JP2005270988A - Method for producing rare-earth-metal alloy thin sheet, rare-earth-metal alloy thin sheet and rare-earth-metal magnet - Google Patents

Method for producing rare-earth-metal alloy thin sheet, rare-earth-metal alloy thin sheet and rare-earth-metal magnet Download PDF

Info

Publication number
JP2005270988A
JP2005270988A JP2004083978A JP2004083978A JP2005270988A JP 2005270988 A JP2005270988 A JP 2005270988A JP 2004083978 A JP2004083978 A JP 2004083978A JP 2004083978 A JP2004083978 A JP 2004083978A JP 2005270988 A JP2005270988 A JP 2005270988A
Authority
JP
Japan
Prior art keywords
alloy
phase
rare earth
rare
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004083978A
Other languages
Japanese (ja)
Other versions
JP4238999B2 (en
Inventor
Takahiro Hashimoto
貴弘 橋本
Koichi Hirota
晃一 廣田
Koji Sato
孝治 佐藤
Takehisa Minowa
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004083978A priority Critical patent/JP4238999B2/en
Publication of JP2005270988A publication Critical patent/JP2005270988A/en
Application granted granted Critical
Publication of JP4238999B2 publication Critical patent/JP4238999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably make producable of high characteristic rare-earth-metal magnetic alloy exceeding 400 KJ/m3 in a mass-production level. <P>SOLUTION: A method for producing a rare-earth-metal alloy thin sheet is performed as the followings, that is, when the alloy thin sheet is obtained by rapidly cooling with a cooling roll to molten alloy having the composition composed of 26.8-32.0% R (rare-earth-metal elements containing Y), 0.3-1.5% B, 0.005-1.2% C, 0-4.0% additional element M (Ga, Zr, Nb, Hf, Ta, W, Mo, Al, Si, V, Cr, Ti, Cu, Ag, Mn, Ni, Ge, Sn, Bi, Pb, Zn) and the balance T (Fe and/or Co) with inevitable impurities, the cooling roll is used to one, in which the surface layer in contact with the molten alloy has 10-30 mm thickness and 500-1000 mm the outer diameter formed of copper or a copper alloy having ≥200 W/m°C thermal conductivity, and the molten alloy is rapidly cooled by rotating, the cooling roll at 20-120 rotation/min speed while water-cooling this inner part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁気特性に優れた希土類永久磁石の原料となる希土類合金薄帯の製造方法、及び該方法により得られる希土類合金薄帯、並びに該希土類合金薄帯を用いてなる希土類磁石に関する。   The present invention relates to a method for producing a rare earth alloy ribbon as a raw material for a rare earth permanent magnet having excellent magnetic properties, a rare earth alloy ribbon obtained by the method, and a rare earth magnet using the rare earth alloy ribbon.

希土類永久磁石は優れた磁気特性と経済性のため電気・電子機器の分野で多用されており、近年益々その高性能化が要求されている。これら永久磁石のうちR214B系希土類永久磁石(通称ネオジ磁石)は、希土類コバルト磁石に比べて主要元素であるNdがSmより豊富に存在すること、高価なCoを多用しないことから原材料費が安価であり、磁気特性も希土類コバルト磁石を遥かに凌ぐ極めて優れた永久磁石である。 Rare earth permanent magnets are widely used in the field of electrical and electronic equipment because of their excellent magnetic properties and economy, and in recent years, their performance is increasingly required. Among these permanent magnets, R 2 T 14 B rare earth permanent magnets (commonly known as neodymium magnets) are richer in the main element Nd than rare earth cobalt magnets compared to rare earth cobalt magnets and do not use expensive Co frequently. It is an extremely excellent permanent magnet that is inexpensive and has magnetic properties far superior to those of rare earth cobalt magnets.

従来、希土類磁石の原料用合金は、溶湯を金型に鋳造する金型鋳造法により製造されてきたが、該方法によると、合金の冷却凝固過程において初晶γ−Feが析出して、これが冷却後α−Feとして偏析していた。このα−Feは希土類磁石の製造工程の中の微粉砕工程において、粉砕能力を悪化させるだけでなく、焼結工程後の磁石に残存した場合、磁気特性の低下をもたらす原因ともなる。このため高温で長時間熱処理を行って均質化させ、α−Feを消失させることが必要となるが、この熱処理により合金中の主相(R214B)の結晶粒径が粗大化し、その結果、磁気特性を低下させるとともに、製造コストの上昇を招くこととなる。このような課題を解決するため、ストリップキャスティング法等の急冷技術を用いて、α−Feの偏析を抑制すると共に主相の結晶粒径が細かくなるように制御して得られた合金薄帯を希土類磁石の原料合金として用いて希土類磁石を製造する技術が報告がされている。 Conventionally, alloys for raw materials of rare earth magnets have been manufactured by a mold casting method in which a molten metal is cast into a mold. According to this method, primary γ-Fe precipitates during the cooling and solidification process of the alloy, After cooling, it was segregated as α-Fe. This α-Fe not only deteriorates the pulverization ability in the fine pulverization step in the rare earth magnet manufacturing process, but also causes a decrease in magnetic properties when remaining in the magnet after the sintering step. For this reason, it is necessary to perform heat treatment at a high temperature for a long time to homogenize and eliminate α-Fe, but this heat treatment coarsens the crystal grain size of the main phase (R 2 T 14 B) in the alloy, As a result, the magnetic characteristics are deteriorated and the manufacturing cost is increased. In order to solve such problems, an alloy ribbon obtained by using a quenching technique such as a strip casting method to control segregation of α-Fe and control the crystal grain size of the main phase to be small. A technique for producing a rare earth magnet using a rare earth magnet raw material alloy has been reported.

例えば、(1)特許第1889311号公報(特許文献1)には、5μm以下の結晶質である主相を得、該合金がボンド磁石の原料となるだけでなく、焼結磁石の原料となることが開示され、(2)特許第2665590号公報(特許文献2)には、主相が短軸3〜20μmの均質な柱状結晶を得、これを原料として保磁力(iHc)の高い磁石を製造する技術が開示され、(3)特許第2639609号公報(特許文献3)には、冷却速度10〜500℃/秒で均一に凝固させ、主相の結晶粒径が短軸0.1〜50μm、長軸0.1〜100μmの永久磁石原料用合金を製造し、残留磁化(Br)を上昇させる技術が開示され、(4)特開平7−176414号公報(特許文献4)には、平均粒径3〜50μmの柱状結晶の主相用母合金と平均粒径0.1〜20μmの粒界用助剤合金を混合して水素を吸蔵させる方法で磁気特性を向上させるとともに、粉砕性をも向上させる技術が開示され、(5)特開平9−170055号公報(特許文献5)には、鋳造後、800〜600℃の冷却を10℃/秒以下に制御することで、主相の平均粒径が20〜100μmでNdリッチ相間隔が15μm以下の合金を製造し、残留磁化を上昇させる技術が開示されている。   For example, in (1) Japanese Patent No. 1889311 (Patent Document 1), a main phase which is crystalline of 5 μm or less is obtained, and the alloy is not only a raw material for a bonded magnet but also a raw material for a sintered magnet. (2) Japanese Patent No. 2665590 (Patent Document 2) obtains a homogeneous columnar crystal having a minor axis of 3 to 20 μm as a main phase, and a magnet having a high coercive force (iHc) as a raw material. (3) Japanese Patent No. 2639609 (Patent Document 3) uniformly solidifies at a cooling rate of 10 to 500 ° C./second, and the crystal grain size of the main phase is 0.1 to 0.1 on the minor axis. A technique for producing a permanent magnet raw material alloy having a length of 50 μm and a major axis of 0.1 to 100 μm and increasing the remanent magnetization (Br) is disclosed. (4) JP-A-7-176414 (Patent Document 4) Columnar crystals with an average particle size of 3 to 50 μm A technique for improving magnetic properties and improving grindability by mixing a grain boundary assistant alloy having a particle size of 0.1 to 20 μm and occluding hydrogen is disclosed. (5) JP-A-9-170055 In the publication (Patent Document 5), by controlling the cooling at 800 to 600 ° C. to 10 ° C./second or less after casting, the average particle size of the main phase is 20 to 100 μm and the Nd rich phase interval is 15 μm or less. A technique for producing an alloy and increasing the remanent magnetization is disclosed.

