JP2585240B2 - Manufacturing method of cold storage material - Google Patents

Manufacturing method of cold storage material

Info

Publication number
JP2585240B2
JP2585240B2 JP62008266A JP826687A JP2585240B2 JP 2585240 B2 JP2585240 B2 JP 2585240B2 JP 62008266 A JP62008266 A JP 62008266A JP 826687 A JP826687 A JP 826687A JP 2585240 B2 JP2585240 B2 JP 2585240B2
Authority
JP
Japan
Prior art keywords
magnetic
intermetallic compound
temperature
cold storage
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62008266A
Other languages
Japanese (ja)
Other versions
JPS63179052A (en
Inventor
政司 佐橋
ひろみ 丹生
陽一 東海
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62008266A priority Critical patent/JP2585240B2/en
Publication of JPS63179052A publication Critical patent/JPS63179052A/en
Application granted granted Critical
Publication of JP2585240B2 publication Critical patent/JP2585240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は蓄冷材料の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a method for producing a cold storage material.

(従来の技術) 近年、超電導技術の発展は著しく、その応用分野が拡
大するに伴って、小型で高性能の冷凍機の開発が不可欠
になってきている。このような小型冷凍機は、軽量・小
型で熱効率の高いことが要求される。
(Prior Art) In recent years, the development of superconducting technology has been remarkable, and as its application field has expanded, the development of a small, high-performance refrigerator has become indispensable. Such small refrigerators are required to be lightweight, small and have high thermal efficiency.

そこで、気体冷凍に代わる磁気熱量効果を用いたエリ
クソンサイクルによる新たな冷凍方式(磁気冷凍)及び
スターリングサイクルによる気体冷凍機の高性能化の研
究が盛んに行われている(Proceedings of ICEC 9(198
2),pp.26−29、Advances in Cryogenics Engineering,
1984,vol.29,pp.581−587 Proceedings of ICEC 10(19
84)、3rd Cryo−cooler Conference(1984))。
Therefore, a new refrigeration system (magnetic refrigeration) using the Ericsson cycle using the magnetocaloric effect instead of the gas refrigeration, and research on improving the performance of the gas refrigerator using the Stirling cycle have been actively conducted (Proceedings of ICEC 9 (198)).
2), pp. 26-29, Advances in Cryogenics Engineering,
1984, vol. 29, pp. 581-587 Proceedings of ICEC 10 (19
84), 3rd Cryo-cooler Conference (1984)).

磁気冷凍方式は、磁性体に磁場を加えたときのスピン
配列状態と、磁場を解除したときのスピンが乱雑な状態
とのエントロピーの変化(ΔSM)による吸熱、放熱反応
を利用することを基本原理とするものである。したがっ
て、このΔSMが大きければ大きいほど、それだけ大きな
冷却効果を発揮することができるため、各種の磁性体が
検討されている。
The magnetic refrigeration method basically uses the heat absorption and heat release reactions due to the change in entropy (ΔS M ) between the spin arrangement state when a magnetic field is applied to the magnetic material and the disordered spin state when the magnetic field is released. It is the principle. Thus, the greater the the [Delta] S M is greater, it is possible to correspondingly exert a significant cooling effect, various magnetic material is studied.

また、スターリングサイクルによる気体冷凍機の高性
能化にとっては、蓄冷器、圧縮部及び膨脹部の構成が重
要となり、特に蓄冷器を構成する蓄冷材料はその性能を
左右する(Proceedings of ICEC 10(1984))。このよ
うな蓄冷材料としては、銅や鉛の比熱が激減する20Kに
おいても高い比熱を有する材料が要望されており、これ
についても各種の磁性体が検討されている。
In addition, the configuration of the regenerator, the compression unit, and the expansion unit is important for improving the performance of the gas refrigerator by the Stirling cycle. In particular, the performance of the regenerator material constituting the regenerator affects the performance (Proceedings of ICEC 10 (1984)). )). As such a cold storage material, a material having a high specific heat even at 20K at which the specific heat of copper or lead is drastically reduced is demanded, and various magnetic materials are also being studied.

上記のような磁性体には、極低温領域においても大き
な磁気熱量効果を示すことが要求される。冷凍機の効率
は磁性体に大きく左右される。すなわち、エントロピー
の大きいこと、熱伝導率の良いことが要求される。
The magnetic material as described above is required to exhibit a large magnetocaloric effect even in a very low temperature region. The efficiency of a refrigerator depends greatly on the magnetic material. That is, high entropy and good thermal conductivity are required.

この磁性体としては、たとえば20k以下の温度領域を
冷凍対象とする磁気作業物質として、Gd3Ga5O12(GG
G),Dy3Al5O12(DAG)に代表される希土類元素を含むカ
ーネット系酸化物単結晶、77〜15K程度の温度領域を対
象とするものとしてRAl2ラーベス型金属間化合物(Rは
希土類元素)等が研究されている(Proceedings of ICE
C(1982,May);30−33等)。
As this magnetic substance, for example, Gd 3 Ga 5 O 12 (GG
G), Carnet-based oxide single crystals containing rare earth elements typified by Dy 3 Al 5 O 12 (DAG), and RAl 2 Laves-type intermetallic compounds (R Is a rare earth element) (Proceedings of ICE)
C (1982, May); 30-33, etc.).

