JP3947066B2 - Magnetic alloy material - Google Patents

Magnetic alloy material Download PDF

Info

Publication number
JP3947066B2
JP3947066B2 JP2002260201A JP2002260201A JP3947066B2 JP 3947066 B2 JP3947066 B2 JP 3947066B2 JP 2002260201 A JP2002260201 A JP 2002260201A JP 2002260201 A JP2002260201 A JP 2002260201A JP 3947066 B2 JP3947066 B2 JP 3947066B2
Authority
JP
Japan
Prior art keywords
sample
lafe
phase
atomic
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002260201A
Other languages
Japanese (ja)
Other versions
JP2004099928A (en
Inventor
亮介 木暮
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP2002260201A priority Critical patent/JP3947066B2/en
Publication of JP2004099928A publication Critical patent/JP2004099928A/en
Application granted granted Critical
Publication of JP3947066B2 publication Critical patent/JP3947066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、磁気冷凍作業物質あるいは磁歪材料として好適に用いられる磁性合金材料およびその製造方法に関する。
【0002】
【従来の技術】
近年、組成式I:La1-zREz(Fe1-xx-yTMy13(A=Al、Si、Ga、Ge、Snのうち少なくとも1種の元素0.05≦x≦0.2、TMは遷移金属元素のうち少なくとも1種の元素0≦y≦0.1、REはLaを除く希土類元素のうち少なくとも1種の元素0≦z≦0.1)で表される磁性合金(以下、「LaFe13系磁性合金」と称する。)は、NaZn13型の結晶構造を有し、キュリー温度(Tc)付近で、大きな磁気熱量効果および磁気体積効果を示すことから、磁気冷凍作業物質および磁歪材料として、有望視されている(例えば、特許文献1、特許文献2、および非特許文献1参照)。
【0003】
LaFe13系磁性合金は、従来、例えば、アーク溶解あるいは高周波溶解により得られた鋳造合金を真空中で1050℃、約168時間の熱処理することによって製造されていた。
【0004】
【特許文献1】
特開2000−54086号公報
【特許文献2】
特開2002−69596号公報
【非特許文献1】
「遍歴電子メタ磁性La(FexSi1-x13化合物の強大な磁気体積および磁気熱量効果」、藤田麻哉、他、まてりあ、第41巻、第4号、269頁〜275頁、2002。
【0005】
【発明が解決しようとする課題】
しかしながら、従来のLaFe13系磁性合金の製造方法には、以下の問題点がある。
【0006】
所定の組成の合金溶湯から得られた鋳造合金は、上記組成式におけるAおよびTMの一部が固溶したα−Fe相と、残部で構成される相とを含む2つ以上の粗大な結晶相が複雑に入り組んだ組織(例えば後述の図4(a)参照)を有している。NaZn13型結晶構造を有する化合物相(以下、「LaFe13型化合物相」という。)は、これらの粗大な結晶相の界面から生成する(例えば後述の図4(b)参照)。従って、このような粗大な結晶相を有する組織から、LaFe13系磁性合金(金属間化合物)を得るためには、上述したように、高温で長時間の熱処理によって均質化(以下、「均質化熱処理」ということがある。)を施していた。この長時間に亘る均質化熱処理が不可欠なことから、LaFe13系磁性合金は量産性に乏しいという問題があった。
【0007】
また、長時間の均質化熱処理の間に合金表面が酸化等の腐食によって劣化し、その結果、磁気熱量効果や磁気体積効果が劣化するという問題もあった。
【0008】
本発明はかかる諸点に鑑みてなされたものであり、その主な目的は、従来のような長時間の熱処理工程を経ずとも製造することができる、LaFe13系磁性合金材料を提供することにある。
【0009】
【課題を解決するための手段】
本発明の磁性合金材料は、NaZn13型結晶構造を有する化合物相を75体積%以上含み、且つ、組成式II:Fe100-a-b-d REa b d (REはLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、ErおよびTmからなる群から選択され、Laを90原子%以上含む少なくとも1種の希土類元素、AはSi、DはB、5原子%≦a≦10原子%、4.7原子%≦b≦18原子%、1.8原子%≦d≦5.4原子%)で表される組成を有し、そのことによって上記目的が達成される。
【0011】
好ましい実施形態の磁性合金材料は磁気熱量効果を有する。
【0012】
【発明の実施の形態】
以下、本発明による磁性合金材料(LaFe13系磁性合金)の実施形態を説明する。
【0013】
本発明の磁性合金材料は、組成式II:Fe100-a-b-d REa b d (REはLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、ErおよびTmからなる群から選択され、Laを90原子%以上含む少なくとも1種の希土類元素、AはSi、DはB、5原子%≦a≦10原子%、4.7原子%≦b≦18原子%、1.8原子%≦d≦5.4原子%)で表される組成を有し、且つ、磁性合金材料の全体の75体積%以上がNaZn13型結晶構造を有する化合物相(LaFe13型化合物相)で構成されている。好ましくは、LaFe13型化合物相の体積分率は80%以上である。
【0014】
本発明者は、組成の異なる合金を作製し、組成と生成相との関係を検討した結果、上記組成式Iで表される従来のLaFe13系磁性合金に、さらに、半金属元素D(すなわち、B)を添加することによって、鋳造直後からLaFe13型化合物相を75体積%以上含む磁性合金材料が得られることを見出し、本発明に至った。
【0015】
上述したように、従来の組成のLaFe13系磁性合金は、鋳造直後(as−cast)の状態では、α−Fe相と、残部で構成される相とを含む2つ以上の粗大な結晶相が形成され、LaFe13型化合物相はほとんど形成されない。α−Fe相を含む粗大な結晶相からLaFe13型化合物相を形成させるために、長時間の熱処理が必要である。この熱処理過程において、α−Fe相と粒界相との界面からLaFe13型化合物相が生成されるが、その成長速度が遅いため75体積%以上に成長するまでに長時間を要する。
【0016】
これに対し、合金原料に上記半金属元素D(すなわち、B)を添加すると、半金属元素は、α−Fe相の粗大化を抑制するように作用し、鋳造直後の状態で、LaFe13型化合物相を75体積%以上含む磁性合金材料が得られる。
【0017】
但し、上記組成式IIにおいて、aが上記範囲を外れると、LaFe13型化合物相を75体積%以上形成することができない。bが4.7原子%未満ではLaFe13型化合物相が形成されず、18原子%を超えると磁気熱量効果(または磁気体積効果)が十分に得られない。また、dが1.8原子%未満であるとα−Fe相の体積分率が多くなり、5.4原子%を超えるとFe−D系化合物相の体積分率が多くなる。従って、LaFe13型化合物相を75体積%以上形成するためには、均質化のために、従来と同様に長時間の熱処理工程が必要となる。
【0018】
勿論、組成および/または製造条件などを調節することによって、90体積%以上がLaFe13型化合物相で構成された磁性合金材料を得ることができる。本発明による磁性合金材料は、従来と同様に鋳造法によって製造され得るが、液体急冷法を用いて製造することもできる。
【0019】
本発明による磁性合金材料は、鋳造直後からLaFe13化合物相を75体積%以上含んでいるため、熱処理工程を省略することができるので、生産性が改善される。更に、熱処理中にLaFe13系磁性合金表面の酸化等による劣化も抑制されるので、特性の低下も少ない。例えば、鋳造合金を長時間熱処理することによって得られたLaFe13系磁性合金は、表面から数mmの層は磁気冷凍作業物質として利用することができないが、本発明による磁性合金材料は、表面を除去することなく、そのまま磁気冷凍作業物質として用いることができる。従って、高価な原料の歩留まりが向上することによるコスト削減効果が得られる。
【0020】
また、本発明の実施形態によると、磁気相転移の生じるキュリー温度Tcが190K以上330K以下の範囲内にあるLaFe13系磁性合金が得られる。また、本発明による磁性合金材料を水素化することによって、キュリー温度を調整することもできる。
【0021】
なお、本明細書において、磁気相転移とは、強磁性から常磁性、強磁性から反強磁性、あるいは、反強磁性から常磁性への転移を指す。
【0022】
本発明によるLaFe13系磁性合金は、磁気冷凍作業物質として好適に用いられるが、例えば、特開2000−54086号公報や特開2002−69596号公報に開示されているように、磁歪材料としても好適に用いることが出来る。
【0023】
【実施例】
以下、本発明によってLaFe13系磁性合金の具体例を説明するが、本発明はこれに限られない。
【0024】
[鋳造合金の製造]
組成式:Fe100-a-b-c-dREabTMcd(各元素および原子%は表1に記載)で表される組成の鋳造合金が得られるように、各構成元素の原料を所定量配合し、高周波溶解により溶解した。得られた原料溶湯を鋳型(例えばCu製)に鋳込むことによって鋳造合金の試料(1)〜(7)を得た。鋳型は必要に応じて内部に冷却水を流す等して冷却する。何れの試料も熱処理を施していないas−cast合金を用いた。なお、試料(1)および(2)は、上述した組成式IIで表される組成を有するが、試料(3)〜(7)は、半金属元素Dの原子%(d)が組成式IIの範囲外にある。
【0025】
【表1】