これら報告は平均粒径の揃った均質な合金を用いて磁気特性を向上させているのが特徴であるが、ネオジ磁石の高特性化が進み、量産で400kJ/m3を超えるものが要求されるようになってきたため、更に良質の組織を持つ合金が要望されるようになり、特開2000−219943号公報(特許文献6)では、チル晶と、α−Fe相の析出形態を制御することで、従来よりも20〜100℃低い焼結温度で密度が上昇するようになり、残留磁化(Br)を損なうことなく、高い保磁力(iHc)が得られるという技術が開示されている。特開2000−303153号公報(特許文献7)では、α−Fe相だけでなく、Rリッチ相、Bリッチ相(多くの場合はNd1+αFe44相)、及びR214B相を含めた4相共存領域を制御することで、残留磁束密度を向上させる技術が開示されている。しかしながら、量産レベルの大型炉では該組織を安定的に生産するのは難しく、問題となっていた。 These reports are characterized by improving the magnetic properties by using a homogeneous alloy with a uniform average particle diameter, but neodymium magnets have become more sophisticated and require mass production in excess of 400 kJ / m 3. Therefore, an alloy having a higher quality structure has been demanded, and JP 2000-219943 A (Patent Document 6) controls the precipitation form of chill crystals and α-Fe phase. Thus, a technique has been disclosed in which the density increases at a sintering temperature lower by 20 to 100 ° C. than before, and a high coercive force (iHc) can be obtained without impairing the residual magnetization (Br). In Japanese Patent Application Laid-Open No. 2000-303153 (Patent Document 7), not only an α-Fe phase, but also an R-rich phase, a B-rich phase (Nd 1 + α Fe 4 B 4 phase in many cases), and R 2 T 14 A technique for improving the residual magnetic flux density by controlling the four-phase coexistence region including the B phase is disclosed. However, it is difficult to stably produce the structure in a large-scale furnace of mass production level, which has been a problem.

特許第1889311号公報Japanese Patent No. 1889311 特許第2665590号公報Japanese Patent No. 2665590 特許第2639609号公報Japanese Patent No. 2639609 特開平7−176414号公報JP-A-7-176414 特開平9−170055号公報JP-A-9-170055 特開2000−219943号公報JP 2000-219943 A 特開2000−303153号公報JP 2000-303153 A

本発明は、上記事情を鑑みてなされたものであり、磁気特性に優れた希土類永久磁石の原料となる良質の結晶組織を有する希土類合金薄帯の製造方法、及び該方法により得られる希土類合金薄帯、並びに該希土類合金薄帯を用いてなる希土類磁石を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a method for producing a rare earth alloy ribbon having a high-quality crystal structure as a raw material for a rare earth permanent magnet having excellent magnetic properties, and a rare earth alloy thin film obtained by the method. It is an object of the present invention to provide a band and a rare earth magnet using the rare earth alloy ribbon.

本発明者らは、上記目的を達成するために鋭意検討を行った結果、従来のロール急冷法では、ロールの周速を制御することで、冷却速度を制御し、結晶組織を制御するという考え方が一般的であったが、同じロール周速でも、ロールの外径や、厚さや、使用する材料の熱伝導度等が違うと、組織が大きく変わることを見出し、これを深く検討することで、チル晶の領域、α−Fe相、Rリッチ相、Bリッチ相、及びR1214B相からなる非常に活性な領域である4相共存領域、球状結晶の領域、柱状結晶の領域、及び添加元素Mに起因する相の領域が混在する良質な結晶組織を有する希土類合金薄帯が安定的に製造できることを見出し、本発明をなすに至った。 As a result of diligent investigations to achieve the above object, the inventors of the present invention have thought that the conventional roll quenching method controls the peripheral speed of the roll, thereby controlling the cooling rate and controlling the crystal structure. However, even with the same roll peripheral speed, it was found that the structure changes greatly if the outer diameter, thickness, and thermal conductivity of the material used are different. A four-phase coexistence region which is a very active region composed of a chill crystal region, an α-Fe phase, an R-rich phase, a B-rich phase, and an R 12 T 14 B phase, a spherical crystal region, a columnar crystal region, In addition, the inventors have found that a rare earth alloy ribbon having a high-quality crystal structure in which a phase region caused by the additive element M is mixed can be stably produced, and the present invention has been made.

従って、本発明は、下記に示す希土類合金薄帯の製造方法、希土類合金薄帯及び希土類磁石を提供する。
[1]R(RはYを含む希土類元素のうち一種又は二種以上の組み合わせ)、T(TはFe、又はFe及びCo)、Bを主成分とし、Rが26.8〜32.0質量%、Bが0.3〜1.5質量%、Cが0.005〜1.2質量%、添加元素M(MはGa、Zr、Nb、Hf、Ta、W、Mo、Al、Si、V、Cr、Ti、Cu、Ag、Mn、Ni、Ge、Sn、Bi、Pb、Znのうち一種又は二種以上の組み合わせ)が0〜4.0質量%、残部がT及び不可避不純物からなる組成の合金溶湯を、冷却ロールで急冷して合金薄帯を得るに当たり、上記冷却ロールとして、上記合金溶湯と接触する表面層が厚さ10〜30mmで200W/m・℃以上の熱伝導度を持つ銅又は銅合金により形成された外径が500〜1,000mmである冷却ロールを使用し、この冷却ロール内部を水冷しながら20〜120回転/分の速度で回転させて上記合金溶湯を急冷することを特徴とする希土類合金薄帯の製造方法。
[2]合金溶湯温度を1,500〜1,600℃とすることを特徴とする[1]記載の希土類合金薄帯の製造方法。
[3][1]又は[2]の記載の方法により製造された、平均厚さが100〜800μmであり、チル晶を体積率で1〜30%有し、かつ、平均粒径8μm以下のα−Fe相、平均粒径10μm以下のRリッチ相、平均粒径8μm以下のBリッチ相、及びR214B相からなる4相共存領域を体積率で1〜20%有し、残部は球状結晶、柱状結晶、及び添加元素Mに起因する相からなることを特徴とする希土類合金薄帯。
[4][3]記載の希土類合金薄帯を用いてなることを特徴とする希土類磁石。
Accordingly, the present invention provides a method for producing a rare earth alloy ribbon, a rare earth alloy ribbon and a rare earth magnet as described below.
[1] R (R is one or a combination of two or more of rare earth elements including Y), T (T is Fe, or Fe and Co), B as a main component, and R is 26.8 to 32.0 Mass%, B is 0.3 to 1.5 mass%, C is 0.005 to 1.2 mass%, additive element M (M is Ga, Zr, Nb, Hf, Ta, W, Mo, Al, Si V, Cr, Ti, Cu, Ag, Mn, Ni, Ge, Sn, Bi, Pb, Zn) or a combination of two or more) is 0 to 4.0% by mass, the balance is T and inevitable impurities When the molten alloy having the composition is rapidly cooled with a cooling roll to obtain an alloy ribbon, the surface layer in contact with the molten alloy has a thickness of 10 to 30 mm and a thermal conductivity of 200 W / m · ° C. or higher. Cooling with an outer diameter of 500 to 1,000 mm formed by copper or copper alloy having Using Lumpur, the method of producing the rare-earth alloy ribbon, characterized by rapidly cooling the cooling roll inside the rotate with water cooling while 20-120 rev / min the molten alloy.
[2] The method for producing a rare earth alloy ribbon according to [1], wherein the molten alloy temperature is 1,500 to 1,600 ° C.
[3] The average thickness produced by the method according to [1] or [2] is 100 to 800 μm, the volume ratio is 1 to 30%, and the average particle size is 8 μm or less. It has a four-phase coexistence region consisting of an α-Fe phase, an R-rich phase having an average particle size of 10 μm or less, a B-rich phase having an average particle size of 8 μm or less, and an R 2 T 14 B phase in a volume ratio of 1 to 20%, and the balance Is a rare earth alloy ribbon characterized by comprising a phase due to spherical crystals, columnar crystals, and additive element M.
[4] A rare earth magnet comprising the rare earth alloy ribbon according to [3].