この磁性体には、冷凍温度領域でエントロピー変化
(ΔS)が大きいことが要求される。例えば77K〜15Kと
広範囲の温度領域を対象とする液体窒素温度からの磁気
冷凍用磁気作業物質を考えた場合、同一の結晶構造を有
する物質系において広い温度範囲で大きなエントロピー
変化と、この温度変化範囲内での連続的に異なる磁気転
移温度を有することが必要となる。このような磁性体と
して前述のRAl2ラーベス型金属間化合物が挙げられる。
This magnetic material is required to have a large entropy change (ΔS) in the freezing temperature range. For example, when considering a magnetic working material for magnetic refrigeration from liquid nitrogen temperature covering a wide temperature range of 77 K to 15 K, a large entropy change over a wide temperature range and a change in this temperature change in a material system having the same crystal structure are considered. It is necessary to have successively different magnetic transition temperatures within the range. Examples of such a magnetic material include the aforementioned RAl 2 Laves type intermetallic compound.

ここで磁気作業物質の実用性を考慮した場合、上記の
特性に加え、加工性の自由度高精度が要求される。従っ
て、上記の特性を満足する高密度焼結体が得られれば非
常に有効となる。
Here, in consideration of the practicality of the magnetic working material, in addition to the above characteristics, a high degree of freedom of workability is required. Therefore, it will be very effective if a high-density sintered body satisfying the above characteristics can be obtained.

上記RAl2ラーベス型金属間化合物の焼結について研究
を行った結果、RAl2の融点がいずれも1500℃以上と高い
ため化学量論組成の金属間化合物の焼結性は極めて悪
く、高密度焼結体を得ることは困難であるとの知見を得
た。(特願昭60−20030号)また、1500℃以上と高温で
の焼結を考えるとコスト的問題、さらにはR成分を多量
に含有するための酸化の問題、熱伝導性の低さ等が問題
となる。従って、磁気冷凍用の磁気作業物質、気体冷凍
用の蓄冷材料として有効な高密度磁性焼結体は得られて
いないのが現状である。
The RAl 2 Laves-type result of research on sintered intermetallic compound, sinterability of the intermetallic compound of the melting point of RAl 2 are both 1500 ° C. or more as high for the stoichiometric composition is extremely poor, dense sintered It was found that it was difficult to obtain union. (Japanese Patent Application No. 60-20030) Considering sintering at a high temperature of 1500 ° C or higher, there are cost problems, oxidation problems due to the large amount of R components, and low thermal conductivity. It becomes a problem. Therefore, at present, a high-density magnetic sintered body that is effective as a magnetic working material for magnetic refrigeration or a cold storage material for gas refrigeration has not been obtained.

また、77K〜15K程度の温度領域を対象とした磁気冷凍
では、格子エントロピーの寄与が大きいため、エリクソ
ン・サイクルのような蓄冷型サイクルが望ましい。この
ような蓄冷型冷凍機においては、磁気作業物質と蓄冷材
との熱伝達が不可欠であり、これが冷却効率に大きく影
響する。ここで77K以下の極低温においては例えば鉛等
の固体状態の蓄冷材しかなく、磁気作業物質と蓄冷材と
は固体接触させるか、Heガス膜等の狭ギャップを形成し
熱交換を行う必要がある。従って磁気作業物質、蓄冷材
ともに鏡面仕上げ、複雑形状の加工等の高精度の加工が
要求される(低温工学会1984年11月)。このように蓄冷
型冷凍機にとっては特に加工性の良好な磁気作業物質の
出現が望まれていた。
In magnetic refrigeration in the temperature range of about 77 K to 15 K, a regenerative cycle such as an Ericsson cycle is desirable because the contribution of lattice entropy is large. In such a cold storage refrigerator, heat transfer between the magnetic work material and the cold storage material is indispensable, and this greatly affects the cooling efficiency. At extremely low temperatures of 77 K or less, there is only a solid-state regenerator such as lead, for example, and it is necessary to make solid contact between the magnetic work material and the regenerator, or to form a narrow gap such as a He gas film to perform heat exchange. is there. Therefore, high-precision processing such as mirror finishing and processing of complex shapes is required for both magnetic working materials and cold storage materials (Cryogenic Engineering Society, November 1984). As described above, the appearance of a magnetic working material having particularly good workability has been desired for a regenerative refrigerator.