Figure 0003947066
【0026】
[評価]
各試料の結晶構造をXRDで評価した。それぞれの試料を150μm以下に粉砕した粉末を用いた。ターゲットにはCuを用いた。スキャンスピードは4.0°/min、サンプリング幅は0.02°、測定範囲は20〜80°とした。
【0027】
また、各試料の形態および組成分布をEPMAを用いて評価した。EPMA観察用の試料は次のようにして作製した。試料合金をエポキシ樹脂に含浸し表面を研磨した後、厚さ約20nmのAu蒸着を施したものをEPMA用試料とした。EPMAの加速電圧は15kVとした。照射電流はB.E.I.(反射電子像)で1.0nAとした。
【0028】
XRDの測定結果を図1に示す。図1において、LaFe13型化合物相をLaFe13系と表し、その回折ピークを○で示し、La、FeおよびSi、またはLa、Fe、SiおよびBからなる相を(La、Fe、Si、B)と表し、その回折ピークを▲で示す。なお、(La、Fe、Si、B)の結晶構造は同定されていない。また、図1において、F2B相の回折ピークを■、α−Fe相の回折ピーク●で示している。
【0029】
図1からわかるように、試料(1)および(2)では、鋳造直後の状態で熱処理を施さないでも、NaZn13型の結晶構造を有するLaFe13化合物相が形成されている。これらの試料におけるLaFe13化合物相の体積分率が85%以上であることは、XRDの積分強度の比から確認した。また、図2に示した試料(1)のEPMA観察による反射電子像(B.E.I)からわかるように、僅かなα−Fe相および(La、Fe、Si、B)化合物相が、LaFe13型化合物相中に分散した形態をとっている。なお、(La、Fe、Si、B)化合物相はごく少量であるため、図1のXRD図ではほとんど確認されていない。
【0030】
これに対し、Bを含まない試料(4)では、LaFe13型化合物相のピークは見られず、α−Fe相によるピークの強度が非常に強い。図4からわかるとおり、試料(4)は、α−Fe相と(La、Fe、Si)化合物相とを含む多相構造を有している。
【0031】
Bを含まない試料(4)については、約10gを10-2Pa以下に真空排気した石英管に封入して、1050℃で1時間、8時間、24時間および120時間熱処理を施した試料(4−a)、試料(4−b)、試料(4−c)および試料(4−d)を作製した。試料(4)、試料(4−a)、試料(4−c)および試料(4−d)のXRDの測定結果を図3に示す。また、試料(4)、試料(4−b)および試料(4−d)のEPMA観察による反射電子像(B.E.I)をそれぞれ図4(a)、(b)および(c)に示す。
【0032】
図3および図4からわかるように、Bを含まない従来の鋳造合金においては、鋳造直後にはLaFe13型化合物相は存在せず、熱処理が進むに連れて、徐々に(La、Fe、Si)化合物相およびα−Fe相が減少し、LaFe13型化合物相が形成されている様子がわかる。120時間熱処理を施した試料(4−d)においては、ほぼ完全にLaFe13型化合物相が形成されている。
【0033】
図1に示した、試料(1)および(2)においては、(La、Fe、Si、B)化合物相はほとんど形成されていないのに対し、図3に示した、Bを含まない試料(4)に1時間の熱処理を施した試料(4−a)においても(La、Fe、Si)化合物相が残存している。このことからも、本発明に従って、合金にBを添加することによって、LaFe13型化合物相が効率良く形成されていることがわかる。
【0034】
また、Bの含有量が少ない試料(5)および(6)では、試料(4)と同様にα−Fe相のピークの強度が強い。LaFe13型化合物相のピークも見られるがその強度は弱く、十分な磁気特性を発揮できる体積に至っていない。試料(6)についてXRDの積分強度から見積もった体積分率は約70%であった。
【0035】
一方、Bの含有量が多い試料(3)では、α−Fe相のピークは見られないが、Fe2B相のピークの強度が強い。LaFe13型化合物相のピークの強度は弱く、十分な磁気特性を発揮できる体積に至っていない。XRDの積分強度から見積もった体積分率は約70%であった。
【0036】
このような実験を行うことによって、上記組成式IIにおけるdが1.8原子%≦d≦5.4原子%の範囲にあるときに、鋳造直後の状態で75体積%以上のLaFe13型化合物相が得られることがわかった。また、例示した実験例では、半金属元素DとしてBを用いた例を示したが、Bに代えてCを用いても良い。勿論、BとCとを混合して用いても良い。
【0037】
次に、試料(1)の磁気熱量効果を評価した結果を図5を参照しながら説明する。
【0038】
磁気冷凍作業物質には、磁気熱量効果の大きい材料が好ましい。磁気熱量効果の評価には磁気エントロピー変化−ΔSmagが用いられる。一般に−ΔSmagが大きいほど磁気熱量効果は大きい。高磁界VSMを用いて0Tから1Tまで0.2T間隔で設定した一定強度の印加磁界下で磁化(M)−温度(T)曲線を測定し、測定結果から下記の式(1)を用いて−ΔSmagを算出した。
【0039】
−ΔSmag = ∫0 H(∂M/∂T)HdH ・・・・(1)
(ここで、−ΔSmagは磁気エントロピー変化、Hは磁界、Mは磁化、Tは絶対温度である。)
【0040】
試料(1)について得られた−ΔSmagの温度依存性を図5に示す。図5に示した磁気エントロピー変化−ΔSmagの温度依存性からわかるように、試料(1)のas−cast合金は、大きな磁気エントロピー変化を示している。0T〜1Tまでの−ΔSmagは、約3Jkg-1-1であった。現在、室温付近で動作する磁気冷凍試験機に使用されているGd(ガドリニウム)は、0Tから1Tで−ΔSmag=3Jkg-1-1程度であり、これとほぼ同等の磁気エントロピー変化を有していることがわかる。なお、試料(4)の鋳造合金に120時間の熱処理を施して作製した試料(4−d)の表面の酸化層(厚さ約2mm)を除去した後の試料について求めた磁気エントロピー変化は、−ΔSmag=19Jkg-1-1あった。試料(1)の−ΔSmagが試料(4−d)よりも低い原因は、試料(1)にはα−Fe相が比較的多く形成されていることなどが影響しているものと考えられる。工業的な利用可能性を考えると、この−ΔSmagの低下よりも、熱処理工程を省略できることによる利点が大きいと考えられる。また、図5からわかるように、試料(1)において、磁気相転移が起こる温度領域の半値幅ΔTcは30K以上あり、磁気冷凍作業物質としての動作温度範囲が広いという利点もある。
【0041】
【発明の効果】
本発明によると、従来のような長時間の熱処理工程を経ずとも製造することができる、LaFe13系磁性合金材料が提供される。本発明によるLaFe13系磁性合金は、磁気冷凍作業物質または磁歪材料として好適に用いることが出来る。
【図面の簡単な説明】
【図1】B含有率の異なる鋳造合金(試料(1)〜(7))のXRDの測定結果を示す図である。
【図2】Bを含む鋳造合金(試料(1))のEPMAによる反射電子像(B.E.I)を示す写真である。
【図3】Bを含有しない鋳造合金(試料(4))およびこれに熱処理を施した鋳造合金(試料(4−a)、試料(4−c)および試料(4−d))のXRDの測定結果を示す図である。
【図4】Bを含有しない鋳造合金のEPMAによる反射電子像(B.E.I)を示す写真であり、(a)は試料(4)の反射電子像を示し、(b)は試料(4−b)の反射電子像を示し、(c)は試料(4−d)の反射電子像を示す。
【図5】Bを含む鋳造合金(試料(1))について得られた−ΔSmagの温度依存性を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic alloy material suitably used as a magnetic refrigeration working substance or a magnetostrictive material and a method for producing the same.
[0002]
[Prior art]
In recent years, composition formula I: La 1-z RE z (Fe 1-x A xy TM y ) 13 (A = at least one element of Al, Si, Ga, Ge, Sn, 0.05 ≦ x ≦ 0. 2, TM is a magnetic alloy represented by at least one element of transition metal elements 0 ≦ y ≦ 0.1, RE is at least one element of rare earth elements excluding La 0 ≦ z ≦ 0.1) (Hereinafter referred to as “LaFe 13 -based magnetic alloy”) has a NaZn 13 type crystal structure and exhibits a large magnetocaloric effect and magnetovolume effect near the Curie temperature (Tc). It is considered promising as a substance and a magnetostrictive material (see, for example, Patent Document 1, Patent Document 2, and Non-Patent Document 1).
[0003]