本発明によれば、量産レベルで最大エネルギー積が400kJ/m3を超える高特性希土類磁石合金を安定して製造できるようになる。 According to the present invention, it is possible to stably manufacture a high-performance rare earth magnet alloy having a maximum energy product exceeding 400 kJ / m 3 at a mass production level.

本発明の希土類合金薄帯の製造に使用される原料合金は、26.8〜32.0質量%のR(RはYを含む希土類元素のうち一種又は二種以上の組み合わせ)、0.3〜1.5質量%のB、0.005〜1.2質量%のC、0〜4.0質量%の添加元素M(MはGa、Zr、Nb、Hf、Ta、W、Mo、Al、Si、V、Cr、Ti、Cu、Ag、Mn、Ni、Ge、Sn、Bi、Pb、Znのうち一種又は二種以上の組み合わせ)、残部がT(TはFe、又はFe及びCo)及び不可避不純物からなる組成のR214B系合金である。 The raw material alloy used for the production of the rare earth alloy ribbon of the present invention is 26.8-32.0 mass% R (R is one or a combination of two or more of the rare earth elements including Y), 0.3 -1.5 mass% B, 0.005-1.2 mass% C, 0-4.0 mass% additive element M (M is Ga, Zr, Nb, Hf, Ta, W, Mo, Al , Si, V, Cr, Ti, Cu, Ag, Mn, Ni, Ge, Sn, Bi, Pb, Zn, or a combination of two or more), the balance being T (T is Fe, or Fe and Co) And an R 2 T 14 B alloy having a composition comprising inevitable impurities.

ここで、上記Rは好ましくはY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれる一種又は二種以上の希土類元素であり、中でもPr、Nd、Tb、Dyを用いることが好ましい。一方、MはGa、Zr、Nb、Hf、Ta、W、Mo、Al、Si、V、Cr、Ti、Cu、Ag、Mn、Ni、Ge、Sn、Bi、Pb、Znのうちから選ばれる一種又は二種以上の金属元素であり、中でもZr、Al、Si、Cuを用いることが好ましい。また、TはFe、又はFe及びCoである。   Here, R is preferably one or more rare earth elements selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. Of these, Pr, Nd, Tb, and Dy are preferably used. On the other hand, M is selected from Ga, Zr, Nb, Hf, Ta, W, Mo, Al, Si, V, Cr, Ti, Cu, Ag, Mn, Ni, Ge, Sn, Bi, Pb, and Zn. One or more metal elements, among which Zr, Al, Si, and Cu are preferably used. T is Fe, or Fe and Co.

上記Rの量が26.8質量%未満では、保磁力が著しく減少し、一方、32.0質量%を超えると、Rリッチ相の量が必要以上に増えるため、残留磁化が低くなり、結果として磁気特性が低下する。中でもRの量が27.0〜29.0質量%の間であると、4相共存領域中の微細なα−Fe相等の析出を制御しやすいために好ましい。   If the amount of R is less than 26.8% by mass, the coercive force is remarkably reduced. On the other hand, if it exceeds 32.0% by mass, the amount of R-rich phase is increased more than necessary, resulting in a low residual magnetization. As a result, the magnetic properties deteriorate. Above all, the amount of R is preferably between 27.0 and 29.0% by mass because it is easy to control the precipitation of a fine α-Fe phase or the like in the four-phase coexistence region.

また、Bの量が0.3質量%未満では、Nd2Fe17相の析出により保磁力が著しく低下することとなり、1.5質量%を超えると、Bリッチ相(組成により変わるが、多くの場合はNd1+αFe44相)の量が増えて残留磁化が低くなってしまう。好ましいBの量は0.8〜1.2質量%である。 Further, when the amount of B is less than 0.3% by mass, the coercive force is remarkably lowered due to precipitation of the Nd 2 Fe 17 phase, and when it exceeds 1.5% by mass, the B-rich phase (which varies depending on the composition, In this case, the amount of Nd 1 + α Fe 4 B 4 phase) increases and the residual magnetization decreases. A preferable amount of B is 0.8 to 1.2% by mass.

Cは、焼結後の磁石合金中ではBと似た金属間化合物を作ることが多い添加物であるが、0.005質量%未満では、焼結時の密度上昇が妨げられ、残留磁化が低くなることとなり、1.2質量%を超えると、保磁力が著しく低くなってしまう。好ましいCの量は0.01〜0.3質量%である。   C is an additive that often forms an intermetallic compound similar to B in a sintered magnet alloy. However, if it is less than 0.005% by mass, the increase in density during sintering is hindered, and the residual magnetization is reduced. If it exceeds 1.2% by mass, the coercive force will be significantly reduced. A preferable amount of C is 0.01 to 0.3% by mass.

添加元素Mは、保磁力を上昇させる等の目的に応じて用いられるものであるが、4.0質量%を超えると、残留磁化が著しく減少する。好ましいMの量は0.05〜1.5質量%である。
なお、上記希土類合金には、上記元素の他に、例えば、H、O、Nなどの製造上不可避の不純物を含んでもよい。
The additive element M is used depending on the purpose such as increasing the coercive force, but if it exceeds 4.0% by mass, the residual magnetization is remarkably reduced. A preferable amount of M is 0.05 to 1.5% by mass.
In addition to the above elements, the rare earth alloy may contain impurities unavoidable in production, such as H, O, and N.

本発明において、上記合金の溶湯温度は、一般的には1,400〜1,500℃がよいといわれているが、本発明の冷却ロールにて所望の組織を得るためには1,500〜1,600℃、特に1,520〜1,580℃とすることが好ましい。1,500℃未満では4相共存領域の割合が少なくなってしまう場合があり、1,600℃を超えると坩堝と溶湯の反応性が高くなり、歩留まりの低下や坩堝寿命の低下を引き起こすおそれがある。   In the present invention, the molten metal temperature of the alloy is generally said to be 1,400 to 1,500 ° C., but in order to obtain a desired structure with the cooling roll of the present invention, 1,500 to It is preferable to set it as 1,600 degreeC, especially 1,520-1,580 degreeC. If the temperature is lower than 1,500 ° C., the ratio of the four-phase coexistence region may decrease. If the temperature exceeds 1,600 ° C., the reactivity between the crucible and the molten metal increases, which may cause a decrease in yield and a decrease in crucible life. is there.