(発明が解決しようとする問題点) 本発明は上記問題点を解決するためになされたもので
あり、化学量論組成の磁性金属間化合物を用いた蓄冷材
料においても、理論密度に匹敵する高密度成形体を得る
ことができ、しかも熱伝導性に優れた蓄冷材料の製造方
法を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the above-mentioned problems, and a regenerative material using a magnetic intermetallic compound having a stoichiometric composition has a high density comparable to the theoretical density. An object of the present invention is to provide a method for producing a regenerative material that can obtain a density molded body and has excellent thermal conductivity.

〔発明の構成〕[Configuration of the invention]

(問題点を解決するための手段と作用) 本願発明は、10万気圧以上の超高圧プレス若しくは衝
撃加圧法で得られた、Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,D
y,Ho,Er,Tm,Ybから選ばれる少なくとも1種の元素及び
B,Al,Ga,In,Tl,Si,Ge,Sn,Pb,Cu,Ag,Au,Be,Mg,Zn,Cd,Hg,
Ru,Rh,Pd,Os,Ir,Pt,Fe,Co,Ni,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,
Reから選ばれる少なくとも1種の元素からなる磁性金属
間化合物の微結晶粒子の高圧成形体を、高圧成形後0.6
×TMKelvin(TM:微結晶粒子の溶融温度(絶対温度))
以上TM以下の温度にて熱処理することを特徴とする蓄冷
材料の製造方法である。
(Means and Actions for Solving the Problems) The present invention is based on an ultrahigh-pressure press or an impact press method of 100,000 atmospheres or more, and is obtained by Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd. , Tb, D
at least one element selected from y, Ho, Er, Tm, Yb and
B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Cu, Ag, Au, Be, Mg, Zn, Cd, Hg,
Ru, Rh, Pd, Os, Ir, Pt, Fe, Co, Ni, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
A high-pressure compact of microcrystalline particles of a magnetic intermetallic compound comprising at least one element selected from Re
× T M Kelvin (T M : melting temperature of microcrystalline particles (absolute temperature))
This is a method for producing a cold storage material, wherein the heat treatment is performed at a temperature of T M or less.

このような製造方法によれば、従来高密度焼結体を得
ることが困難とされていた化学量論組成の金属間化合物
においても、理論密度に匹敵し、ほとんどPorosityのな
い高密度焼結体を得ることができる。またその充填率が
98%〜100%に達するため、熱伝導性が高く、又焼結助
剤も含有されていないため磁気熱量効果を有効に発揮す
ることができ、機械的強度も増大する。
According to such a manufacturing method, even in the case of an intermetallic compound having a stoichiometric composition in which it has conventionally been difficult to obtain a high-density sintered body, the high-density sintered body having a porosity comparable to the theoretical density and having almost no porosity Can be obtained. And the filling rate is
Since the content reaches 98% to 100%, the thermal conductivity is high, and since no sintering aid is contained, the magnetocaloric effect can be effectively exerted and the mechanical strength increases.

上記のように成形後の熱処理温度を0.6×TMKelvin(T
M:微結晶粒子の溶融温度(絶対温度)以上TM以下とした
のは、0.6×TM未満の温度では、成形体の充填率の向上
が顕著でなく、強度、熱伝導ともに不充分であり、TM
越えると成形体が溶融し、材質が変化するとともに加工
性が著しく劣化するためである。
As described above, the heat treatment temperature after molding is set to 0.6 × T M Kelvin (T
M: it was not more than the melting temperature (absolute temperature) or T M of the microcrystalline particles, at temperatures below 0.6 × T M, improving the filling rate of the molded body is not remarkable, strength, thermal conductivity both insufficient The reason is that if the temperature exceeds T M , the molded body is melted, the material is changed, and the workability is significantly deteriorated.

又、本発明において、磁性金属間化合物の微結晶粒子
をY,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Ybから
選ばれる少なくとも1種の元素及びB,Al,Ga,In,Tl,Si,G
e,Sn,Pb,Cu,Ag,Au,Be,Mg,Zn,Cd,Hg,Ru,Rh,Pd,Os,Ir,Pt,
Fe,Co,Ni,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Reから選ばれ
る少なくとも1種からなるものとしたのは、上記磁性合
金は希土類−(III族金属)、希土類−(IV族金属)、
希土類−(I a族金属)、希土類−(II a族金属)、希
土類−(4d又は5d遷移金属)の金属間化合物又はそれら
の固溶体であり、より具体的には希土類元素をRとすれ
ば、RAl2,RAl3,RNi2,RCo2,RRh,RRh2Si2,RCu2Si2で表わ
されるような金属間化合物又はその固溶体で、その磁気
転移点、結晶相変態点、ヤーン・テラー効果に起因する
変態点又はスピン再配列温度は、4K〜300Kの広い温度範
囲にわたっており、特に77K(液体窒素温度)以下の低
温域において優れた磁気熱量効果を有するものである。
In the present invention, the microcrystalline particles of the magnetic intermetallic compound are at least one selected from Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. Elements and B, Al, Ga, In, Tl, Si, G
e, Sn, Pb, Cu, Ag, Au, Be, Mg, Zn, Cd, Hg, Ru, Rh, Pd, Os, Ir, Pt,
The magnetic alloy is made of at least one selected from the group consisting of Fe, Co, Ni, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, and Re. Metal), rare earth- (Group IV metal),
A rare earth- (Ia group metal), a rare earth- (IIa group metal), a rare earth- (4d or 5d transition metal) intermetallic compound or a solid solution thereof, and more specifically, if the rare earth element is R , RAl 2, RAl 3, RNi 2, RCo 2, RRh, RRh 2 Si 2, intermetallic compounds as represented by RCu 2 Si 2 or a solid solution thereof, the magnetic transition temperature, the crystal phase transformation point, Jahn-Teller The transformation point or spin rearrangement temperature resulting from the effect covers a wide temperature range of 4K to 300K, and particularly has an excellent magnetocaloric effect in a low temperature region of 77K (liquid nitrogen temperature) or lower.