Conventionally, LaFe 13 series magnetic alloys have been produced by heat-treating a cast alloy obtained by, for example, arc melting or high frequency melting in vacuum at 1050 ° C. for about 168 hours.
[0004]
[Patent Document 1]
JP 2000-54086 A [Patent Document 2]
JP 2002-69596 A [Non-Patent Document 1]
"Itinerant electron metamagnetism La (Fe x Si 1-x ) 13 mighty magnetic volume and the magnetocaloric effect of compound", Fujita Asa哉other, Materia, Vol 41, No. 4, 269 pp 275 pp 2002.
[0005]
[Problems to be solved by the invention]
However, the conventional method for producing a LaFe 13 series magnetic alloy has the following problems.
[0006]
A cast alloy obtained from a molten alloy having a predetermined composition has two or more coarse crystals including an α-Fe phase in which a part of A and TM in the above composition formula is dissolved and a phase composed of the remainder. It has an intricate organization of phases (for example, see FIG. 4A described later). Compound phase having an NaZn 13 type crystal structure (hereinafter. Referred to as "LaFe 13 type compound phase") is generated from the interface of these coarse crystal phases (e.g., below see FIG. 4 (b)). Therefore, in order to obtain a LaFe 13 -based magnetic alloy (intermetallic compound) from a structure having such a coarse crystal phase, as described above, homogenization (hereinafter referred to as “homogenization” by high-temperature heat treatment at a high temperature). Sometimes referred to as “heat treatment”. Since the homogenization heat treatment for a long time is indispensable, there is a problem that the LaFe 13 series magnetic alloy is poor in mass productivity.
[0007]
In addition, the alloy surface is deteriorated by corrosion such as oxidation during the long-time homogenization heat treatment, and as a result, there is a problem that the magnetocaloric effect and the magnetovolume effect are deteriorated.
[0008]
The present invention has been made in view of such various points, and its main object is to provide a LaFe 13 -based magnetic alloy material that can be manufactured without a long heat treatment step as in the prior art. is there.
[0009]
[Means for Solving the Problems]
The magnetic alloy material of the present invention contains 75% by volume or more of a compound phase having a NaZn 13 type crystal structure, and has a composition formula II: Fe 100-a- bd RE a A b D d (RE is La, Ce, Pr , Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm, and at least one rare earth element containing 90 atomic% or more of La, A is Si, D is B , 5 Atomic% ≦ a ≦ 10 atomic%, 4.7 atomic% ≦ b ≦ 18 atomic %, 1.8 atomic% ≦ d ≦ 5.4 atomic%), whereby the above object is achieved. Achieved.
[0011]
The magnetic alloy material of the preferred embodiment has a magnetocaloric effect.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the magnetic alloy material (LaFe 13 -based magnetic alloy) according to the present invention will be described.
[0013]
Magnetic alloy material of the present invention, formula II: Fe 100-a- bd RE a A b D d (RE is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er And at least one rare earth element selected from the group consisting of Tm and containing 90 atomic% or more of La, A is Si, D is B , 5 atomic% ≦ a ≦ 10 atomic%, 4.7 atomic% ≦ b ≦ 18 atomic%, has a composition represented by 1.8 atom% ≦ d ≦ 5.4 atomic%), and, the compound phase more than 75% by volume total of the magnetic alloy material has a NaZn 13 type crystal structure (LaFe 13 type compound phase). Preferably, the volume fraction of the LaFe 13 type compound phase is 80% or more.
[0014]
The present inventor has prepared a different alloy compositions, the results of examining the relationship between the production phase and composition, the conventional LaFe 13 based magnetic alloy represented by the composition formula I, in addition, a metalloid element D ( That is, by adding B) , it was found that a magnetic alloy material containing 75 volume% or more of LaFe 13 type compound phase was obtained immediately after casting, and the present invention was achieved.
[0015]