本発明の希土類合金薄帯の製造方法は、上記組成の合金溶湯を冷却ロールで急冷することにより、合金薄帯を得るものであるが、この場合、この冷却ロールとして、上記合金溶湯と接触する表面層が厚さ10〜30mmで200W/m・℃以上の熱伝導度を持つ銅又は銅合金により形成された外径500〜1,000mmで、内部が水冷可能なロールを使用し、このロールを内部を水冷しながら20〜120回転/分の速度で回転させ、これの表面に上記合金溶湯を注いで合金溶湯を急冷するものである。   In the method for producing a rare earth alloy ribbon according to the present invention, an alloy ribbon is obtained by rapidly cooling the molten alloy having the above composition with a cooling roll. In this case, as the cooling roll, the molten alloy is brought into contact with the molten alloy. Use a roll with a surface layer of 10 to 30 mm in thickness and an outer diameter of 500 to 1,000 mm formed of copper or a copper alloy having a thermal conductivity of 200 W / m · ° C. or more and the inside of which can be water-cooled. Is rotated at a speed of 20 to 120 revolutions / minute while water-cooling the inside, and the molten alloy is poured onto the surface to quench the molten alloy.

ここで、冷却ロールの外径は、上記した通り、500〜1,000mmであり、600〜800mmであることが好ましい。冷却ロールとしては、一般的には200〜400mmの外径のロールが通常であるが、これでは微細なα−Fe相、Rリッチ相、Bリッチ相等が含まれる4相共存領域を安定的に得ることができず、ロール外径を500mm以上にすることでこのことが可能となる。500mm未満では所定の周速を得るために回転速度を上げる必要がある。そのため遠心力が強く働き、合金薄帯が完全にロールにて冷却される前に剥がれてしまう物の割合が増えてしまう。該合金薄帯はロールにて冷却されないため冷却速度が大幅に低下するので、4相共存領域中の各相の粒径が制御できず、8μmを超え、時には20μmを超えるような粗大化したα−Fe相が析出してしまい、磁気特性が低下してしまう。なお、ロールは定期的に交換する部品であるため1,000mmを超えると、メンテナンス上好ましくない。   Here, as described above, the outer diameter of the cooling roll is 500 to 1,000 mm, and preferably 600 to 800 mm. As the cooling roll, a roll having an outer diameter of 200 to 400 mm is generally used. However, in this case, a four-phase coexistence region including a fine α-Fe phase, an R-rich phase, a B-rich phase, etc. is stably provided. This cannot be obtained, and this can be achieved by setting the outer diameter of the roll to 500 mm or more. If it is less than 500 mm, it is necessary to increase the rotational speed in order to obtain a predetermined peripheral speed. For this reason, the centrifugal force works strongly, and the ratio of objects that peel off before the alloy ribbon is completely cooled by the roll increases. Since the alloy ribbon is not cooled by a roll, the cooling rate is greatly reduced, so the particle size of each phase in the four-phase coexistence region cannot be controlled, and the coarsened α exceeds 8 μm and sometimes exceeds 20 μm. The -Fe phase is precipitated and the magnetic properties are deteriorated. In addition, since a roll is a part exchanged regularly, when it exceeds 1,000 mm, it is unpreferable on a maintenance.

冷却ロールの回転速度は同様の理由で120回転/分以下であり、また、20回転/分より下回ると合金薄帯の厚さが厚くなってしまうため、20〜120回転/分とすることが必要であり、30〜90回転/分とすることが好ましい。   For the same reason, the rotation speed of the cooling roll is 120 revolutions / minute or less, and if it is less than 20 revolutions / minute, the thickness of the alloy ribbon becomes thick, so that it can be 20 to 120 revolutions / minute. It is necessary and it is preferable to set it as 30 to 90 rotations / minute.

冷却ロールの表面層の厚さは10〜30mmであり、15〜25mmであることが好ましい。ロールの厚さ(表面層の厚さ)としては、30〜60mmの厚さが一般的ではあるが、これでは冷却面近傍に体積率で1〜30%のチル晶を安定的に得ることができず、表面層の厚さを30mm以下にすることで可能となる。30mmを超えると、高温の溶湯(冷却されて合金薄帯となる)に接触し温度が上昇するロール外面と、水冷されて水温付近に保たれるロール内面の距離が大きくなるため、温度勾配が緩慢になり、冷却速度が低下するので、チル晶が減ってしまうこととなる。また、10mm未満では安全上好ましくない。   The thickness of the surface layer of the cooling roll is 10 to 30 mm, and preferably 15 to 25 mm. As the roll thickness (surface layer thickness), a thickness of 30 to 60 mm is generally used, but this can stably obtain a chill crystal having a volume ratio of 1 to 30% in the vicinity of the cooling surface. However, it is possible to make the surface layer thickness 30 mm or less. If the thickness exceeds 30 mm, the distance between the outer surface of the roll that is brought into contact with a high-temperature molten metal (cooled into an alloy ribbon) and the temperature rises, and the inner surface of the roll that is cooled and kept near the water temperature is increased. Since it becomes slow and the cooling rate decreases, chill crystals will decrease. Moreover, if it is less than 10 mm, it is unpreferable on safety.

冷却ロールの表面層の材質は熱伝導度の高い金属として銅又は銅合金が好ましい。一般的に熱伝導度の高い金属といえば、銀と銅が挙げられるが、コスト的な面から、銅又は銅を主体とした合金系が使われる。純銅の熱伝導度は、酸素等の不可避不純物量により若干の違いはあるが、400W/m・℃程度であるので、これに少しでも近い方がよいが、純銅は軟らかいため、ロールが傷つきやすく、ロール寿命の問題があるので、様々な添加物、例えばCr、Zr、Beなどの硬度を上げる添加物や、Agなどの熱伝導率を向上させる添加物を加えて合金化し、硬度を上げたものが使われる。なお、本発明においては、200W/m・℃以上、特に250〜400W/m・℃の熱伝導度を有する銅又は銅合金を用いるものである。熱伝導度が200W/m・℃未満であると、チル晶の割合が減ってしまうおそれがあり、更に4相共存領域中のα−Fe相等の粒径が大きくなるおそれがある。   The material of the surface layer of the cooling roll is preferably copper or a copper alloy as a metal having high thermal conductivity. In general, silver and copper are mentioned as metals having high thermal conductivity, but from the viewpoint of cost, an alloy system mainly composed of copper or copper is used. The thermal conductivity of pure copper is slightly different depending on the amount of unavoidable impurities such as oxygen, but it is about 400 W / m · ° C, so it is better to be close to this, but pure copper is soft and the roll is easily damaged. Since there is a problem with the roll life, various additives, for example, additives such as Cr, Zr, Be, etc., which increase the hardness, and additives such as Ag, which improve the thermal conductivity, were alloyed to increase the hardness. Things are used. In the present invention, copper or a copper alloy having a thermal conductivity of 200 W / m · ° C. or more, particularly 250 to 400 W / m · ° C. is used. If the thermal conductivity is less than 200 W / m · ° C., the ratio of chill crystals may decrease, and the particle diameter of α-Fe phase and the like in the four-phase coexistence region may increase.