また本発明における高圧成形は10万気圧以上の超高圧
プレスもしくは、衝撃加圧成形法にて行うことが望まし
い。すなわち、このような高圧成形により始めて充填率
が90%以上の成形体が得られるためである。さらに熱処
理前の成形体の充填率は90%以上であることが望まし
い。上記充填率が90%未満の場合、熱処理後の密度の向
上が顕著でなく、熱伝導性の向上が顕著でない。
The high-pressure molding in the present invention is desirably performed by an ultra-high pressure press of 100,000 atmospheres or more or an impact pressure molding method. That is, a molded article having a filling factor of 90% or more is obtained only by such high-pressure molding. Further, it is desirable that the filling rate of the molded body before the heat treatment is 90% or more. When the filling rate is less than 90%, the density after the heat treatment is not significantly improved, and the thermal conductivity is not significantly improved.

また、本発明において、各磁性合金の微結晶粒子の粒
径は0.1〜1000μmであることが望ましい。これは、粒
径が0.1μm未満では微結晶粒子表面が増大して粉末表
面の酸化等により熱伝導性が著しく低下し、一方粒径が
1000μmを超えると高圧成形性が劣化するためである。
より好ましい粒径の範囲は1〜100μmである。
In the present invention, it is desirable that the particle diameter of the microcrystalline particles of each magnetic alloy is 0.1 to 1000 μm. This is because if the particle size is less than 0.1 μm, the surface of the microcrystalline particles increases, and the thermal conductivity decreases significantly due to oxidation of the powder surface, while the particle size decreases.
If the thickness exceeds 1000 μm, the high-pressure formability deteriorates.
A more preferable range of the particle size is 1 to 100 μm.

本発明方法においては、上記化学量論組成の金属間化
合物を例えばアーク溶融炉を用いて調製する。次に該金
属間化合物を例えばボールミルを用いて粉砕し、金属間
化合物の微粉末とする。この金属間化合物微粉末の粒径
は上述した理由により0.1〜1000μm、より好ましくは
1〜100μmであることが望ましい。その後必要に応じ
て予備成形する。次いで、化合物粉体又はその予備成形
体を延性材料で包囲し、これを圧力媒体を介して密閉容
器内に収容し、爆薬を高速で爆発させることにより前記
化合物粉体又はその予備成形体を爆発圧搾して密実化し
た後、上記金属間化合物の溶融温度(TM)に対し、0.6
×TM Kelvin以上TM以下の温度にて熱処理するものであ
る。
In the method of the present invention, the intermetallic compound having the above stoichiometric composition is prepared using, for example, an arc melting furnace. Next, the intermetallic compound is pulverized using, for example, a ball mill to obtain a fine powder of the intermetallic compound. The particle size of the fine powder of the intermetallic compound is preferably 0.1 to 1000 μm, more preferably 1 to 100 μm, for the above-mentioned reason. Thereafter, preforming is performed as necessary. Next, the compound powder or the preform thereof is surrounded by a ductile material, and the compound powder or the preform thereof is contained in a closed container via a pressure medium, and the explosive is exploded at a high speed to explode the compound powder or the preform thereof. After pressing and densification, the melting temperature (T M ) of the intermetallic compound is 0.6
× T M Heat treatment at a temperature of Kelvin or more and T M or less.