As described above, the LaFe 13 series magnetic alloy having a conventional composition has two or more coarse crystal phases including an α-Fe phase and a phase composed of the balance in an as-cast state. And a LaFe 13 type compound phase is hardly formed. In order to form a LaFe 13 type compound phase from a coarse crystal phase including an α-Fe phase, a long heat treatment is required. In this heat treatment process, a LaFe 13 type compound phase is generated from the interface between the α-Fe phase and the grain boundary phase. However, since the growth rate is slow, it takes a long time to grow to 75% by volume or more.
[0016]
In contrast, the alloy material metalloid element D (i.e., B) the addition of, a metalloid element, and acts to suppress coarsening of the alpha-Fe phase, in the state immediately after casting, LaFe 13 inch A magnetic alloy material containing 75% by volume or more of the compound phase is obtained.
[0017]
However, in the above composition formula II, a is the outside of the above range, it is impossible to form a LaFe 13 type compound phase 75 vol% or more. If b is less than 4.7 atomic%, the LaFe 13 type compound phase is not formed, and if it exceeds 18 atomic%, the magnetocaloric effect (or magnetovolume effect) cannot be obtained sufficiently. Further, when d is less than 1.8 atomic%, the volume fraction of the α-Fe phase increases, and when it exceeds 5.4 atomic%, the volume fraction of the Fe—D compound phase increases. Therefore, in order to form 75 vol% or more of the LaFe 13 type compound phase, a long-time heat treatment step is required as in the prior art for homogenization.
[0018]
Of course, a magnetic alloy material in which 90% by volume or more is composed of a LaFe 13 type compound phase can be obtained by adjusting the composition and / or manufacturing conditions. The magnetic alloy material according to the present invention can be manufactured by a casting method as in the prior art, but can also be manufactured by using a liquid quenching method.
[0019]
Since the magnetic alloy material according to the present invention contains 75% by volume or more of LaFe 13 compound phase immediately after casting, the heat treatment step can be omitted, so that productivity is improved. Furthermore, since deterioration due to oxidation or the like of the surface of the LaFe 13 -based magnetic alloy is suppressed during the heat treatment, there is little deterioration in characteristics. For example, a LaFe 13- based magnetic alloy obtained by heat-treating a cast alloy for a long time cannot use a layer several mm from the surface as a magnetic refrigeration working material, but the magnetic alloy material according to the present invention has a surface Without removal, it can be used as it is as a magnetic refrigeration material. Therefore, a cost reduction effect can be obtained by improving the yield of expensive raw materials.
[0020]
Further, according to embodiments of the present invention, LaFe 13 based magnetic alloy Curie temperature Tc of occurrence of magnetic phase transition is within the range of 330K or 190K is Ru obtained. Further , the Curie temperature can be adjusted by hydrogenating the magnetic alloy material according to the present invention.
[0021]
In this specification, the magnetic phase transition refers to transition from ferromagnetism to paramagnetism, ferromagnetism to antiferromagnetism, or antiferromagnetism to paramagnetism.
[0022]
LaFe 13 based magnetic alloy according to the present invention is suitably used as a magnetic refrigerant material, e.g., as disclosed in JP-A-2000-54086 and JP 2002-69596, even magnetostrictive material It can be suitably used.
[0023]
【Example】
Hereinafter, a specific example of LaFe 13 based magnetic alloy according to the present invention, the present invention is not limited thereto.
[0024]
[Manufacture of casting alloys]
Composition formula: Fe 100-abcd RE a A b TM c D d ( each element and atomic% in Table 1) as cast alloy having a composition represented by the obtained raw material a predetermined amount of each constituent element And dissolved by high frequency dissolution. The obtained raw material molten metal was cast into a mold (for example, made of Cu) to obtain cast alloy samples (1) to (7). The mold is cooled by flowing cooling water inside as necessary. All samples used an as-cast alloy that had not been heat-treated. Samples (1) and (2) have the composition represented by the above-described composition formula II, but samples (3) to (7) have the atomic% (d) of the metalloid element D represented by the composition formula II. Is out of range.