冷却ロールの内部に流す冷却媒体は特に限定されないが、通常、冷却水が使用される。冷却水温が上昇して気泡が生じるようになると冷却効率が落ちるため、80℃以上、好ましくは50℃以上に冷却水温が上昇しないように、冷却水量を確保したり、供給する冷却水温度を下げる必要がある。   The cooling medium that flows inside the cooling roll is not particularly limited, but cooling water is usually used. As the cooling water temperature rises and bubbles are generated, the cooling efficiency decreases. Therefore, the amount of cooling water is secured or the supplied cooling water temperature is lowered so that the cooling water temperature does not rise to 80 ° C. or higher, preferably 50 ° C. or higher. There is a need.

本発明の希土類合金薄帯の製造方法は、上記合金溶湯を上述した冷却ロールで急冷することにより合金薄帯が得られるものであり、この場合、上述したロール条件とする以外は、公知の方法を採用し得、単ロール法でも双ロール法でもよい。   The method for producing a rare earth alloy ribbon of the present invention is a method in which an alloy ribbon is obtained by quenching the molten alloy with the above-described cooling roll. In this case, a known method is used except for the above-described roll conditions. And may be a single roll method or a twin roll method.

このようにして得られた希土類合金薄帯は、平均厚さが100〜800μmであり、チル晶を体積率で1〜30%有し、かつ、平均粒径8μm以下のα−Fe相、平均粒径10μm以下のRリッチ相、平均粒径8μm以下のBリッチ相、及びR214B相からなる4相共存領域を体積率で1〜20%有し、残部は球状結晶、柱状結晶、及び添加元素Mに起因する相からなるものである。 The thus obtained rare-earth alloy ribbon has an average thickness of 100 to 800 μm, a volume ratio of 1 to 30% of chill crystals, and an α-Fe phase having an average particle diameter of 8 μm or less, an average It has a four-phase coexistence region consisting of an R-rich phase with a particle size of 10 μm or less, a B-rich phase with an average particle size of 8 μm or less, and an R 2 T 14 B phase in a volume ratio of 1 to 20%, with the remainder being spherical crystals And a phase caused by the additive element M.

得られた希土類合金薄帯の組織に関して、簡単に説明すると、チル晶は、その粒径の細かさにより微粉砕時に細かく粉砕されるため、最適焼結温度を下げ、残留磁化を損なうことなく、高い保磁力が得られる効果があるが、希土類合金薄帯中1体積%を下回るとその効果が少なくなってしまうし、30体積%を超えると酸素濃度が上昇するため、1〜30体積%有するものである。最大エネルギー積が400kJ/m3を超える高特性希土類磁石の製造には、5〜15体積%の割合で有することがより好ましい。 The structure of the obtained rare earth alloy ribbon will be briefly described. Since the chill crystal is finely pulverized at the time of fine pulverization due to the fineness of the particle size, the optimum sintering temperature is lowered and the residual magnetization is not impaired. Although there is an effect of obtaining a high coercive force, the effect is reduced when the content is less than 1% by volume in the rare earth alloy ribbon, and the oxygen concentration increases when the content exceeds 30% by volume. Is. For production of a high-performance rare earth magnet having a maximum energy product exceeding 400 kJ / m 3 , it is more preferable to have a ratio of 5 to 15% by volume.

また、チル晶は、合金溶湯がロールと接触した瞬間に冷却された等晶微結晶で、一般には3μm以下の粒径のものである。なお、チル晶の体積率の測定は、合金薄帯断面を偏光顕微鏡で倍率200倍の写真観察を行い、合金薄帯に占めるチル晶の面積率(%)を測定してそれを体積率(%)とした値である。   The chill crystals are isocrystalline microcrystals cooled at the moment when the molten alloy comes into contact with the roll, and generally have a particle size of 3 μm or less. The volume ratio of the chill crystal is measured by observing a cross section of the alloy ribbon with a polarizing microscope at a magnification of 200 times, and measuring the area ratio (%) of the chill crystal in the alloy ribbon to obtain the volume ratio ( %).

4相共存領域は、希土類合金薄帯中に含まれるα−Fe相、Rリッチ相、Bリッチ相の反応が活性であり、焼結時の磁石の密度が上昇しやすく、残留磁束密度が上昇するものであるが、希土類合金薄帯中1体積%を下回るとその効果が少なくなってしまうし、20体積%を超えるとその活性度の高さのために酸素濃度が上昇してしまうため、1〜20体積%有するものであり、好ましくは3〜12体積%有するものである。   In the four-phase coexistence region, the reaction of α-Fe phase, R-rich phase, and B-rich phase contained in the rare earth alloy ribbon is active, the density of the magnet during sintering tends to increase, and the residual magnetic flux density increases. However, if the content is less than 1% by volume in the rare earth alloy ribbon, the effect decreases. If the content exceeds 20% by volume, the oxygen concentration increases due to the high activity, 1 to 20% by volume, preferably 3 to 12% by volume.

また、4相共存領域は、平均粒径8μm以下、好ましくは1〜5μmのα−Fe相、平均粒径10μm以下、好ましくは1〜8μmのRリッチ相、平均粒径8μm以下、好ましくは1〜5μmのBリッチ相、及び好ましくはR214B相からなるものである。合金薄帯の冷却が完了する前にロールから剥がれてしまう、あるいは合金薄帯とロールが接触していない部分が存在する等の理由で、合金薄帯がロール上で制御して冷却されなかった場合、4相共存領域の中に含まれるα−Fe相等の粒径が大きくなってしまう。α−Fe相の粒径は、磁気特性に大きく影響を及ぼすことはよく知られているが、本発明のようにα−Fe相の平均粒径を8μm以下に制御し、かつ、平均粒径が10μm以下のRリッチ相と平均粒径が8μm以下のBリッチ相とを同時に析出させると、磁気特性が向上するものである。α−Fe相の平均粒径が8μmを超えるとその効果がなくなり、更に20μmを超えると逆に磁気特性(特にBrとbHc)を大きく低下させるおそれがあるので注意が必要である。 The four-phase coexistence region has an average particle size of 8 μm or less, preferably 1 to 5 μm α-Fe phase, an average particle size of 10 μm or less, preferably 1 to 8 μm of an R-rich phase, an average particle size of 8 μm or less, preferably 1 It consists of a B rich phase of ˜5 μm and preferably an R 2 T 14 B phase. The alloy ribbon was not controlled and cooled on the roll because the alloy ribbon was peeled off before the cooling of the alloy ribbon was completed, or there was a part where the alloy ribbon and the roll were not in contact. In this case, the particle diameter of the α-Fe phase and the like contained in the four-phase coexistence region becomes large. It is well known that the particle size of the α-Fe phase greatly affects the magnetic properties. However, as in the present invention, the average particle size of the α-Fe phase is controlled to 8 μm or less, and the average particle size is When the R-rich phase having a particle diameter of 10 μm or less and the B-rich phase having an average particle diameter of 8 μm or less are precipitated simultaneously, the magnetic properties are improved. If the average particle diameter of the α-Fe phase exceeds 8 μm, the effect is lost, and if it exceeds 20 μm, the magnetic properties (particularly Br and bHc) may be greatly reduced.