これらの高密度金属間化合物磁性多結晶体の応用分野
としては、磁気冷凍用作業物質、気体冷凍用蓄冷材料の
他、水素吸蔵合金、(RNi5,RNi2,RCo2)、超磁歪合金
(RFe2)等多種多用であるが、各応用分野により適した
金属間化合物が存在する例えば磁気冷凍用作業物質とし
ては、冷凍原理より、その磁気転移点が室温以下、好ま
しくは液体窒素温度以下で、希土類元素の磁気モーメン
トが大きい重希土類と非磁性金属又はCo,Niのラーベス
型(MgCu2)化合物が適している。また蓄冷材料として
も高密度で単位体積当り大きな磁気熱量が期待できるサ
イズ因子化合物である重希土類のMgCu2(ラーベス型)
化合物のほか、立方晶RAl3(Cu3An型)、RCu2,RRh,RRh2
Si2,RCu2Si2化合物が適している。
The field of application of these high-density intermetallic compound magnetic polycrystalline body, a working magnetic refrigeration materials, other cold accumulating material gas refrigeration, hydrogen storage alloy, (RNi 5, RNi 2, RCo 2), super magnetostrictive alloy ( RFe 2 ) There are intermetallic compounds more suitable for each application field, such as RFe 2 ). For example, as a working material for magnetic refrigeration, the magnetic transition point is lower than room temperature, preferably lower than liquid nitrogen temperature, according to the refrigeration principle. A Laves-type (MgCu 2 ) compound of a heavy rare earth element having a large magnetic moment of a rare earth element and a nonmagnetic metal or Co or Ni is suitable. In addition, heavy rare earth MgCu 2 (Laves type), a size factor compound that can be expected to have high density and large magnetocaloric value per unit volume as a cold storage material
In addition to compounds, cubic RAl 3 (Cu 3 An type), RCu 2 , RRh, RRh 2
Si 2 and RCu 2 Si 2 compounds are suitable.

(発明の実施例) 以下、本発明の実施例を説明する。(Examples of the Invention) Hereinafter, examples of the present invention will be described.

まず、Er75.6重量%、残部AlからなるErAl2金属間化
合物(化学量論組成)をアーク溶融炉を用いて調製し
た。本化合物のキューリー点(強磁性転移温度)は13K
であった。次にこの化合物をジェットミルを用いて粒径
約3μmの微粉末に粉砕した。得られた微粉末を軟鋼製
の円筒容器内に充填し、1トン/cm2のプレス圧で予備成
形した後、真空封止した。この真空封止された円筒容器
を火薬中に設置し、円筒上部より点火することにより爆
発衝撃波を発生させ、衝撃加圧成形した。成形時の衝撃
波の伝播速度は5000m/秒であった。得られた成形体の寸
法は直径15mm、高さ30mmであった。また、理論密度を10
0とすると、その充填率は95%の成形体であった。この
成形体をアルゴン雰囲気中にて1200℃で2時間熱処理し
た。熱処理後の充填率を測定した結果、99.9%以上の高
密度成形体であった。次にこの成形体について各種測定
を行った結果を第1,2図に示す。第1図は無磁場状態で
の比熱(Cp)の温度依存性を調べた結果である。第2図
は5テスラの磁場印加状態及び無磁場状態でそれぞれ測
定された比熱(Cp)の温度依存性から計算によって磁気
エントロピー変化量(ΔSM)の温度依存性を求めた結果
である。
First, an ErAl 2 intermetallic compound (stoichiometric composition) consisting of Er 75.6% by weight and the balance Al was prepared using an arc melting furnace. Curie point (ferromagnetic transition temperature) of this compound is 13K
Met. Next, this compound was ground into a fine powder having a particle size of about 3 μm using a jet mill. The obtained fine powder was filled in a mild steel cylindrical container, preformed at a press pressure of 1 ton / cm 2 , and then vacuum sealed. The vacuum-sealed cylindrical container was placed in an explosive and ignited from the upper portion of the cylinder to generate an explosive shock wave, and subjected to impact pressure molding. The propagation speed of the shock wave during molding was 5000 m / sec. The dimensions of the obtained molded body were 15 mm in diameter and 30 mm in height. The theoretical density is 10
When the value was set to 0, the filling rate was 95%. This compact was heat-treated at 1200 ° C. for 2 hours in an argon atmosphere. As a result of measuring the filling factor after the heat treatment, it was a high-density molded body of 99.9% or more. Next, FIGS. 1 and 2 show the results of various measurements performed on the molded body. FIG. 1 shows the results of examining the temperature dependence of the specific heat (Cp) in the absence of a magnetic field. FIG. 2 shows the results obtained by calculating the temperature dependence of the magnetic entropy change (ΔS M ) from the temperature dependence of the specific heat (Cp) measured under a magnetic field of 5 Tesla and in the absence of a magnetic field.

比較のため実施例と同一組成のErAl2化合物を実施例
1と同様の方法にて微粉化した後、1ton/cm2の圧力でプ
レス成形し、得られた圧粉体をアルゴン雰囲気中にて12
00℃で2時間焼結し通常の焼結体を得た。尚、この比較
例の焼結体の充填率は70%と低密度であった。焼結体
(比較例)について、各種測定を行った結果を第1,2図
に実施例とともに示す。
For comparison, an ErAl 2 compound having the same composition as in the example was pulverized in the same manner as in Example 1 and then press-molded at a pressure of 1 ton / cm 2 , and the obtained compact was heated in an argon atmosphere. 12
Sintering was performed at 00 ° C. for 2 hours to obtain a normal sintered body. The packing ratio of the sintered body of this comparative example was as low as 70%. The results of various measurements performed on the sintered body (comparative example) are shown in FIGS. 1 and 2 together with the examples.