[0025]
[Table 1]
Figure 0003947066
[0026]
[Evaluation]
The crystal structure of each sample was evaluated by XRD. The powder which grind | pulverized each sample to 150 micrometers or less was used. Cu was used for the target. The scan speed was 4.0 ° / min, the sampling width was 0.02 °, and the measurement range was 20 to 80 °.
[0027]
In addition, the morphology and composition distribution of each sample were evaluated using EPMA. A sample for EPMA observation was prepared as follows. An EPMA sample was prepared by impregnating an epoxy resin with a sample alloy and polishing the surface, followed by Au deposition with a thickness of about 20 nm. The acceleration voltage of EPMA was 15 kV. The irradiation current is B.I. E. I. (Reflected electron image) was 1.0 nA.
[0028]
The measurement result of XRD is shown in FIG. In FIG. 1, the LaFe 13 type compound phase is expressed as LaFe 13 system, its diffraction peak is indicated by ◯, and the phase composed of La, Fe and Si, or La, Fe, Si and B (La, Fe, Si, B) ) And the diffraction peak is indicated by ▲. Note that the crystal structure of (La, Fe, Si, B) has not been identified. In FIG. 1, the diffraction peak of the F 2 B phase is indicated by ▪ and the diffraction peak ● of the α-Fe phase.
[0029]
As can be seen from FIG. 1, in the samples (1) and (2), a LaFe 13 compound phase having a NaZn 13 type crystal structure is formed without heat treatment immediately after casting. It was confirmed from the ratio of the integrated intensity of XRD that the volume fraction of the LaFe 13 compound phase in these samples was 85% or more. In addition, as can be seen from the reflected electron image (BEI) obtained by EPMA observation of the sample (1) shown in FIG. 2, a slight α-Fe phase and (La, Fe, Si, B) compound phase are It is in a dispersed form in the LaFe 13 type compound phase. Since the (La, Fe, Si, B) compound phase is very small, it is hardly confirmed in the XRD diagram of FIG.
[0030]
On the other hand, in the sample (4) containing no B, the peak of the LaFe 13 type compound phase is not seen, and the intensity of the peak due to the α-Fe phase is very strong. As can be seen from FIG. 4, the sample (4) has a multiphase structure including an α-Fe phase and a (La, Fe, Si) compound phase.
[0031]
For the sample (4) not containing B, about 10 g was sealed in a quartz tube evacuated to 10 −2 Pa or less, and subjected to heat treatment at 1050 ° C. for 1, 8, 24 and 120 hours ( 4-a), Sample (4-b), Sample (4-c) and Sample (4-d) were prepared. FIG. 3 shows the XRD measurement results of sample (4), sample (4-a), sample (4-c), and sample (4-d). Also, the backscattered electron images (BEI) of the sample (4), the sample (4-b), and the sample (4-d) observed by EPMA are shown in FIGS. 4 (a), (b), and (c), respectively. Show.
[0032]
As can be seen from FIG. 3 and FIG. 4, in the conventional cast alloy not containing B, there is no LaFe 13 type compound phase immediately after casting, and gradually (La, Fe, Si, etc.) as the heat treatment proceeds. ) It can be seen that the compound phase and the α-Fe phase are reduced and a LaFe 13 type compound phase is formed. In the sample (4-d) subjected to the heat treatment for 120 hours, the LaFe 13 type compound phase is almost completely formed.
[0033]
In the samples (1) and (2) shown in FIG. 1, the (La, Fe, Si, B) compound phase is hardly formed, whereas the sample containing no B shown in FIG. Even in the sample (4-a) subjected to the heat treatment for 4 hours in 4), the (La, Fe, Si) compound phase remains. This also indicates that the LaFe 13 type compound phase is efficiently formed by adding B to the alloy according to the present invention.
[0034]
Further, in the samples (5) and (6) having a small B content, the intensity of the peak of the α-Fe phase is strong as in the sample (4). Peak of LaFe 13 type compound phase is also seen but their strength is weak, not reached the volume which can exhibit sufficient magnetic properties. The volume fraction estimated from the integrated intensity of XRD for sample (6) was about 70%.
[0035]