なお、本発明において、4相共存領域の平均粒径は、FEの電子銃をもつオージェ電子分光装置にて倍率1,000〜5,000倍、主に5,000倍にて測定した値である。粒径が大きくて5,000倍では測定が困難な場合は、1,000倍にて測定した。また、4相共存領域の体積率の測定は、チル晶の体積率の測定と同様にして偏光顕微鏡(倍率200倍)で測定した値とすることができる。   In the present invention, the average particle size of the four-phase coexistence region is a value measured at an magnification of 1,000 to 5,000 times, mainly 5,000 times, using an Auger electron spectrometer having an FE electron gun. is there. When the particle size was large and it was difficult to measure at 5,000 times, it was measured at 1,000 times. The volume ratio of the four-phase coexistence region can be a value measured with a polarizing microscope (magnification 200 times) in the same manner as the measurement of the volume ratio of chill crystals.

また、希土類合金薄帯中のチル晶と4相共存領域以外の部分は、球状結晶、柱状結晶や添加元素Mに起因する相からなるものであればよく、これらの割合が変動したり、その他の相が存在したとしても、その他の相が5体積%未満であれば、本発明の効果を損なうものではない。   Further, the portion other than the chill crystal and the four-phase coexistence region in the rare earth alloy ribbon may be composed of a spherical crystal, a columnar crystal, or a phase caused by the additive element M. Even if this phase exists, the effect of the present invention is not impaired as long as the other phase is less than 5% by volume.

希土類合金薄帯は、内部組織が上記の割合であれば厚さは制限されないが、平均厚さが100〜800μmのときに良好な内部組織を得やすい。中でも平均厚さが200〜400μmであるときに、より安定して所望の組織をもつ合金薄帯が得られる。   The thickness of the rare earth alloy ribbon is not limited as long as the internal structure is the above ratio, but a good internal structure is easily obtained when the average thickness is 100 to 800 μm. Above all, when the average thickness is 200 to 400 μm, an alloy ribbon having a desired structure can be obtained more stably.

このような希土類合金薄帯をジェットミル等で平均粒径2〜8μmに微粉砕し、得られた微粉を600kA/m以上、特に900kA/m以上の磁場中で配向させながら、加圧成形し、続いて、真空雰囲気下、950〜1,200℃、特に1,000〜1,080℃で焼結し、更に真空又はAr雰囲気下、時効処理をすることにより、希土類磁石(希土類焼結磁石)とすることができる。   Such a rare earth alloy ribbon is finely pulverized to a mean particle size of 2 to 8 μm using a jet mill or the like, and the obtained fine powder is pressed while being oriented in a magnetic field of 600 kA / m or more, particularly 900 kA / m or more. Subsequently, sintering is performed at 950 to 1,200 ° C., particularly 1,000 to 1,080 ° C. in a vacuum atmosphere, and further, an aging treatment is performed in a vacuum or Ar atmosphere, whereby a rare earth magnet (rare earth sintered magnet) is obtained. ).

この際、本発明の希土類合金薄帯を母合金として、添加助剤として、RリッチなR−TM−B型合金粉末(TM:Fe,Co等の遷移金属)を1〜20質量%添加してもよい。更に、ステアリン酸等の潤滑剤を適宜配合することは任意である。
また、本発明の希土類合金薄帯は、微粉末にし、樹脂等で結合してなるボンド磁石の原料として用いることもできる。
At this time, the rare earth alloy ribbon according to the present invention was used as a mother alloy, and R-rich R-TM-B type alloy powder (TM: transition metal such as Fe, Co) was added as an additive aid in an amount of 1 to 20% by mass. May be. Furthermore, it is optional to appropriately mix a lubricant such as stearic acid.
Further, the rare earth alloy ribbon of the present invention can be used as a raw material for a bond magnet formed into a fine powder and bonded with a resin or the like.

このようにして得られる本発明の希土類磁石は、量産レベルにおいて最大エネルギー積が400kJ/m3を超える高特性を有するものとなり得る。 The rare earth magnet of the present invention thus obtained can have high characteristics in which the maximum energy product exceeds 400 kJ / m 3 at the mass production level.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、下記の例において、チル晶及び4相共存領域の体積率は偏光顕微鏡による写真観察にて合金薄帯断面に占めるそれぞれの面積率(%)を測定し、それを体積率(%)として値を示し、4相共存領域中のα−Fe相の平均粒径、Rリッチ相の平均粒径、Bリッチ相の平均粒径は、FEの電子銃をもつオージェ電子分光装置により測定した値を示す。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to the following Example. In the following example, the volume ratio of the chill crystal and the four-phase coexistence region was measured by measuring the area ratio (%) in the cross section of the alloy ribbon by observing a photograph with a polarizing microscope, and using this as the volume ratio (%). The average particle diameter of the α-Fe phase, the average particle diameter of the R-rich phase, and the average particle diameter of the B-rich phase in the four-phase coexistence region are values measured by an Auger electron spectrometer having an FE electron gun. Indicates.

[実施例]
組成式27.8Nd−0.95B−0.05C−1.0Co−80.0Fe−0.2Al(各質量%)の組成になるように秤量した原料約500kgをAr雰囲気中で高周波溶解して1,550℃に加熱し、溶湯とした。外径600mm、厚さ20mmの冷却ロールを約2.0m/秒の周速になるように64回転/分の速度で回転させた状態で該溶湯を約8分で供給する単ロール法にて冷却して主相用合金薄帯を製造した。なお、使用した冷却ロールの材質はCrが約0.6質量%、Zrが約0.07質量%添加された無酸素銅で、その熱伝導率は約340W/m・℃であり、冷却開始前に♯200のサンドペーパーで約5分間研磨し、金属光沢が出るような状態にした。以上のような合金薄帯の製造を10ロット繰り返した。製造した合金薄帯のロット毎の平均した厚さや組織を表1に示す。
[Example]
About 500 kg of raw materials weighed to have a composition of composition formula 27.8Nd-0.95B-0.05C-1.0Co-80.0Fe-0.2Al (each mass%) were melted at high frequency in an Ar atmosphere. It heated to 1,550 degreeC and it was set as the molten metal. In a single roll method in which a molten roll is supplied in about 8 minutes in a state where a cooling roll having an outer diameter of 600 mm and a thickness of 20 mm is rotated at a speed of 64 revolutions / minute so as to have a peripheral speed of about 2.0 m / second. Cooled to produce an alloy ribbon for the main phase. The material of the cooling roll used was oxygen-free copper to which about 0.6% by mass of Cr and about 0.07% by mass of Zr were added. Its thermal conductivity was about 340 W / m · ° C., and cooling started. Previously, it was polished with # 200 sandpaper for about 5 minutes to obtain a metallic luster. The production of the alloy ribbon as described above was repeated 10 lots. Table 1 shows the average thickness and structure of each manufactured alloy ribbon.