実施例2 Tb17.45重量%、Dy41.66重量%、残部Feからなる(Tb
0.3Dy0.7)Fe2金属間化合物(化学量論組成)をアーク
溶融炉にて調整した。次にこの化合物をジェットミルに
て粉砕、約3μmの微粉末を得た。得られた微粉末を用
い、実施例1と同一条件にて衝撃加圧成形した後アルゴ
ン雰囲気中にて950℃で2時間熱処理した。衝撃成形後
の充填率は93%、熱処理後の充填率は99%以上であっ
た。
Example 2 17.45% by weight of Tb, 41.66% by weight of Dy, the balance being Fe (Tb
0.3Dy0.7) Fe 2 intermetallic compound (stoichiometric composition) was adjusted in an arc melting furnace. Next, this compound was pulverized with a jet mill to obtain a fine powder of about 3 μm. The obtained fine powder was subjected to impact pressure molding under the same conditions as in Example 1 and then heat-treated at 950 ° C. for 2 hours in an argon atmosphere. The filling ratio after impact molding was 93%, and the filling ratio after heat treatment was 99% or more.

次にこの成形体について磁歪測定を行った結果を第3
図に示す。磁歪は歪ゲージにて測定し、磁界方向の伸び
の変化率(δl/l)にて表示した。
Next, the result of measuring the magnetostriction of this molded product is shown in FIG.
Shown in the figure. Magnetostriction was measured with a strain gauge and expressed as a rate of change in elongation in the magnetic field direction (δl / l).

比較のため実施例と同一組成の(Tb0.3Dy0.7)Fe2
合物を実施例2と同様の方法にて微粉化した後、1ton/c
m2の圧力でプレス成形し、得られた圧粉体をアルゴン雰
囲気中にて950℃で2時間焼結し、通常の焼結体を得
た。尚この比較例の焼結体の充填率は72%と低密度であ
った。焼結体(比較例)について、磁歪測定を行った結
果を第3図に実施例とともに示す。
After the same composition as Example for comparison (Tb0.3Dy0.7) Fe 2 compound was micronized in the same manner as in Example 2, 1 ton / c
Press molding was performed at a pressure of m 2 , and the obtained green compact was sintered at 950 ° C. for 2 hours in an argon atmosphere to obtain a normal sintered body. The filling rate of the sintered body of this comparative example was as low as 72%. FIG. 3 shows the results of magnetostriction measurement of the sintered body (comparative example) together with the example.

実施例3 Er58.75%重量%、残部NiからなるErNi2金属間化合物
(化学量論組成)をアーク溶融炉にて調整した。本化合
物のキュリー点(強磁性転移温度)は6Kであった。次に
この化合物をジェットミルにて粉砕、約3μmの微粉末
を得た。得られた微粉末を用い、実施例1と同一条件に
て衝撃加圧成形した後アルゴン雰囲気中にて900℃で2
時間熱処理した。衝撃成形後の充填率は92%、熱処理後
の充填率は99%以上であった。
Example 3 Er58.75% wt%, was ErNi the balance Ni 2 intermetallic compound (stoichiometric composition) adjusted by an arc melting furnace. The Curie point (ferromagnetic transition temperature) of this compound was 6K. Next, this compound was pulverized with a jet mill to obtain a fine powder of about 3 μm. The resulting fine powder was subjected to impact pressure molding under the same conditions as in Example 1 and then heated at 900 ° C. in an argon atmosphere.
Heat treated for hours. The filling ratio after impact molding was 92%, and the filling ratio after heat treatment was 99% or more.

次にこの成形体について比熱(Cp)測定を行った結果
を第4図に示す。
Next, the results of specific heat (Cp) measurement performed on the molded product are shown in FIG.

比較のため実施例と同一組成のErNi2化合物を実施例
3と同様の方法にて微粉化した後、1ton/cm2の圧力でプ
レス成形し、得られた圧粉体をアルゴン雰囲気中にて90
0℃で2時間焼結し通常の焼結体を得た。尚この比較例
の焼結体の充填率は75%と低密度であった。焼結体(比
較例)について比熱測定を行った結果を第4図に実施例
とともに示す。
For comparison, an ErNi 2 compound having the same composition as in the example was pulverized in the same manner as in Example 3 and then press-molded at a pressure of 1 ton / cm 2 , and the obtained compact was heated in an argon atmosphere. 90
Sintering was performed at 0 ° C. for 2 hours to obtain a normal sintered body. The filling rate of the sintered body of this comparative example was as low as 75%. FIG. 4 shows the result of specific heat measurement of the sintered body (comparative example) together with the example.