On the other hand, in the sample (3) with a high B content, the α-Fe phase peak is not observed, but the Fe 2 B phase peak intensity is strong. The intensity of the peak of the LaFe 13 type compound phase is weak and does not reach a volume at which sufficient magnetic properties can be exhibited. The volume fraction estimated from the integrated intensity of XRD was about 70%.
[0036]
By conducting such an experiment, when d in the above composition formula II is in the range of 1.8 atomic% ≦ d ≦ 5.4 atomic%, 75 vol% or more LaFe 13 type compound immediately after casting It was found that a phase was obtained. In the illustrated experimental example, B is used as the metalloid element D, but C may be used instead of B. Of course, B and C may be mixed and used.
[0037]
Next, the result of evaluating the magnetocaloric effect of the sample (1) will be described with reference to FIG.
[0038]
A material having a large magnetocaloric effect is preferred for the magnetic refrigeration material. Magnetic entropy change −ΔS mag is used to evaluate the magnetocaloric effect. In general, the greater the -ΔS mag , the greater the magnetocaloric effect. Using a high magnetic field VSM, a magnetization (M) -temperature (T) curve is measured under an applied magnetic field having a constant intensity set from 0 T to 1 T at intervals of 0.2 T. From the measurement result, the following equation (1) is used. -ΔS mag was calculated.
[0039]
-ΔS mag = ∫ 0 H (∂M / ∂T) H dH (1)
(Where -ΔS mag is the magnetic entropy change, H is the magnetic field, M is the magnetization, and T is the absolute temperature.)
[0040]
FIG. 5 shows the temperature dependence of −ΔS mag obtained for the sample (1). As can be seen from the temperature dependence of the magnetic entropy change -Derutaesu mag shown in FIG. 5, the as-cast alloy of the sample (1) shows a large magnetic entropy change. -ΔS mag from 0T to 1T was about 3 Jkg −1 K −1 . Currently, Gd (gadolinium) used in a magnetic refrigeration tester operating near room temperature is about −ΔS mag = 3 Jkg −1 K −1 from 0T to 1T, and has almost the same magnetic entropy change. You can see that In addition, the magnetic entropy change calculated | required about the sample after removing the oxide layer (about 2 mm in thickness) of the surface of the sample (4-d) produced by performing the heat processing for 120 hours to the casting alloy of a sample (4), −ΔS mag = 19 Jkg −1 K −1 . The reason why the -ΔS mag of the sample (1) is lower than that of the sample (4-d) is considered to be that the sample (1) has a relatively large number of α-Fe phases. . Considering the industrial applicability, it is considered that the advantage of being able to omit the heat treatment step is greater than the decrease in −ΔS mag . Further, as can be seen from FIG. 5, in sample (1), the half-value width ΔTc of the temperature region where the magnetic phase transition occurs is 30K or more, and there is an advantage that the operating temperature range as a magnetic refrigeration working material is wide.
[0041]
【The invention's effect】
According to the present invention, there is provided a LaFe 13 -based magnetic alloy material that can be manufactured without a conventional long-time heat treatment step. The LaFe 13 -based magnetic alloy according to the present invention can be suitably used as a magnetic refrigeration working material or a magnetostrictive material.
[Brief description of the drawings]
FIG. 1 is a diagram showing XRD measurement results of cast alloys having different B contents (samples (1) to (7)).
FIG. 2 is a photograph showing a reflected electron image (BEI) of a cast alloy containing B (sample (1)) by EPMA.
FIG. 3 shows XRDs of a cast alloy containing no B (sample (4)) and a cast alloy (sample (4-a), sample (4-c) and sample (4-d)) subjected to heat treatment. It is a figure which shows a measurement result.
FIG. 4 is a photograph showing a reflected electron image (BEI) of a cast alloy containing no B by EPMA, (a) shows a reflected electron image of sample (4), and (b) shows a sample ( 4-b) shows a backscattered electron image, and (c) shows a backscattered electron image of the sample (4-d).
FIG. 5 is a diagram showing the temperature dependence of −ΔS mag obtained for a cast alloy containing B (sample (1)).

Claims (2)

NaZn13型結晶構造を有する化合物相を75体積%以上含み、且つ、組成式:Fe100-a-b-d REa b d (REはLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、ErおよびTmからなる群から選択され、Laを90原子%以上含む少なくとも1種の希土類元素、AはSi、DはB、5原子%≦a≦10原子%、4.7原子%≦b≦18原子%、1.8原子%≦d≦5.4原子%)で表される組成を有する、磁性合金材料。Includes a compound phase having an NaZn 13 type crystal structure 75 vol% or more, and the composition formula: Fe 100-a- bd RE a A b D d (RE is La, Ce, Pr, Nd, Pm, Sm, Eu, At least one rare earth element selected from the group consisting of Gd, Tb, Dy, Ho, Er and Tm and containing 90 atomic% or more of La, A is Si, D is B , 5 atomic% ≦ a ≦ 10 atomic%, 4.7 atomic% ≦ b ≦ 18 atomic %, 1.8 atomic% ≦ d ≦ 5.4 atomic%). 磁気熱量効果を有する請求項に記載の磁性合金材料。The magnetic alloy material according to claim 1 , which has a magnetocaloric effect.
JP2002260201A 2002-09-05 2002-09-05 Magnetic alloy material Expired - Lifetime JP3947066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260201A JP3947066B2 (en) 2002-09-05 2002-09-05 Magnetic alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260201A JP3947066B2 (en) 2002-09-05 2002-09-05 Magnetic alloy material

Publications (2)

Publication Number Publication Date
JP2004099928A JP2004099928A (en) 2004-04-02
JP3947066B2 true JP3947066B2 (en) 2007-07-18

Family

ID=32260986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260201A Expired - Lifetime JP3947066B2 (en) 2002-09-05 2002-09-05 Magnetic alloy material

Country Status (1)

Country Link
JP (1) JP3947066B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4413804B2 (en) 2005-03-24 2010-02-10 株式会社東芝 Magnetic refrigeration material and manufacturing method thereof
JP5158485B2 (en) * 2005-04-05 2013-03-06 日立金属株式会社 Magnetic alloy and method for producing the same
JP4237730B2 (en) 2005-05-13 2009-03-11 株式会社東芝 Manufacturing method of magnetic material
JP4282707B2 (en) 2006-09-29 2009-06-24 株式会社東芝 Alloy and magnetic refrigeration material particle manufacturing method
JP5216207B2 (en) * 2006-12-20 2013-06-19 株式会社東芝 Magnetic refrigeration material and magnetic refrigeration equipment
CN100463083C (en) * 2007-04-24 2009-02-18 包头稀土研究院 A FeGa-RE magnetic-driven flexible materials and its making technology
JP5686314B2 (en) * 2010-09-21 2015-03-18 国立大学法人金沢大学 Rare earth magnetic refrigerant for magnetic refrigeration system
CN103334068B (en) * 2013-05-31 2016-02-17 全椒君鸿软磁材料有限公司 Re-Be-Pb-Mg system Fe-based amorphous alloy strip and preparation method thereof
CN103352181B (en) * 2013-05-31 2015-12-09 全椒君鸿软磁材料有限公司 Si-Bi-Mn-Be system Fe-based amorphous alloy strip and preparation method thereof
JP6440282B2 (en) 2015-10-19 2018-12-19 国立研究開発法人産業技術総合研究所 Manufacturing method of magnetic material
KR101725453B1 (en) * 2015-11-10 2017-04-11 성균관대학교 산학협력단 Magnetocaloric material and process for preparing the same
CN113444954B (en) * 2021-06-01 2021-12-21 中国矿业大学 Ni-Co-Fe-B series eutectic high-entropy alloy and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585240B2 (en) * 1987-01-19 1997-02-26 株式会社東芝 Manufacturing method of cold storage material
JP3466481B2 (en) * 1998-07-31 2003-11-10 和明 深道 Giant magnetostrictive material
JP4471249B2 (en) * 2000-09-05 2010-06-02 和明 深道 Magnetic material
JP3967572B2 (en) * 2001-09-21 2007-08-29 株式会社東芝 Magnetic refrigeration material
JP3630164B2 (en) * 2002-08-21 2005-03-16 株式会社Neomax Magnetic alloy material and method for producing the same
JP4371040B2 (en) * 2002-08-21 2009-11-25 日立金属株式会社 Magnetic alloy material and method for producing the same

Also Published As

Publication number Publication date
JP2004099928A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
TWI673730B (en) R-Fe-B based sintered magnet and manufacturing method thereof
US7833361B2 (en) Alloy and method for producing magnetic refrigeration material particles using same
RU2538272C2 (en) Manufacturing method of magnets from rare-earth metals
JP3630164B2 (en) Magnetic alloy material and method for producing the same
JP6848735B2 (en) RTB series rare earth permanent magnet
JPH0521218A (en) Production of rare-earth permanent magnet
JP5157076B2 (en) Method for producing sintered body of magnetic alloy
JP3947066B2 (en) Magnetic alloy material
JP2014502034A5 (en)
EP0959478A1 (en) Method of manufacturing thin plate magnet having microcrystalline structure
JP2016178213A (en) Permanent magnet
JPH0574618A (en) Manufacture of rare earth permanent magnet
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
KR100204256B1 (en) Rare-earth-element-fe-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
Hu et al. Single 1: 7H solid-solution phase achieving in iron-rich Sm-Co-Fe-Cu-Zr magnets
JP2020045544A (en) Polycrystal rare earth transition metal alloy powder and method for producing the same
JP2024020341A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JP4371040B2 (en) Magnetic alloy material and method for producing the same
JP2011162811A (en) Rare earth-iron based alloy powder for magnetic refrigeration
JPS62188745A (en) Permanent magnet material and its production
JP2007092096A (en) Amorphous magnetic alloy
JP4788300B2 (en) Iron-based rare earth alloy nanocomposite magnet and manufacturing method thereof
JP2005270988A (en) Method for producing rare-earth-metal alloy thin sheet, rare-earth-metal alloy thin sheet and rare-earth-metal magnet
JP5366000B2 (en) Rare earth permanent magnet and method for producing the same
JPH08273914A (en) Rare-earth magnet and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070412

R150 Certificate of patent or registration of utility model

Ref document number: 3947066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

EXPY Cancellation because of completion of term