製造した合金薄帯を常温で4時間水素吸蔵処理を行った後、真空中600℃で8時間加熱して脱水素化処理を行い、主相用合金粉末とした。これとは別に、40.0Nd−16.0Dy−0.5B−25.0Co−18.3Fe−0.2Al(各質量%)の組成の合金を金型鋳造法にて製造した後、ブラウンミルにて粉砕して粒界相用合金粉末とした。その後、得られた主相用合金粉末を93質量%、粒界相用合金粉末を6.95質量%、潤滑剤としてステアリン酸を0.05質量%の割合で混合した。次に、得られた粗粉末を窒素雰囲気中でジェットミルを使用して平均粒径4.8μmになるように微粉砕を行った。得られた微粉末を酸素を遮断した窒素雰囲気の状態のままで、955kA/mの磁場中で配向させながら加圧成型した。次にこの成型体を真空中で1,020℃で2時間焼結し、更にAr雰囲気中で2時間時効熱処理を行い、磁石合金を製造した。製造した磁石合金のロット毎の磁気特性の値を表2に示す。
なお、得られた磁石合金中の酸素濃度は0.12〜0.17質量%、C濃度は0.07〜0.09質量%であった。
The manufactured alloy ribbon was subjected to a hydrogen storage treatment at room temperature for 4 hours, and then heated in a vacuum at 600 ° C. for 8 hours for a dehydrogenation treatment to obtain a main phase alloy powder. Separately, an alloy having a composition of 40.0Nd-16.0Dy-0.5B-25.0Co-18.3Fe-0.2Al (mass%) was produced by a die casting method, To obtain an alloy powder for grain boundary phase. Thereafter, 93% by mass of the obtained main phase alloy powder, 6.95% by mass of grain boundary phase alloy powder, and 0.05% by mass of stearic acid as a lubricant were mixed. Next, the obtained coarse powder was finely pulverized to a mean particle size of 4.8 μm using a jet mill in a nitrogen atmosphere. The obtained fine powder was pressure-molded while being oriented in a magnetic field of 955 kA / m in a nitrogen atmosphere in which oxygen was blocked. Next, this molded body was sintered in vacuum at 1,020 ° C. for 2 hours, and further subjected to aging heat treatment in an Ar atmosphere for 2 hours to produce a magnet alloy. Table 2 shows the magnetic property values for each lot of the manufactured magnet alloy.
In addition, the oxygen concentration in the obtained magnet alloy was 0.12-0.17 mass%, and C concentration was 0.07-0.09 mass%.

[比較例]
実施例と同じ組成の合金溶湯をAr雰囲気中で高周波溶解して1,450℃に加熱した。外径300mm、厚さ40mmの冷却ロールを実施例と同じ約2.0m/秒の周速になるように128回転/分の速度で回転させた状態で該溶湯を供給する単ロール法にて冷却して主相用合金薄帯を製造した。なお、冷却ロールの材質等は実施例と同じである。この合金薄帯の製造も10ロット繰り返した。製造した合金薄帯のロット毎の平均した厚さや組織を表1に示す。以後の工程は実施例と同様にして、磁石合金を製造した。製造した磁石合金のロット毎の磁気特性の値を表2に示す。磁石合金中の酸素濃度は0.13〜0.19質量%、C濃度は0.07〜0.09質量%であった。
[Comparative example]
A molten alloy having the same composition as the example was melted at high frequency in an Ar atmosphere and heated to 1,450 ° C. By a single roll method in which a molten roll is supplied in a state where a cooling roll having an outer diameter of 300 mm and a thickness of 40 mm is rotated at a speed of 128 revolutions / minute so as to have a peripheral speed of about 2.0 m / second as in the embodiment. Cooled to produce an alloy ribbon for the main phase. The material of the cooling roll is the same as in the example. The production of the alloy ribbon was repeated 10 times. Table 1 shows the average thickness and structure of each manufactured alloy ribbon. Subsequent steps were carried out in the same manner as in the Examples to produce a magnet alloy. Table 2 shows the magnetic property values for each lot of the manufactured magnet alloy. The oxygen concentration in the magnet alloy was 0.13 to 0.19 mass%, and the C concentration was 0.07 to 0.09 mass%.

Figure 2005270988
Figure 2005270988

表1に示されるように実施例の合金薄帯には、チル晶が10〜13体積%、4相共存領域が6〜9体積%と析出量が安定しているだけでなく、4相共存領域中のα−Fe相の平均粒径も2.9〜3.2μmに制御されていた。また、Rリッチ相の平均粒径は4.1〜5.3μm、Bリッチ相の平均粒径は2.0〜2.5μmであった。
これに対して、比較例の合金薄帯は、1〜6体積%とチル晶の量が少なめで、バラツキも大きい。4相共存領域の析出量は4〜10体積%となっているが、4相共存領域中のα−Fe相の平均粒径が5.2〜20.5μmと8μmを超えてしまうものが発生している。また、Rリッチ相の平均粒径は7.8〜24.5μm、Bリッチ相の平均粒径は4.1〜10.2μmと、粗大化してしまっている。
As shown in Table 1, in the alloy ribbon of the example, not only the precipitation amount is stable with 10 to 13% by volume of chill crystals and 6 to 9% by volume of the four-phase coexistence region, but also the coexistence of four phases. The average particle diameter of the α-Fe phase in the region was also controlled to 2.9 to 3.2 μm. The average particle size of the R-rich phase was 4.1 to 5.3 μm, and the average particle size of the B-rich phase was 2.0 to 2.5 μm.
On the other hand, the alloy ribbon of the comparative example has a small variation in the amount of chill crystals of 1 to 6% by volume and large variation. The amount of precipitation in the four-phase coexistence region is 4 to 10% by volume, but the average particle size of the α-Fe phase in the four-phase coexistence region is 5.2 to 20.5 μm and exceeds 8 μm. doing. The average particle size of the R-rich phase is 7.8 to 24.5 μm, and the average particle size of the B-rich phase is 4.1 to 10.2 μm.

Figure 2005270988
Figure 2005270988

表2に示されるように実施例の磁石合金は、チル晶と微細な粒径の4相共存領域を安定して持っている合金薄帯を使用しているため、磁気特性は、Brが1.43T以上、iHcが1,210kA/m以上、bHcが1,100kA/m以上、(BH)maxが400kJ/m3以上と安定して高いことが分かる。それに対して、比較例の磁石合金の磁気特性は、チル晶の量が少なめなだけでなく、4相共存領域中のα−Fe相の粒径が大きくなってしまっているので、実施例の磁石合金の磁気特性に及ばないだけでなく、そのバラツキも大きい。
As shown in Table 2, the magnetic alloy of the example uses an alloy ribbon that stably has a chill crystal and a four-phase coexistence region with a fine grain size. .43T or higher, iHc is 1,210 kA / m or higher, bHc is 1,100 kA / m or higher, and (BH) max is 400 kJ / m 3 or higher. On the other hand, the magnetic properties of the magnet alloy of the comparative example are not only small in the amount of chill crystals, but also the particle diameter of the α-Fe phase in the four-phase coexistence region is large. Not only does it fall under the magnetic properties of magnet alloys, but its variation is also great.