実施例4 Ho56.48重量%、残部CuからなるHoCu2金属間化合物
(化学量論組成)をアーク溶融炉を用いて調整した。本
化合物のネール点(反強磁性転移温度)は9Kであった。
次にこの化合物をジェットミルにて粉砕、約3μmの微
粉末を得た。得られた微粉末を用い、実施例1と同一条
件にて衝撃加圧成形した後アルゴン雰囲気中にて850℃
で2時間熱処理した。衝撃成形後の充填率は95%、熱処
理後の充填率は、99.5%以上であった。
Example 4 HoCu 2 intermetallic compound (stoichiometric composition) composed of 56.48% by weight of Ho and the balance of Cu was prepared using an arc melting furnace. The Neel point (antiferromagnetic transition temperature) of this compound was 9K.
Next, this compound was pulverized with a jet mill to obtain a fine powder of about 3 μm. The obtained fine powder was subjected to impact pressure molding under the same conditions as in Example 1 and then 850 ° C. in an argon atmosphere.
For 2 hours. The filling ratio after impact molding was 95%, and the filling ratio after heat treatment was 99.5% or more.

次にこの成形体について比熱(Cp)測定を行った結果
を第5図に示す。
Next, the results of specific heat (Cp) measurement of this molded product are shown in FIG.

比較のため実施例と同一組成のHoCu2化合物を実施例
4と同様の方法にて微粉化した後、1ton/cm2の圧力でプ
レス成形し、得られた圧粉体をアルゴン雰囲気中にて85
0℃で2時間焼結し通常の焼結体を得た。尚この比較例
の焼結体の充填率は70%と低密度であった。焼結体(比
較例)について比熱測定を行った結果を第5図に実施例
とともに示す。
For comparison, a HoCu 2 compound having the same composition as in the example was pulverized in the same manner as in Example 4, and then press-molded at a pressure of 1 ton / cm 2 , and the obtained compact was heated in an argon atmosphere. 85
Sintering was performed at 0 ° C. for 2 hours to obtain a normal sintered body. The packing ratio of the sintered body of this comparative example was as low as 70%. FIG. 5 shows the result of specific heat measurement of the sintered body (comparative example) together with the example.

〔発明の効果〕〔The invention's effect〕

以上詳述した如く本発明によれば、化学量論組成の金
属間化合物の高密度成形体を得ることが可能となり、化
合物本来の磁気熱量効果を損うことなく、強度、加工性
に優れた成形体を得、熱伝導特性においても優れた特性
を発現でき、特に77K以下の低温度域において高い磁気
熱量効果を示す磁性多結晶体を製造し得る方法を提供す
ることができ、エリクソンサイクル等による磁気冷凍機
の磁性体やスターリングサイクル等による気体冷凍機の
蓄冷材料として優れた性能を得ることができる。
As described in detail above, according to the present invention, it is possible to obtain a high-density molded product of an intermetallic compound having a stoichiometric composition, without impairing the magnetocaloric effect inherent to the compound, and having excellent strength and workability. It is possible to provide a method for obtaining a molded article, exhibiting excellent properties in terms of heat conduction properties, and particularly for producing a magnetic polycrystal having a high magnetocaloric effect in a low temperature range of 77 K or lower, such as an Ericsson cycle. As a result, excellent performance can be obtained as a magnetic material of a magnetic refrigerator or a cold storage material of a gas refrigerator by a Stirling cycle or the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第5図は特性曲線図。 1 to 5 are characteristic curve diagrams.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 猪俣 浩一郎 川崎市幸区小向東芝町1 株式会社東芝 総合研究所内 (56)参考文献 特開 昭61−183436(JP,A) 特開 昭62−30840(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichiro Inomata 1 Toshiba-cho, Komukai, Koyuki-ku, Kawasaki-shi Toshiba Research Institute, Inc. (56) References JP-A-61-183436 (JP, A) JP-A-62- 30840 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】10万気圧以上の超高圧プレス若しくは衝撃
加圧法で得られた、Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,
Ho,Er,Tm,Ybから選ばれる少なくとも1種の元素及びB,A
l,Ga,In,Tl,Si,Ge,Sn,Pb,Cu,Ag,Au,Be,Mg,Zn,Cd,Hg,Ru,
Rh,Pd,Os,Ir,Pt,Fe,Co,Ni,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,Re
から選ばれる少なくとも1種の元素からなる磁性金属間
化合物の微結晶粒子の高圧成形体を、高圧成形後0.6×T
MKelvin(TM:微結晶粒子の溶融温度(絶対温度))以上
TM以下の温度にて熱処理することを特徴とする蓄冷材料
の製造方法。
1. Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Y, La, Ce, Pr, Nd,
At least one element selected from Ho, Er, Tm, Yb and B, A
l, Ga, In, Tl, Si, Ge, Sn, Pb, Cu, Ag, Au, Be, Mg, Zn, Cd, Hg, Ru,
Rh, Pd, Os, Ir, Pt, Fe, Co, Ni, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, Re
A high pressure compact of microcrystalline particles of a magnetic intermetallic compound consisting of at least one element selected from the group consisting of 0.6 × T
M Kelvin (T M: melting temperature of the fine crystal particles (absolute temperature)) or more
A method for producing a cold storage material, comprising heat-treating at a temperature of T M or less.
【請求項2】前記熱処理前の成形体の充填率が90%以上
であることを特徴とする請求項1記載の蓄冷材料の製造
方法。
2. The method for producing a cold storage material according to claim 1, wherein the filling rate of the compact before the heat treatment is 90% or more.
【請求項3】前記金属間化合物の微結晶粒子の粒径が0.
1〜1000μmであることを特徴とする請求項1記載の蓄
冷材料の製造方法。
3. The microcrystalline particles of the intermetallic compound having a particle size of 0.
2. The method according to claim 1, wherein the thickness is 1 to 1000 [mu] m.
【請求項4】磁性金属間化合物の微粉体又はその予備成
形体を延性材料で包囲し、これを圧力媒体を介して密閉
容器内に収容し、爆薬を高速で爆発させることにより、
前記微粉体又はその予備成形体を爆発圧搾して密実化し
た後、前記延性材料を取り除いて成形体を得ることを特
徴とする請求項1記載の蓄冷材料の製造方法。
4. A fine powder of a magnetic intermetallic compound or a preform thereof is surrounded by a ductile material, which is housed in a closed container via a pressure medium, and explosives are exploded at a high speed.
The method for producing a regenerative material according to claim 1, wherein after the fine powder or its preform is densified by explosion compression, the ductile material is removed to obtain a compact.
JP62008266A 1987-01-19 1987-01-19 Manufacturing method of cold storage material Expired - Lifetime JP2585240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62008266A JP2585240B2 (en) 1987-01-19 1987-01-19 Manufacturing method of cold storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62008266A JP2585240B2 (en) 1987-01-19 1987-01-19 Manufacturing method of cold storage material

Publications (2)

Publication Number Publication Date
JPS63179052A JPS63179052A (en) 1988-07-23
JP2585240B2 true JP2585240B2 (en) 1997-02-26

Family

ID=11688354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62008266A Expired - Lifetime JP2585240B2 (en) 1987-01-19 1987-01-19 Manufacturing method of cold storage material

Country Status (1)

Country Link
JP (1) JP2585240B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186765A (en) * 1989-07-31 1993-02-16 Kabushiki Kaisha Toshiba Cold accumulating material and method of manufacturing the same
JP3265821B2 (en) * 1994-04-27 2002-03-18 アイシン精機株式会社 Regenerator
JP3947066B2 (en) * 2002-09-05 2007-07-18 株式会社Neomax Magnetic alloy material
CN107523771B (en) * 2017-09-11 2019-03-19 临沂市科创材料有限公司 A kind of method of In-sltu reinforcement Cu-Cr-Zr alloy high temperature softening resistance
CN114561580B (en) * 2022-03-03 2022-08-19 杭州电子科技大学 RE 4 TCd magnetic refrigeration material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765137B2 (en) * 1985-02-06 1995-07-12 株式会社東芝 Magnetic sintered body

Also Published As

Publication number Publication date
JPS63179052A (en) 1988-07-23

Similar Documents

Publication Publication Date Title
US11225703B2 (en) Magnetocaloric alloys useful for magnetic refrigeration applications
US4985072A (en) Polycrystalline magnetic substances for magnetic refrigeration and a method of manufacturing the same
JPH07101134B2 (en) Heat storage material and low temperature heat storage
US20130200293A1 (en) La(fe,si)13-based multi-interstitial atom hydride magnetic refrigeration material with high temperature stability and large magnetic entropy change and preparation method thereof
US6467277B2 (en) Cold accumulating material, method of manufacturing the same and refrigerator using the material
JP2582753B2 (en) Manufacturing method of laminated magnetic body
JP4399771B2 (en) Magnetic particle and method for producing the same, and magnetic particle unit
JP2585240B2 (en) Manufacturing method of cold storage material
EP0532001B1 (en) Amorphous material for regenerator
JPH10185339A (en) Cryogenic cold storage material, refrigerating machine employing the same and heat shielding material
JPS6355906A (en) Magnetic polycrystal and manufacture thereof
WO1999020956A1 (en) Cold-accumulating material and cold-accumulating refrigerator
EP1394112B1 (en) Mgb2 based superconductor having high critical current density and method for preparation thereof
US5462610A (en) Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants
JP2923705B2 (en) Cold storage material
JP2828978B2 (en) Cold storage material and method for producing the same
WO2001020233A1 (en) Ductile magnetic regenerator alloys for closed cycle cryocoolers
JPH05203272A (en) Cryogenic cold accumulation material and cryogenic cold accumulator using same
JP5010071B2 (en) Cold storage material, manufacturing method thereof, and refrigerator using the cold storage material
JP3055674B2 (en) Heat storage materials and low-temperature heat storage
JP2836813B2 (en) Cool storage material and cool storage device
JP2941865B2 (en) Low temperature storage
JP3561023B2 (en) Cryogenic cool storage material and cryogenic cool storage device using the same
JPH031050A (en) Cold heat storage apparatus
JPS62242777A (en) Mixed magnetic polycrystalline substance and manufacture thereof