0.01≦z<2.0の範囲とすることによって、磁性体
からなる蓄熱物質の高温側での格子比熱を向上できる利
点を有する。そしてこの様な高希土類濃度の蓄冷材を容
易に得ることができる。
(Action) The amorphous magnetic material used in the present invention, which is composed of one or two or more kinds of rare earth elements having a high rare earth concentration represented by the general formula (I) and a transition metal represented by M such as NiCo, is 10 mW. / cmK or more, and by filling the amorphous magnetic material with a predetermined particle size or fiber diameter as a heat storage material, it can be used at extremely low temperatures such as liquid nitrogen temperature or lower (especially 40K or lower). A relatively inexpensive low-temperature regenerator exhibiting excellent lattice specific heat and magnetocaloric effect and having excellent heat transfer characteristics and recuperation characteristics can be obtained. Especially,
By setting z in the range of 0.01 ≦ z <2.0, there is an advantage that the lattice specific heat on the high temperature side of the heat storage material made of a magnetic material can be improved. In addition, such a cold storage material having a high rare earth concentration can be easily obtained.

また、一般式(I)にて表わされる化合物を2種以上
の混合集合物としたアモルファス磁性体を用いることに
よって、比熱ピークがブロードとなり、熱容量が減少す
るものの、より広い温度範囲で比熱が大きくなり、低温
蓄熱器の復熱特性を向上できる。
In addition, by using an amorphous magnetic material in which the compound represented by the general formula (I) is a mixed aggregate of two or more kinds, the specific heat peak becomes broad and the heat capacity decreases, but the specific heat increases over a wider temperature range. Thus, the recuperation characteristics of the low-temperature heat storage device can be improved.

更に、低温蓄熱器の温度勾配に合せて磁気転移点(比
熱がピークを示す温度)の異なる複数種の磁性体を積層
して充填することによって、復熱特性が一層優れた低温
蓄熱器を得ることができる。
Furthermore, by stacking and filling a plurality of types of magnetic materials having different magnetic transition points (temperatures at which specific heat reaches a peak) in accordance with the temperature gradient of the low-temperature regenerator, a low-temperature regenerator with even better recuperation characteristics is obtained. be able to.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Hereinafter, an example of the present invention will be described in detail.

実施例1〜3 まず、アーク溶解炉を用いてErNi0.4の組成比の合
金、ErNi1.1の組成比の合金及びErNi1.8の組成比の合金
を夫々調製し、これら合金をヘリウムガス雰囲気中にて
高周波溶解し、さらに回転ディスクに射出することによ
り3種のアモルファス磁性体を製造した。なお、この射
出で最終到達ガス圧は1.8気圧であった。
Examples 1-3 First, an alloy having a composition ratio of ErNi 0.4 , an alloy having a composition ratio of ErNi 1.1 , and an alloy having a composition ratio of ErNi 1.8 were each prepared using an arc melting furnace, and these alloys were mixed in a helium gas atmosphere. Three kinds of amorphous magnetic materials were produced by high-frequency melting and injection into a rotating disk. The final gas pressure reached 1.8 atm in this injection.

得られた本実施例1〜3の磁性体をSEM写真で観察し
たところ、平均粒径が40〜100μmの球状体であること
が確認された。
Observation of the obtained magnetic materials of Examples 1 to 3 with SEM photographs confirmed that the magnetic materials were spherical having an average particle diameter of 40 to 100 μm.

また、得られた各球状アモルファス磁性体の体積比熱
を測定したところ、第1図に示す特性図を得た。なお、
第1図中には比較例としてのPb及びCuの体積比熱を併記
した。この第1図から明らかなように本実施例1〜3の
蓄熱物質としての球状アモルファス磁性体はいずれも約
15K以下の極低温において従来の蓄熱物質であるPb,Cuに
比べて優れた体積比熱を有し、かつ15K以上の温度域に
おいて優れた格子比熱を有することがわかる。特に、前
記一般式(I)のzが0.01≦z<2.0の範囲にある組成
の合金(実施例1;ErNi0.4、実施例2;ErNi1.1)は15K以
上の温度域においてPbに匹敵する優れた格子比熱を有す
ることがわかる。
Further, when the volume specific heat of each of the obtained spherical amorphous magnetic materials was measured, the characteristic diagram shown in FIG. 1 was obtained. In addition,
FIG. 1 also shows the volume specific heats of Pb and Cu as comparative examples. As is apparent from FIG. 1, the spherical amorphous magnetic material as the heat storage material in Examples 1 to 3 was about
It can be seen that at very low temperatures of 15K or less, it has an excellent volume specific heat as compared with conventional thermal storage materials Pb and Cu, and has an excellent lattice specific heat at a temperature range of 15K or more. In particular, alloys having a composition in which z in the general formula (I) is in the range of 0.01 ≦ z <2.0 (Example 1; ErNi 0.4 , Example 2; ErNi 1.1 ) are superior to Pb in a temperature range of 15 K or more. It can be seen that it has a lattice specific heat.

更に、上記球状アモルファス磁性体の中でErNi1/3
組成比の球状アモルファス磁性体(平均粒径50〜100μ
m)をフェノール樹脂製の蓄冷容器に充填(充填率;63
%)した後、熱容量25J/Kのヘリウムガスを3g/secの質
量流量,16atmのガス圧の条件で供給するGM冷凍サイクル
を行って蓄冷効率を測定した。その結果、ErNi0.4の組
成比の球状磁性体を充填した蓄冷器では同一平均粒径、
充填率とした球状鉛(比較例)に比べて40Kから4Kの温
度域において効率が8倍以上向上することが確認され
た。
Further, among the above-mentioned spherical amorphous magnetic materials, a spherical amorphous magnetic material having a composition ratio of ErNi 1/3 (average particle diameter of 50 to 100 μm) is used.
m) into a cold storage container made of phenolic resin (filling rate: 63
%), A GM refrigeration cycle in which helium gas having a heat capacity of 25 J / K was supplied under the conditions of a mass flow rate of 3 g / sec and a gas pressure of 16 atm was performed to measure cool storage efficiency. As a result, in the regenerator filled with a spherical magnetic material having a composition ratio of ErNi 0.4 , the same average particle size,
It was confirmed that the efficiency was improved by 8 times or more in the temperature range of 40K to 4K as compared with spherical lead (comparative example) having a filling factor.

実施例4〜7 まず、アーク溶解炉を用いてDyNi0.4の組成比の合
金、(Er0.5Dy0.5)Ni0.4の組成比の合金、(Er0.75Dy
0.25)Ni0.4の組成比の合金及びErNi0.4の組成比の合金
を夫々調製した後、これら合金を実施例1と同様な方法
により4種のアモルファス磁性体を製造した。
Examples 4 to 7 First, using an arc melting furnace, an alloy having a composition ratio of DyNi 0.4 , an alloy having a composition ratio of (Er 0.5 Dy 0.5 ) Ni 0.4 , and (Er 0.75 Dy)
0.25 ) After preparing an alloy having a composition ratio of Ni 0.4 and an alloy having a composition ratio of ErNi 0.4 , four kinds of amorphous magnetic materials were manufactured from these alloys in the same manner as in Example 1.

得られた本実施例4〜7の磁性体をSEM写真で観察し
たところ、平均粒径が40〜100μmの球状体であること
が確認された。
Observation of the obtained magnetic materials of Examples 4 to 7 with SEM photographs confirmed that they were spherical having an average particle size of 40 to 100 μm.

また、上記各球状アモルファス磁性体の体積比熱を測
定したところ、第2図に示す特性図を得た。なお、第2
図中には比較例としてのPbの体積比熱を併記した。この
第2図から明らかなように本実施例4〜7の蓄熱物質と
しての球状アモルファス磁性体はいずれも約15K以下の
極低温において従来の蓄熱物質であるPbに比べて優れた
体積比熱を有し、かつ15K以上の温度域において優れた
格子比熱を有することがわかる。しかも、本実施例4〜
7の球状アモルファス磁性体の中で体積比熱のピーク値
を示す温度は合金の一成分であるErの濃度の増加に伴っ
て低温側にシフトすることがわかる。
Further, when the volume specific heat of each of the spherical amorphous magnetic materials was measured, the characteristic diagram shown in FIG. 2 was obtained. The second
In the figure, the volume specific heat of Pb as a comparative example is also shown. As is apparent from FIG. 2, the spherical amorphous magnetic materials as the heat storage materials of Examples 4 to 7 all have excellent volume specific heat at extremely low temperatures of about 15 K or less as compared with the conventional heat storage material Pb. It can be seen that the alloy has excellent lattice specific heat in a temperature range of 15 K or more. Moreover, in the fourth to fourth embodiments.
It can be seen that, among the spherical amorphous magnetic materials of No. 7, the temperature at which the peak value of the volume specific heat is shifted to a lower temperature side as the concentration of Er which is one component of the alloy increases.

実施例8〜10 まず、アーク溶解炉を用いて(Er0.8Pr0.2)Ni0.4
組成比の合金、(Er0.7Pr0.3)Ni0.4の組成比の合金及
び(Er0.6Pr0.4)Ni0.4の組成比の合金を夫々調製した
後、これら合金を実施例1と同様な方法により3種のア
モルファス磁性体を製造した。
Examples 8 to 10 First, using an arc melting furnace, an alloy having a composition ratio of (Er 0.8 Pr 0.2 ) Ni 0.4 , an alloy having a composition ratio of (Er 0.7 Pr 0.3 ) Ni 0.4 and an alloy having a composition ratio of (Er 0.6 Pr 0.4 ) Ni 0.4 After preparing alloys having the respective composition ratios, three kinds of amorphous magnetic materials were produced from these alloys in the same manner as in Example 1.

得られた本実施例8〜10のアモルファス磁性体をSEM
写真で観察したところ、平均粒径が40〜100μmの球状
体であることが確認された。
The obtained amorphous magnetic materials of Examples 8 to 10 were subjected to SEM
Observation with a photograph confirmed that the particles were spherical having an average particle size of 40 to 100 μm.

また、上記実施例1〜10の各球状アモルファス磁性体
をフェノール樹脂製の蓄冷容器に夫々充填(充填率;65
%)した後、熱容量25J/Kのヘリウムガスを3g/secの質
量流量、16atmのガス圧の条件で供給するGM冷凍サイク
ルを行なって冷凍試験を行なった。その結果、実施例1
〜10の球状磁性体を充填した蓄冷器では、同一平均粒
径、充填率とした球状鉛(比較例)に比べて無負荷状態
の最低到達温度が1K以上低下することが確認された。
Each of the spherical amorphous magnetic materials of Examples 1 to 10 was filled in a phenol resin cold storage container (filling rate: 65%).
%), A GM refrigeration cycle of supplying a helium gas having a heat capacity of 25 J / K at a mass flow rate of 3 g / sec and a gas pressure of 16 atm was performed to perform a refrigeration test. As a result, Example 1
It was confirmed that in the regenerators filled with the spherical magnetic materials of ~ 10, the lowest attained temperature in the no-load state was reduced by 1K or more as compared with spherical lead (comparative example) having the same average particle size and filling rate.

実施例11,12 まず、アーク溶解炉を用いてErCo0.4の組成比の合金
及びErCo0.1の組成比の合金を夫々調製し、これら合金
をヘリウムガス雰囲気中にて高周波溶解し、更に回転デ
ィスクに射出することにより2種のアモルファス磁性体
を製造した。なお、この射出での最終到達アルゴンガス
圧は1.8気圧であった。
Examples 11 and 12 First, an alloy having a composition ratio of ErCo 0.4 and an alloy having a composition ratio of ErCo 0.1 were respectively prepared using an arc melting furnace, and these alloys were subjected to high-frequency melting in a helium gas atmosphere, and further to a rotating disk. By injection, two types of amorphous magnetic materials were produced. The final reached argon gas pressure in this injection was 1.8 atm.

得られた本実施例11,12のアモルファス磁性体をSEM写
真で観察したところ、平均粒径が40〜100μmの球状体
であることが確認された。
Observation of the obtained amorphous magnetic materials of Examples 11 and 12 by SEM photograph confirmed that they were spherical with an average particle diameter of 40 to 100 μm.

また、上記各球状アモルファス磁性体をフェノール樹
脂製の蓄冷容器に夫々充填(充填率;65%)した後、熱
容量25J/Kのヘリウムガスを3g/secの質量流量、16atmの
ガス圧の条件で供給するGM冷凍サイクルを行なって蓄冷
効率を測定した。その結果、実施例11,12の球状磁性体
を充填した蓄冷器では、同一平均粒径、充填率とした球
状鉛(比較例)に比べて効率が7倍以上向上することが
確認された。
After filling each spherical amorphous magnetic material into a cold storage container made of phenol resin (filling rate: 65%), helium gas with a heat capacity of 25 J / K was supplied under a condition of a mass flow rate of 3 g / sec and a gas pressure of 16 atm. The supplied GM refrigeration cycle was performed to measure the cool storage efficiency. As a result, it was confirmed that in the regenerators filled with the spherical magnetic materials of Examples 11 and 12, the efficiency was improved 7 times or more as compared with spherical lead (comparative example) having the same average particle size and the same filling ratio.

実施例13〜15 まず、アーク溶解炉を用いて(Er0.8Nd0.2)Co0.4
組成比の合金、(Er0.7Nd0.3)Co0.4の組成比の合金及
び(Er0.6Nd0.4)Co0.4の組成比の合金を夫々調製した
後、これら合金を実施例11と同様な方法により3種のア
モルファス磁性体を製造した。
Examples 13 to 15 First, using an arc melting furnace, an alloy having a composition ratio of (Er 0.8 Nd 0.2 ) Co 0.4 , an alloy having a composition ratio of (Er 0.7 Nd 0.3 ) Co 0.4 and an alloy having a composition ratio of (Er 0.6 Nd 0.4 ) Co 0.4 After preparing alloys having the respective composition ratios, three kinds of amorphous magnetic materials were produced from these alloys in the same manner as in Example 11.

得られた本実施例13〜15のアモルファス磁性体をSEM
写真で観察したところ、平均粒径が40〜100μmの球状
体であることが確認された。
The obtained amorphous magnetic materials of Examples 13 to 15 were subjected to SEM.
Observation with a photograph confirmed that the particles were spherical having an average particle size of 40 to 100 μm.

また、上記各球状磁性体をフェノール樹脂製の蓄冷容
器に夫々充填(充填率;65%)した後、熱容量25J/Kのヘ
リウムガスを3g/secの質量流量、16atmのガス圧の条件
で供給するGM冷凍サイクルを行なって蓄冷効率を測定し
た。その結果、実施例13〜15の球状アモルファス磁性体
を充填した蓄冷器では、同一平均粒径、充填率とした球
状鉛(比較例)に比べて効率が8倍以上向上することが
確認された。
After filling each spherical magnetic material into a phenol resin cold storage container (filling rate: 65%), helium gas with a heat capacity of 25 J / K was supplied under the conditions of a mass flow rate of 3 g / sec and a gas pressure of 16 atm. The GM refrigeration cycle was performed to measure the cold storage efficiency. As a result, in the regenerators filled with the spherical amorphous magnetic materials of Examples 13 to 15, it was confirmed that the efficiency was improved by 8 times or more as compared with spherical lead (comparative example) having the same average particle size and filling rate. .

実施例16,17 まず、アーク溶解炉を用いてErCu0.4の組成比の合金
及びErCu0.1の組成比の合金を夫々調製し、これら合金
をヘリウムガス雰囲気中にて高周波溶解し、更に回転デ
ィスクに射出することにより2種のアモルファス磁性体
を製造した。なお、この射出での最終到達ガス圧は1.8
気圧であった。
Examples 16 and 17 First, an alloy having a composition ratio of ErCu 0.4 and an alloy having a composition ratio of ErCu 0.1 were respectively prepared using an arc melting furnace, and these alloys were subjected to high frequency melting in a helium gas atmosphere, and further to a rotating disk. By injection, two types of amorphous magnetic materials were produced. The final gas pressure in this injection was 1.8
Atmospheric pressure.

得られた本実施例16,17のアモルファス磁性体をSEM写
真で観察したところ、平均粒径が40〜100μmの球状体
であることが確認された。
Observation of the obtained amorphous magnetic materials of Examples 16 and 17 by SEM photograph confirmed that they were spherical bodies having an average particle size of 40 to 100 μm.

また、上記各球状磁性体をフェノール樹脂製の蓄冷容
器に夫々充填(充填率;65%)した後、熱容量25J/Kのヘ
リウムガスを3g/secの質量流量、16atmのガス圧の条件
で供給するGM冷凍サイクルを行なって蓄冷効率を測定し
た。その結果、実施例11,12の球状アモルファス磁性体
を充填した蓄冷器では、同一平均粒径、充填率とした球
状鉛(比較例)に比べて効率が8倍以上向上することが
確認された。
After filling each spherical magnetic material into a phenol resin cold storage container (filling rate: 65%), helium gas with a heat capacity of 25 J / K was supplied under the conditions of a mass flow rate of 3 g / sec and a gas pressure of 16 atm. The GM refrigeration cycle was performed to measure the cold storage efficiency. As a result, it was confirmed that the regenerator filled with the spherical amorphous magnetic material of Examples 11 and 12 had an efficiency eight times or more higher than that of spherical lead (comparative example) having the same average particle size and filling rate. .

実施例18〜23 まず、アーク溶解炉を用いてErNi0.4の組成比の合金
及びErNi0.1の組成比の合金、ErCo0.4の組成比の合金、
ErCoの組成比の合金、ErCuzの組成比の合金及びErCu0.1
の組成比の合金を夫々調製した。つづいて、繊維径が10
μmのタングステン(W)繊維の織布に前記各合金を溶
射して6種の繊維状アモルファス磁性体を製造した。
Examples 18-23 First, an alloy having a composition ratio of ErNi 0.4 and an alloy having a composition ratio of ErNi 0.1 using an arc melting furnace, an alloy having a composition ratio of ErCo 0.4 ,
Alloy with ErCo composition ratio, alloy with ErCu z composition ratio and ErCu 0.1
Alloys having the following composition ratios were prepared. Next, when the fiber diameter is 10
The above alloys were sprayed onto a woven fabric of μm tungsten (W) fiber to produce six kinds of fibrous amorphous magnetic materials.

得られた本実施例18〜23の繊維状磁性体の平均繊維径
を測定したところ、40〜100μmであることが確認され
た。
When the average fiber diameter of the obtained fibrous magnetic bodies of Examples 18 to 23 was measured, it was confirmed to be 40 to 100 μm.

また、上記各繊維状磁性体をフェノール樹脂製の蓄冷
容器に夫々積層、充填(充填率;75%)した後、熱容量2
5J/Kのヘリウムガスを3g/secの質量流量、16atmのガス
圧の条件で供給するGM冷凍サイクルを行なって蓄冷効率
を測定した。その結果、実施例8〜10の繊維状磁性体を
積層、充填した蓄冷器では、同一繊維径、充填率とした
鉛単独からなる繊維の織布(比較例)に比べて効率が10
倍以上向上することが確認された。
After laminating and filling each of the above fibrous magnetic materials in a phenol resin cold storage container (filling rate: 75%),
A GM refrigeration cycle in which 5 J / K helium gas was supplied under the conditions of a mass flow rate of 3 g / sec and a gas pressure of 16 atm was performed, and the cool storage efficiency was measured. As a result, in the regenerator in which the fibrous magnetic materials of Examples 8 to 10 were stacked and filled, the efficiency was 10 times higher than that of a woven fabric of lead alone having the same fiber diameter and filling ratio (comparative example).
It was confirmed that it improved more than twice.

〔発明の効果〕〔The invention's effect〕

以上詳述した如く、本発明によれば液体窒素温度以下
のような極低温(特に40K以下)で優れた熱量効果を示
し、かつ優れた熱伝達特性、復熱特性を有する比較的安
価なアモルファス磁性体を蓄冷物質として充填された低
温蓄熱器を提供でき、ひいてはかかる低温蓄熱器により
4K級のGM冷凍機を実現できる等顕著な効果を奏する。特
に高濃度の希土類を有する蓄冷材を容易に得ることがで
きる。また、特にアモルファス磁性体を所定の平均粒径
の球状や所定の繊維径の繊維状とすることによって、三
次元方向に規則的に充填でき、充填率、ヘリウムガス等
の作動媒質との熱伝達特性をより一層向上され、かつ圧
力損失の低減化を達成した低温蓄熱器を得ることが可能
となる。
As described in detail above, according to the present invention, a relatively inexpensive amorphous material having an excellent calorie effect at an extremely low temperature such as liquid nitrogen temperature or lower (especially 40K or lower), and having excellent heat transfer characteristics and recuperation characteristics. It is possible to provide a low-temperature regenerator filled with a magnetic substance as a regenerator material, and by this low-temperature regenerator
It has remarkable effects such as realizing a 4K class GM refrigerator. In particular, a regenerator material having a high concentration of rare earth can be easily obtained. In particular, by forming the amorphous magnetic material into a spherical shape having a predetermined average particle diameter or a fibrous shape having a predetermined fiber diameter, the magnetic material can be regularly filled in a three-dimensional direction, and a filling rate and heat transfer with a working medium such as helium gas can be achieved. It is possible to obtain a low-temperature regenerator with further improved characteristics and reduced pressure loss.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は特性図である。 1 and 2 are characteristic diagrams.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蓄熱物質が充填された低温蓄熱器におい
て、一般式(I) AMz …(I) (但し、式中のAはSc,Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,
Ho,Er,Tm,Yb,Luから選ばれる少なくとも1種の希土類元
素、MはNi,Co,Cu,Ag,Au,Mn,Fe,Al,Zr,Pd,B,Si,P,Cから
選ばれる少なくとも1種、zは0.001≦z≦9.0を示す)
にて表わされる1種又は2種以上からなるアモルファス
磁性体を蓄熱物質として充填したことを特徴とする低温
蓄熱器。
In a low-temperature heat storage device filled with a heat storage material, a general formula (I) AMz... (I) (where A is Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy,
At least one rare earth element selected from Ho, Er, Tm, Yb, Lu; M is selected from Ni, Co, Cu, Ag, Au, Mn, Fe, Al, Zr, Pd, B, Si, P, C At least one species, z represents 0.001 ≦ z ≦ 9.0)
A low-temperature heat storage device characterized by being filled as a heat storage material with one or two or more kinds of amorphous magnetic materials represented by the formula:
JP1314436A 1989-12-05 1989-12-05 Low temperature storage Expired - Lifetime JP2941865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1314436A JP2941865B2 (en) 1989-12-05 1989-12-05 Low temperature storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1314436A JP2941865B2 (en) 1989-12-05 1989-12-05 Low temperature storage

Publications (2)

Publication Number Publication Date
JPH03177083A JPH03177083A (en) 1991-08-01
JP2941865B2 true JP2941865B2 (en) 1999-08-30

Family

ID=18053338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1314436A Expired - Lifetime JP2941865B2 (en) 1989-12-05 1989-12-05 Low temperature storage

Country Status (1)

Country Link
JP (1) JP2941865B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186765A (en) * 1989-07-31 1993-02-16 Kabushiki Kaisha Toshiba Cold accumulating material and method of manufacturing the same
JP4703699B2 (en) 2008-09-04 2011-06-15 株式会社東芝 Magnetic material for magnetic refrigeration, magnetic refrigeration device and magnetic refrigeration system
JP2012052755A (en) * 2010-09-02 2012-03-15 Toyama Univ Magnetic cooling material and cryogenic temperature generation method using the same
JP6648884B2 (en) * 2015-08-21 2020-02-14 国立研究開発法人物質・材料研究機構 Magnetic refrigeration material
WO2021157735A1 (en) * 2020-02-05 2021-08-12 国立研究開発法人物質・材料研究機構 Magnetic refrigerant material and amr bed using same, and magnetic refrigeration device

Also Published As

Publication number Publication date
JPH03177083A (en) 1991-08-01

Similar Documents

Publication Publication Date Title
JPH07101134B2 (en) Heat storage material and low temperature heat storage
EP0411591B1 (en) Cold accumulating material and method of manufacturing the same
EP0551983B1 (en) Heat regenerative material
US5593517A (en) Regenerating material and refrigerator using the same
WO1998018880A1 (en) Cold accumulation material for ultra-low temperature, refrigerating machine using the material, and heat shield material
JP2001336845A (en) Cold accumulator and regenerative refrigerating machine using it
EP0777089A1 (en) Cold heat accumulating material for extremely low temperatures and cold heat accumulator for extremely low temperatures using the same
JP4322321B2 (en) Cold storage material for cryogenic temperature, refrigerator and heat shield material using it
JP2941865B2 (en) Low temperature storage
WO1999020956A1 (en) Cold-accumulating material and cold-accumulating refrigerator
JPH11325628A (en) Cold storage material and cold storage type refrigerating machine
JP2923705B2 (en) Cold storage material
JP3055674B2 (en) Heat storage materials and low-temperature heat storage
JP3381953B2 (en) Heat storage and refrigerator
JP2003509653A (en) Closed cycle cryogenic cooling system with ductile magnetic regenerator
JP3751646B2 (en) Cold storage material and refrigerator using the same
JP2585240B2 (en) Manufacturing method of cold storage material
JP2828978B2 (en) Cold storage material and method for producing the same
JP3561023B2 (en) Cryogenic cool storage material and cryogenic cool storage device using the same
JP2004099822A (en) Cold storage material and regenerative refrigerator using the same
JPH0792286B2 (en) refrigerator
JP2004143341A (en) Cold storage material and cold storage type refrigerator using the same
JPH0784957B2 (en) Low temperature regenerator
JP2957294B2 (en) Cryogenic heat storage material and cryogenic heat storage
JPH11294882A (en) Storage medium and cold storage type refrigerating machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11