Claims (4)

R(RはYを含む希土類元素のうち一種又は二種以上の組み合わせ)、T(TはFe、又はFe及びCo)、Bを主成分とし、Rが26.8〜32.0質量%、Bが0.3〜1.5質量%、Cが0.005〜1.2質量%、添加元素M(MはGa、Zr、Nb、Hf、Ta、W、Mo、Al、Si、V、Cr、Ti、Cu、Ag、Mn、Ni、Ge、Sn、Bi、Pb、Znのうち一種又は二種以上の組み合わせ)が0〜4.0質量%、残部がT及び不可避不純物からなる組成の合金溶湯を、冷却ロールで急冷して合金薄帯を得るに当たり、上記冷却ロールとして、上記合金溶湯と接触する表面層が厚さ10〜30mmで200W/m・℃以上の熱伝導度を持つ銅又は銅合金により形成された外径が500〜1,000mmである冷却ロールを使用し、この冷却ロール内部を水冷しながら20〜120回転/分の速度で回転させて上記合金溶湯を急冷することを特徴とする希土類合金薄帯の製造方法。   R (R is one or a combination of two or more of rare earth elements including Y), T (T is Fe, or Fe and Co), B as a main component, and R is 26.8-32.0 mass%, B is 0.3 to 1.5 mass%, C is 0.005 to 1.2 mass%, additive element M (M is Ga, Zr, Nb, Hf, Ta, W, Mo, Al, Si, V, Cr, Ti, Cu, Ag, Mn, Ni, Ge, Sn, Bi, Pb, Zn) or a combination of two or more) is 0 to 4.0% by mass, the balance is T and inevitable impurities. When the molten alloy is rapidly cooled with a cooling roll to obtain an alloy ribbon, the surface layer in contact with the molten alloy has a thickness of 10 to 30 mm and a thermal conductivity of 200 W / m · ° C. or more as the cooling roll. Or a cooling roll formed of a copper alloy and having an outer diameter of 500 to 1,000 mm Use and method for producing a rare earth alloy ribbon, characterized by rapidly cooling the cooling roll interior is rotated at 20 to 120 revolutions / min while water-cooling in the molten alloy. 合金溶湯温度を1,500〜1,600℃とすることを特徴とする請求項1記載の希土類合金薄帯の製造方法。   The method for producing a rare earth alloy ribbon according to claim 1, wherein the molten alloy temperature is set to 1,500 to 1,600 ° C. 請求項1又は2の記載の方法により製造された、平均厚さが100〜800μmであり、チル晶を体積率で1〜30%有し、かつ、平均粒径8μm以下のα−Fe相、平均粒径10μm以下のRリッチ相、平均粒径8μm以下のBリッチ相、及びR214B相からなる4相共存領域を体積率で1〜20%有し、残部は球状結晶、柱状結晶、及び添加元素Mに起因する相からなることを特徴とする希土類合金薄帯。 An α-Fe phase produced by the method according to claim 1 or 2, having an average thickness of 100 to 800 µm, a chill crystal of 1 to 30% by volume, and an average particle size of 8 µm or less, It has a four-phase coexistence region consisting of an R-rich phase with an average particle size of 10 μm or less, a B-rich phase with an average particle size of 8 μm or less, and an R 2 T 14 B phase in a volume ratio of 1 to 20%, the balance being spherical crystals A rare earth alloy ribbon characterized by comprising a phase caused by crystals and an additive element M. 請求項3記載の希土類合金薄帯を用いてなることを特徴とする希土類磁石。
A rare earth magnet comprising the rare earth alloy ribbon according to claim 3.
JP2004083978A 2004-03-23 2004-03-23 Manufacturing method of rare earth sintered magnet Expired - Fee Related JP4238999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083978A JP4238999B2 (en) 2004-03-23 2004-03-23 Manufacturing method of rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004083978A JP4238999B2 (en) 2004-03-23 2004-03-23 Manufacturing method of rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JP2005270988A true JP2005270988A (en) 2005-10-06
JP4238999B2 JP4238999B2 (en) 2009-03-18

Family

ID=35171183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083978A Expired - Fee Related JP4238999B2 (en) 2004-03-23 2004-03-23 Manufacturing method of rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP4238999B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213544A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Hexagonal ferrite magnetic powder, method for producing the same, magnetic powder for magnetic recording medium, and magnetic recording medium
JP2011222966A (en) * 2010-03-24 2011-11-04 Tdk Corp Rare-earth magnetic alloy and manufacturing method of the same
JP2012060139A (en) * 2011-10-12 2012-03-22 Inter Metallics Kk Method of manufacturing ndfeb-based sintered magnet
CN109023008A (en) * 2018-10-09 2018-12-18 盐城市星凯环保科技股份有限公司 A kind of formula and its preparation process of electrothermal alloy resistant to high temperature
CN111696777A (en) * 2019-03-15 2020-09-22 日立金属株式会社 Method for producing R-T-B sintered magnet
JP2020155763A (en) * 2019-03-15 2020-09-24 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
CN113560338A (en) * 2021-09-23 2021-10-29 矿冶科技集团有限公司 Multi-element composite rare earth tungsten alloy wire and rolling process and electrode thereof
CN114774801A (en) * 2022-05-28 2022-07-22 阳春新钢铁有限责任公司 Production method of high-elongation bundled wire

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222966A (en) * 2010-03-24 2011-11-04 Tdk Corp Rare-earth magnetic alloy and manufacturing method of the same
JP2011213544A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Hexagonal ferrite magnetic powder, method for producing the same, magnetic powder for magnetic recording medium, and magnetic recording medium
JP2012060139A (en) * 2011-10-12 2012-03-22 Inter Metallics Kk Method of manufacturing ndfeb-based sintered magnet
CN109023008A (en) * 2018-10-09 2018-12-18 盐城市星凯环保科技股份有限公司 A kind of formula and its preparation process of electrothermal alloy resistant to high temperature
CN111696777A (en) * 2019-03-15 2020-09-22 日立金属株式会社 Method for producing R-T-B sintered magnet
JP2020155763A (en) * 2019-03-15 2020-09-24 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
CN113560338A (en) * 2021-09-23 2021-10-29 矿冶科技集团有限公司 Multi-element composite rare earth tungsten alloy wire and rolling process and electrode thereof
CN114774801A (en) * 2022-05-28 2022-07-22 阳春新钢铁有限责任公司 Production method of high-elongation bundled wire
CN114774801B (en) * 2022-05-28 2023-04-18 阳春新钢铁有限责任公司 Production method of bundling wire with high elongation

Also Published As

Publication number Publication date
JP4238999B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
KR101642999B1 (en) Rare earth magnet and its preparation
KR102096958B1 (en) Highly thermostable rare-earth permanent magnetic material, preparation method thereof and magnet containing the same
JP4591633B2 (en) Nanocomposite bulk magnet and method for producing the same
EP2513917B1 (en) Rare earth magnet and manufacturing method therefor
EP1780736A1 (en) R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
JP4766045B2 (en) Iron-based rare earth nanocomposite magnet and manufacturing method thereof
CN102376407A (en) Rare earth sintered magnet
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
JP5071409B2 (en) Iron-based rare earth nanocomposite magnet and manufacturing method thereof
JP4687662B2 (en) Iron-based rare earth alloy magnet
EP1411532B1 (en) R-t-b-c based rare earth magnetic powder and bonded magnet
JP4238999B2 (en) Manufacturing method of rare earth sintered magnet
JP4788300B2 (en) Iron-based rare earth alloy nanocomposite magnet and manufacturing method thereof
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JP5299737B2 (en) Quenched alloy for RTB-based sintered permanent magnet and RTB-based sintered permanent magnet using the same
WO2013114892A1 (en) R-T-B-Ga-BASED MAGNET MATERIAL ALLOY AND METHOD FOR PRODUCING SAME
JP4955217B2 (en) Raw material alloy for RTB-based sintered magnet and method for manufacturing RTB-based sintered magnet
JP3594084B2 (en) Rare earth alloy ribbon manufacturing method, rare earth alloy ribbon and rare earth magnet
EP1632299B1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP2012023190A (en) Manufacturing method of anisotropic rare earth magnet
JP3535253B2 (en) Method for producing cast slab for R-Fe-B permanent magnet
JP4715245B2 (en) Iron-based rare earth nanocomposite magnet and method for producing the same
CN115280435A (en) Anisotropic rare earth sintered magnet and method for producing same
JP2002175908A (en) Permanent magnet having plural ferromagnetic phases, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4238999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees