JP4471249B2 - Magnetic material - Google Patents

Magnetic material Download PDF

Info

Publication number
JP4471249B2
JP4471249B2 JP2000268192A JP2000268192A JP4471249B2 JP 4471249 B2 JP4471249 B2 JP 4471249B2 JP 2000268192 A JP2000268192 A JP 2000268192A JP 2000268192 A JP2000268192 A JP 2000268192A JP 4471249 B2 JP4471249 B2 JP 4471249B2
Authority
JP
Japan
Prior art keywords
transition
magnetic
exhibits
magnetostriction
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000268192A
Other languages
Japanese (ja)
Other versions
JP2002069596A (en
JP2002069596A5 (en
Inventor
和明 深道
麻哉 藤田
俊 藤枝
嘉明 飯島
仁丈 山崎
英樹 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000268192A priority Critical patent/JP4471249B2/en
Publication of JP2002069596A publication Critical patent/JP2002069596A/en
Publication of JP2002069596A5 publication Critical patent/JP2002069596A5/ja
Application granted granted Critical
Publication of JP4471249B2 publication Critical patent/JP4471249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁歪が大きく、磁気−機械変位変換デバイス等に用いられる磁歪素子用として好適な、メタ磁性転移を発現する磁性体に関する。
【0002】
【従来の技術】
磁性体に外部磁界を印加した際生じる歪である磁歪の応用として、磁歪フィルタ、磁歪センサ、超音波遅延線、磁歪振動子等がある。従来はNi基合金、Fe−Co合金、フェライト、ラーベス型金属間化合物(Tb,Dy,Sm)Fe2等が用いられている。
【0003】
近年、計測工学の進歩及び精密機械分野の発展に伴い、ミクロンオーダーの微小変位制御に不可欠の変位駆動部の開発が必要とされている。この変位駆動部の駆動機構の一つとして、磁歪物質を用いた磁気−機械変換デバイスが有力である。しかしながら、従来の磁歪材料では変位の絶対量が十分でなく、ミクロンオーダーの精密変位制御駆動部材料としては絶対駆動変位量のみならず、精密制御の点からも満足し得るものではなかった。
【0004】
通常、超磁歪材料と呼ばれているものは、ReFe2であらわされるラーベス型金属間化合物のうち、TbFe2(λs=1753×10-6)やSmFe2(λs=−1560×10-6)〔Clark(1974):超磁歪材料、日刊工業新聞社刊〕があり、最も大きな飽和磁歪値を持っている。また、磁性の大きさだけをみれば、200K以下の低温においてDyやTbの単結晶で大きな磁歪(λs〜±4000×10-6)が得られている。これらのものを例示すれば表1のとおりである。
【0005】
【表1】
【0006】
【発明が解決しようとする課題】
従来の磁歪材料は、磁歪が大きくても液体窒素温度以下であったり、実際の磁歪が小さい問題や、磁歪が異方性であるために、印加磁界をかける方向が限定され、デバイスの構造に制約を受ける問題があり、これらを解決する高性能の磁歪材料が期待されている。
【0007】
本発明はこのような問題点を考慮してなされたもので、等方的な磁歪を有し、かつ、室温近傍で従来までの磁歪効果を越えるような大きな磁歪を有する、メタ磁性転移を発現する磁性体を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、下記各項よりなる。
(1)一般式:La(Fe1-xx13- δq(ただし、AはAl,Si,Ga,Ge,Snのうち少なくとも1種の元素、Dは水素、窒素のうち少なくとも1種の元素、x,δ,qは原子比で0.05≦x≦0.2、−1≦δ≦1、0<q<2)で示される組成からなるメタ磁性転移を発現する磁性体。
【0009】
(2)一般式:La(Fe1-xx-yTMy13- δq(ただし、AはAl,Si,Ga,Ge,Snのうち少なくとも1種の元素、TMはFeを除く遷移金属元素のうち少なくとも1種の元素、Dは水素、窒素のうち少なくとも1種の元素、x,y,δ,qは原子比で0.05≦x≦0.2、0<y<0.1、−1≦δ≦1、0<q<2)で示される組成からなるメタ磁性転移を発現する磁性体。
【0010】
(3)一般式:La1-zREz(Fe1-xx13- δq(ただし、AはAl,Si,Ga,Ge,Snのうち少なくとも1種の元素、REはLaを除く希土類元素のうち少なくとも1種の元素、Dは水素、窒素のうち少なくとも1種の元素、x,z,δ,qは原子比で0.05≦x≦0.2、0<z≦0.1、−1≦δ≦1、0<q<2)で示される組成からなるメタ磁性転移を発現する磁性体。
【0011】
(4)一般式:La1-zREz(Fe1-xx-yTMy13- δq(ただし、AはAl,Si,Ga,Ge,Snのうち少なくとも1種の元素、TMはFeを除く遷移金属元素のうち少なくとも1種の元素、REはLaを除く希土類元素のうち少なくとも1種の元素、Dは水素、窒素のうち少なくとも1種の元素、x,y,z,δ,qは原子比で0.05≦x≦0.2、0<y<0.1、x>y、0<z≦0.1、−1≦δ≦1、0<q<2)で示される組成からなるメタ磁性転移を発現する磁性体。
【0012】
(5)一般式:La(Fe1-a-bSia b13q(ただし、Dは水素、窒素のうち少なくとも1種の元素、0.10≦a≦0.16、0<b≦0.08、0<q<2)で示される組成からなるメタ磁性転移を発現する磁性体。
【0013】
(6)TMがCo,Ni,Cuのうちの少なくとも1種の元素である前記(2)又は(4)記載のメタ磁性転移を発現する磁性体。
【0014】
EがY,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luのうちの少なくとも1種の元素である前記(3)又は(4)記載のメタ磁性転移を発現する磁性体。
【0015】
)10原子%以下で不可避的不純物を含む前記(1)ないし()のいずれかに記載のメタ磁性転移を発現する磁性体。
【0016】
体積率で90%以上が立方晶系のNaZn13型金属間化合物である前記(1)ないし(7)のいずれかに記載のメタ磁性転移を発現する磁性体
【0017】
本発明材料の基となるLa(Fe1-xx13に関して、Laは20面体を構成するFe1-xxによりBCC的に取り込まれており、A=Siとした場合、Si量(x)を変えることで磁気転移温度Tc(キュリー温度)、T(ネール温度)及び磁化Msが変化することは知られている〔K.H.J.Buschow等、Journal of Magnetism and Magnetic Materials 36(1983)190−296〕。
【0018】
本発明者らはこの材料について詳細な検討を進めた結果、Feの置換元素であるAの元素をSi,Al,Ga,Ge,Znの少なくとも1種とし、そのxの量を変化させることで、xが小さい組成で、低温ではあるが、反強磁性から強磁性へのメタ磁性転移を起こすことを見出し、さらにはメタ磁性転移により飽和磁歪(λs)が5000×10-6を越えるものが得られることが判った。ここでメタ磁性転移とは、反強磁性もしくは常磁性状態に磁界を印加することで、強磁性体に変化する現象である。
【0019】
この材料は、従来のTbFe2などラーベス型磁歪材料が磁界方向に対し磁歪の大きさが平行と直角では伸縮が逆(符号が逆)と異方的であるのに対し、La(Fe1-xx13は磁界を印加することで全ての方向に対して伸びる。言い換えれば磁界をかけることで体積が増えることとなり、従来の巨大磁歪材料とは全く異なる磁歪効果を示す。この材料の組成、Feの置換元素であるAの元素およびCoの置換量、Laの置換元素である希土類元素の置換量を検討した結果、室温近傍で大きな磁歪を示す材料を得ることが可能となった[特開2000−54086]。しかしながら、磁歪を室温近傍で発現させるためには、組成を厳密に制御し、また材料作製方法、調製方法にも細心の注意を要する。
【0020】
本発明者等は室温以上で超磁歪効果を容易に発現させるために、材料の結晶構造に着目し、構造制御することを試みた。La(Fe1-xSix13に圧力を加えることでTcは低下する。また、La(Fe1-xSix13ではSi量が増加するに従い磁気転移温度は上昇する[特開2000−54086]。
【0021】
これは、図1で示すような20面体を構成するFe1-xx中のFeがSiに置き換わることで平均的なFe−Fe間距離が広がりTcが上昇する。また逆に、La(Fe1-xSix13に圧力を加えることでTcが低下することも分かっている。
【0022】
このような背景から、本発明者等は本材料に対し侵入型の元素を添加し、結晶構造を変えることなくLa(Fe1-xSix13のFe−Fe間相互作用の制御、言い換えれば磁気転移温度の制御を行った。
【0023】
図2は、La(Fe0.88Si0.1213の磁化Mおよび歪み△L/Lの温度依存性および磁界依存性を示した図である。La(Fe0.88Si0.1213は温度を上げていくと、Tc=195Kで磁化が減少し、強磁性体から常磁性体に変化し、同時に歪み△L/LもTc=195Kで減少する。また、Tc=195K近傍の200Kでの磁化は常磁性体であるが磁界を印加することで強磁性体に変化するメタ磁性転移を示し、それに伴い歪み△L/Lは増加する。このように、La(Fe0.88Si0.1213の歪み△L/Lは磁化Mとよい相関を示す。Tc直下の常磁性のLa(Fe0.88Si0.1213に磁界をかけることで、常磁性体から強磁性体に相変化(メタ磁性転移)し、格子定数の増加、体積増加が生じることが本材料の磁歪効果である。このように本材料は磁界を印加させることで大きな体積変化を生じさせるだけでなく、Tc近傍での温度変化によっても大きな体積変化を生じることが特徴である。
【0024】
La(Fe0.88Si0.1213に水素を吸蔵させた場合の、X線回折図を図3に示す。一番下に示すのはNaZn13型のX線回折線であるが、La(Fe0.88Si0.1213およびLa(Fe0.88Si0.12131.6はいずれもNaZn13型を示し、水素を吸蔵することで各回折線は低角側にずれており、全体的に格子定数が大きくなっていることが分かる。この材料の熱膨張測定を行った結果を図4に示す。熱膨張△L/Lは温度を上昇させるとTcで大きな低下を示し、La(Fe0.88Si0.1213のTcが190Kであるのに対し、La(Fe0.88Si0.12131.6はTc=333Kと室温(300K)を大きく越える。従って、図4で示したようなTc近傍での大きな磁歪効果は、La(Fe0.88Si0.12131.6の場合、50℃(333K)で大きな磁歪効果を示すことがいえる。さらに図5に示すようにTcは水素吸蔵量を少なくすることで低下することができるためTc以下の任意の温度で大きな磁歪効果を示すことができる。このとき水素は図1のNaZn13単位胞中のFeI−FeIの中間に配位している。
【0025】
図6はLa(Fe0.88Si0.1213qの水素吸蔵量を変えた時の、磁気転移温度(キュリー温度)と室温での格子定数 を示す。水素量を変えることで、Tcは190K(−83℃)から340K(67℃)まで大きく変化させることが可能である。このときの水素吸蔵量の増加によって室温の格子定数は増加し、それに伴ってキュリー温度Tcが上昇する。Tcが室温を超えるとLa(Fe0.88Si0.1213qは室温で強磁性体から常磁性体に変わるため、格子定数は不連続に増加する。
【0026】
図7は、La(Fe0.88Si0.12131.6(Tc=333K)の各温度(330、336、338、342K)における磁化曲線で、Tc直上以上では常磁性で磁化はないが、磁界を印加すると磁化があらわれ、大きな磁歪が生じる。Tcから高くなるに従い、磁歪効果を生じさせるためには高磁界が必要になり、大きな磁歪を高感度に生じさせるには本材料を(Tc−5)Kから(Tc+10)Kの範囲で使用するのが望ましい。好ましくはTc±5Kで使用するのがよい。
【0027】
本発明では、Feの置換元素であるAの元素はSi,Al,Ga,Ge,Znの少なくとも1種であり、FeとAの比は、Aの比が増加するに従い、磁気転移温度は上昇し、飽和磁化は小さくなる。La(Fe1-xx13では、総じてxが0.05未満であるとNaZn13型の結晶構造を維持することができず、磁歪を発現するメタ磁性転移がなくなる。一方、xが0.3を越えると強磁性状態が安定となり、同様に磁歪を発現するメタ磁性転移は認められなくなる。そこで、本発明では好適な範囲として0.05≦x≦0.2とした。請求項2などにおけるTM(Co,Ni,Cu)の量が変わることで磁性を担うFeの3d電子の数が変わり、磁気転移温度Tcおよび磁化(Ms)の強さを変える効果がある。このときのyの組成は0≦y<0.1の範囲で変えることが好適で、yが0.1以上となるとFeの磁性そのものに影響を及ぼすために磁歪を発現するメタ磁性転移が生じなくなり不適である。特にTMがCoの場合、置換元素Coの組成が変わることで磁性を担うFeの3d電子の数が変わり、磁気転移温度Tc、Tおよび磁化の強さを変える効果がある。このときCoの組成(y)は、0<y≦0.08の範囲で変えることが好適で、yが0.08を越えると、Feの磁性そのものに影響を及ぼすために磁歪を発現するメタ磁性転移が生じなくなり不適である。好ましくはCoの組成は0.04≦y≦0.06が磁気転移温度Tcを上昇させ、室温近傍での磁歪効果を得ることで効果的である。
【0028】
また請求項3、4においてLaの一部を他の希土類元素(Nd,Gdなど)で置換することで飽和磁界を小さくする効果がある。置換量(z)の上限は0.1である。zが0.1を越えるとNaZn13型の化合物構造をとるよりもRE2Fe17が安定となり、NaZn13構造によるメタ磁性転移が生じなくなり、結果として巨大磁歪が得られない。
【0029】
また請求項1、2、3、4、5において、(H,N)をNaZn13型の化合物構造中に侵入させることでFe−Fe合金の相互作用を変化させ、磁気転移温度を上昇させる効果がある。このとき水素量がq≧2となるとNaZn13型の結晶構造を維持することができず、磁歪を発現するメタ磁性転移がなくなる。一方、窒素量はq>1.6以上でNaZn13型の結晶構造を維持することができず、磁歪を発現するメタ磁性転移がなくなる。結果として巨大磁歪が得られない。また、本発明では10原子%の不可避的不純物を含んでも差し支えない。
【0030】
【発明の実施の形態】
以下、本発明の実施例について述べる。表2に示した組成の材料をアーク溶解にて作製した後、真空中、1050℃で168時間熱処理した試料をダイヤモンドカッターで切り出した。磁化特性、熱磁特性はSQUID(カンタムデザイン社製)を用い、磁歪は超電導磁石中、4.2Kから373Kまで静電容量法を用いて測定した。磁化、熱磁測定用試料及び磁歪測定用試料の形状は2mm×2mm×2mmに切り出して用いた。
【0031】
その結果、表2に示すような組成において室温近傍から100℃の温度範囲で、この場合(250K−400K)でメタ磁性転移温度を持つ、言い換えれば非常に大きな磁歪特性を示す。
【0032】
【表2】
【0033】
【発明の効果】
以上説明したとおり本発明のメタ磁性転移を発現する磁性体は従来の材料の特性に比べて、等方的できわめて大きな磁歪特性を室温以上で有する。これによりμmオーダーの微小変位制御駆動部、強力音波発生用振動子、センサ等の構成材料として極めて優れた特性を有するものである。
【図面の簡単な説明】
【図1】 NaZn13型結晶構造La(FeAl,Si)13を示す。
【図2】 La(Fe0.88Si0.1213の磁化Mと歪み量△L/Lの温度依存性および磁界依存性を示すグラフである。
【図3】 La(Fe0.88Si0.1213q(q=0.0,1.6)のX線回折図を示す。
【図4】 La(Fe0.88Si0.1213q(q=0.0,1.6)の歪み△L/Lの温度依存性を示すグラフである。
【図5】 La(Fe0.88Si0.12131.6の水素を放出した場合のTcの変化を示すグラフである。
【図6】 La(Fe0.88Si0.1213qのキュリー温度(Tc)と室温での格子定数を示す。
【図7】 La(Fe0.88Si0.12131.6(Tc=333K)の各温度(330、336、338、342K)における磁化曲線を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic body that exhibits a metamagnetic transition and has a large magnetostriction and is suitable for a magnetostrictive element used in a magneto-mechanical displacement conversion device.
[0002]
[Prior art]
Applications of magnetostriction, which is strain generated when an external magnetic field is applied to a magnetic material, include a magnetostrictive filter, a magnetostrictive sensor, an ultrasonic delay line, a magnetostrictive vibrator, and the like. Conventionally, Ni-based alloys, Fe—Co alloys, ferrites, Laves-type intermetallic compounds (Tb, Dy, Sm) Fe 2 and the like have been used.
[0003]
In recent years, with the advancement of measurement engineering and the development of the precision machine field, it is necessary to develop a displacement drive unit indispensable for micro displacement control on the order of microns. As one of the drive mechanisms of the displacement drive unit, a magneto-mechanical conversion device using a magnetostrictive material is promising. However, the absolute amount of displacement is not sufficient in the conventional magnetostrictive material, and the precision displacement control drive part material of micron order is not satisfactory from the point of precision control as well as the absolute drive displacement amount.
[0004]
Usually, what is called a giant magnetostrictive material is TbFe 2 (λs = 17353 × 10 −6 ) or SmFe 2 (λs = 1-1560 × 10 −6 ) among Laves type intermetallic compounds represented by ReFe 2. [Clark (1974): Giant magnetostrictive material, published by Nikkan Kogyo Shimbun, Ltd.], which has the largest saturated magnetostriction value. If only the magnitude of magnetism is observed, a large magnetostriction (λs˜ ± 4000 × 10 −6 ) is obtained with a single crystal of Dy or Tb at a low temperature of 200 K or less. Examples of these are shown in Table 1.
[0005]
[Table 1]
[0006]
[Problems to be solved by the invention]
The conventional magnetostrictive material has a problem that the magnetostriction is below the liquid nitrogen temperature even when the magnetostriction is large, the actual magnetostriction is small, and the magnetostriction is anisotropic. There are problems subject to restrictions, and high-performance magnetostrictive materials that can solve these problems are expected.
[0007]
The present invention has been made in consideration of such problems, and exhibits a metamagnetic transition that has isotropic magnetostriction and has a large magnetostriction that exceeds the conventional magnetostriction effect near room temperature. An object of the present invention is to provide a magnetic material.
[0008]
[Means for Solving the Problems]
The present invention comprises the following items.
(1) General formula: La (Fe 1-x A x ) 13- δ D q (where A is at least one element of Al, Si, Ga, Ge and Sn, D is at least of hydrogen and nitrogen) One element, x, δ, q is a magnetism that exhibits a metamagnetic transition having a composition represented by atomic ratios 0.05 ≦ x ≦ 0.2, −1 ≦ δ ≦ 1, 0 <q <2) body.
[0009]
(2) General formula: La (Fe 1-x A xy TM y) 13- δ D q ( although, A is excluding Al, Si, Ga, Ge, at least one element of Sn, TM is a Fe transition At least one element of metal elements, D is hydrogen, at least one element of nitrogen, x, y, δ, and q are atomic ratios 0.05 ≦ x ≦ 0.2, 0 <y <0. 1. A magnetic substance that exhibits a metamagnetic transition having a composition represented by 1, −1 ≦ δ ≦ 1, 0 <q <2).
[0010]
(3) General formula: La 1-z RE z (Fe 1-x A x ) 13- δ D q (where A is at least one element of Al, Si, Ga, Ge, Sn, RE is La At least one element among rare earth elements excluding hydrogen, D is at least one element among hydrogen and nitrogen, and x, z, δ, and q are atomic ratios 0.05 ≦ x ≦ 0.2, 0 <z ≦ A magnetic material that exhibits a metamagnetic transition having a composition represented by 0.1, −1 ≦ δ ≦ 1, 0 <q <2).
[0011]
(4) General formula: La 1-z RE z (Fe 1-x A xy TM y ) 13- δ D q (where A is at least one element of Al, Si, Ga, Ge, Sn, TM Is at least one element among transition metal elements excluding Fe, RE is at least one element among rare earth elements excluding La, D is at least one element among hydrogen and nitrogen, x, y, z, δ , Q are atomic ratios 0.05 ≦ x ≦ 0.2, 0 <y <0.1, x> y, 0 <z ≦ 0.1, −1 ≦ δ ≦ 1, 0 <q <2). A magnetic substance that exhibits a metamagnetic transition having the composition shown.
[0012]
(5) the general formula: La (Fe 1-ab Si a C o b) 13 D q ( although, D is hydrogen, at least one element of nitrogen, 0.10 ≦ a ≦ 0.16,0 <b A magnetic substance that exhibits a metamagnetic transition having a composition represented by ≦ 0.08 and 0 <q <2).
[0013]
(6) The magnetic material that exhibits the metamagnetic transition according to (2) or (4), wherein TM is at least one element selected from Co, Ni, and Cu.
[0014]
R E is Y, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, said at least one element of Lu (3) or (4) A magnetic substance that exhibits the described metamagnetic transition .
[0015]
( 7 ) The magnetic substance that exhibits a metamagnetic transition according to any one of (1) to ( 6 ) above, containing 10% by atom or less and inevitable impurities.
[0016]
The magnetic body that exhibits the metamagnetic transition according to any one of (1) to (7), wherein 90% or more by volume is a cubic NaZn 13 type intermetallic compound .
[0017]
Regarding La (Fe 1-x A x ) 13 that is the basis of the material of the present invention, La is taken in BCC by Fe 1-x A x constituting the icosahedron, and when A = Si, the amount of Si It is known that the magnetic transition temperature Tc (Curie temperature), T N (Nail temperature), and magnetization Ms change by changing (x) [K. H. J. et al. Buschow et al., Journal of Magnetics and Magnetic Materials 36 (1983) 190-296].
[0018]
As a result of detailed investigations on this material, the present inventors have determined that the element of A, which is a substitution element for Fe, is at least one of Si, Al, Ga, Ge, and Zn, and the amount of x is changed. , X is a small composition, and it has been found that a metamagnetic transition from antiferromagnetism to ferromagnetism occurs at a low temperature, and the saturation magnetostriction (λs) exceeds 5000 × 10 −6 due to the metamagnetic transition. It turns out that it is obtained. Here, the metamagnetic transition is a phenomenon that changes to a ferromagnetic material by applying a magnetic field to an antiferromagnetic or paramagnetic state.
[0019]
This material, while the Laves-type magnetostrictive material such as a conventional TbFe 2 has stretch at right angles and parallel magnitude of magnetostriction to the magnetic field direction is opposite anisotropic and (opposite sign), La (Fe 1- xA x ) 13 extends in all directions by applying a magnetic field. In other words, the volume is increased by applying a magnetic field, and the magnetostrictive effect is completely different from that of the conventional giant magnetostrictive material. As a result of studying the composition of this material, the amount of substitution of the element A and Co as the substitution element of Fe, and the substitution amount of the rare earth element as the substitution element of La, it is possible to obtain a material exhibiting a large magnetostriction near room temperature. [JP 2000-54086]. However, in order to develop magnetostriction near room temperature, the composition is strictly controlled, and careful attention is required for the material preparation method and preparation method.
[0020]
The inventors of the present invention have focused on the crystal structure of the material and attempted to control the structure in order to easily develop the giant magnetostrictive effect above room temperature. Tc is lowered by applying pressure to La (Fe 1-x Si x ) 13 . In La (Fe 1-x Si x ) 13 , the magnetic transition temperature rises as the amount of Si increases [JP 2000-54086].
[0021]
This is because when Fe in Fe 1-x A x constituting the icosahedron as shown in FIG. 1 is replaced by Si, the average distance between Fe and Fe increases and Tc increases. Conversely, it has also been found that Tc is reduced by applying pressure to La (Fe 1-x Si x ) 13 .
[0022]
Against this background, the present inventors added interstitial elements to the material, and controlled, in other words, the Fe—Fe interaction of La (Fe 1-x Si x ) 13 without changing the crystal structure. For example, the magnetic transition temperature was controlled.
[0023]
FIG. 2 is a diagram showing the temperature dependence and magnetic field dependence of the magnetization M and strain ΔL / L of La (Fe 0.88 Si 0.12 ) 13 . As La (Fe 0.88 Si 0.12 ) 13 increases in temperature, the magnetization decreases at Tc = 195K, changes from a ferromagnetic material to a paramagnetic material, and strain ΔL / L also decreases at Tc = 195K. The magnetization at 200 K near Tc = 195 K is a paramagnetic material, but exhibits a metamagnetic transition that changes to a ferromagnetic material when a magnetic field is applied, and the strain ΔL / L increases accordingly. Thus, the strain ΔL / L of La (Fe 0.88 Si 0.12 ) 13 shows a good correlation with the magnetization M. Applying a magnetic field to paramagnetic La (Fe 0.88 Si 0.12 ) 13 directly under Tc causes a phase change (metamagnetic transition) from paramagnetic to ferromagnetic, resulting in an increase in lattice constant and volume. This is the magnetostrictive effect of the material. As described above, this material is characterized not only by causing a large volume change by applying a magnetic field, but also by a temperature change in the vicinity of Tc.
[0024]
FIG. 3 shows an X-ray diffraction pattern when hydrogen is occluded in La (Fe 0.88 Si 0.12 ) 13 . The bottom is an X-ray diffraction line of NaZn 13 type, but La (Fe 0.88 Si 0.12 ) 13 and La (Fe 0.88 Si 0.12 ) 13 H 1.6 both show NaZn 13 type and occlude hydrogen. By doing so, it is understood that each diffraction line is shifted to the low angle side, and the lattice constant is increased as a whole. The result of the thermal expansion measurement of this material is shown in FIG. The thermal expansion ΔL / L shows a large decrease in Tc when the temperature is increased. La (Fe 0.88 Si 0.12 ) 13 has a Tc of 190 K, whereas La (Fe 0.88 Si 0.12 ) 13 H 1.6 has a Tc = It greatly exceeds 333K and room temperature (300K). Accordingly, it can be said that the large magnetostriction effect near Tc as shown in FIG. 4 shows a large magnetostriction effect at 50 ° C. (333 K) in the case of La (Fe 0.88 Si 0.12 ) 13 H 1.6 . Furthermore, as shown in FIG. 5, Tc can be lowered by reducing the hydrogen storage amount, and therefore a large magnetostriction effect can be exhibited at any temperature below Tc. At this time, hydrogen is coordinated in the middle of Fe I -Fe I in the NaZn 13 unit cell of FIG.
[0025]
FIG. 6 shows the magnetic transition temperature (Curie temperature) and the lattice constant at room temperature when the hydrogen storage amount of La (Fe 0.88 Si 0.12 ) 13 H q is changed. By changing the amount of hydrogen, Tc can be greatly changed from 190K (−83 ° C.) to 340K (67 ° C.). At this time, the lattice constant at room temperature increases due to the increase in the hydrogen storage amount, and the Curie temperature Tc increases accordingly. When Tc exceeds room temperature, La (Fe 0.88 Si 0.12 ) 13 H q changes from ferromagnetic to paramagnetic at room temperature, so that the lattice constant increases discontinuously.
[0026]
FIG. 7 is a magnetization curve at La (Fe 0.88 Si 0.12 ) 13 H 1.6 (Tc = 333 K) at each temperature (330, 336, 338, 342 K), and is paramagnetic and has no magnetization above Tc. When a magnetic field is applied, magnetization appears and large magnetostriction occurs. As the Tc increases, a high magnetic field is required to generate the magnetostriction effect, and this material is used in the range of (Tc-5) K to (Tc + 10) K to generate a large magnetostriction with high sensitivity. Is desirable. It is preferable to use at Tc ± 5K.
[0027]
In the present invention, the element A as a substitution element for Fe is at least one of Si, Al, Ga, Ge, and Zn, and the ratio of Fe to A increases as the ratio of A increases. In addition, the saturation magnetization becomes small. In La (Fe 1-x A x ) 13 , if x is generally less than 0.05, the NaZn 13 type crystal structure cannot be maintained, and there is no metamagnetic transition that exhibits magnetostriction. On the other hand, when x exceeds 0.3, the ferromagnetic state becomes stable, and the metamagnetic transition that similarly exhibits magnetostriction is not recognized. Therefore, in the present invention, 0.05 ≦ x ≦ 0.2 is set as a preferable range. By changing the amount of TM (Co, Ni, Cu) in claim 2, etc., the number of 3d electrons of Fe carrying magnetism changes, and there is an effect of changing the magnetic transition temperature Tc and the strength of magnetization (Ms). The composition of y at this time is preferably changed in the range of 0 ≦ y <0.1. When y is 0.1 or more, the magnetic property of Fe itself is affected, and therefore a metamagnetic transition that exhibits magnetostriction occurs. It is not suitable. In particular, when TM is Co, the composition of the substitution element Co is changed to change the number of 3d electrons of Fe, which plays a role in magnetism, and has an effect of changing the magnetic transition temperatures Tc and TN and the strength of magnetization. At this time, the composition (y) of Co is preferably changed in the range of 0 <y ≦ 0.08, and if y exceeds 0.08, it influences the magnetism of Fe itself, so that it exhibits magnetostriction. Magnetic transition does not occur and is not suitable. Preferably, the composition of Co is 0.04 ≦ y ≦ 0.06, which is effective by increasing the magnetic transition temperature Tc and obtaining the magnetostriction effect near room temperature.
[0028]
Further, in claims 3 and 4, a part of La is replaced with another rare earth element (Nd, Gd, etc.), so that the saturation magnetic field is reduced. The upper limit of the substitution amount (z) is 0.1. When z exceeds 0.1, RE 2 Fe 17 becomes more stable than a NaZn 13 type compound structure, and metamagnetic transition due to the NaZn 13 structure does not occur, resulting in no giant magnetostriction.
[0029]
The effect of increasing the magnetic transition temperature by changing the interaction of the Fe-Fe alloy by allowing (H, N) to penetrate into the NaZn 13 type compound structure in claims 1, 2, 3, 4, and 5. There is. At this time, if the amount of hydrogen is q ≧ 2, the NaZn 13 type crystal structure cannot be maintained, and the metamagnetic transition that exhibits magnetostriction is lost. On the other hand, if the amount of nitrogen is q> 1.6 or more, the NaZn 13 type crystal structure cannot be maintained, and there is no metamagnetic transition that exhibits magnetostriction. As a result, giant magnetostriction cannot be obtained. In the present invention, 10 atomic% of inevitable impurities may be included.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below. A material having the composition shown in Table 2 was prepared by arc melting, and a sample heat-treated at 1050 ° C. for 168 hours in a vacuum was cut out with a diamond cutter. Magnetization characteristics and thermomagnetic characteristics were measured using SQUID (manufactured by Quantum Design), and magnetostriction was measured in a superconducting magnet from 4.2 K to 373 K using the capacitance method. The sample for magnetization, thermomagnetism measurement, and magnetostriction measurement was cut into 2 mm × 2 mm × 2 mm and used.
[0031]
As a result, the composition shown in Table 2 has a metamagnetic transition temperature in this case (250K-400K) in the temperature range from near room temperature to 100 ° C. In other words, it exhibits a very large magnetostriction characteristic.
[0032]
[Table 2]
[0033]
【The invention's effect】
As described above, the magnetic material exhibiting the metamagnetic transition of the present invention has isotropic and extremely large magnetostriction characteristics at room temperature or higher as compared with the characteristics of conventional materials. As a result, it has extremely excellent characteristics as a constituent material for a micro displacement control drive unit on the order of μm, a vibrator for generating a strong sound wave, a sensor, and the like.
[Brief description of the drawings]
FIG. 1 shows a NaZn 13 type crystal structure La (FeAl, Si) 13 .
FIG. 2 is a graph showing temperature dependence and magnetic field dependence of magnetization M and strain amount ΔL / L of La (Fe 0.88 Si 0.12 ) 13 .
FIG. 3 shows an X-ray diffraction pattern of La (Fe 0.88 Si 0.12 ) 13 H q (q = 0.0, 1.6).
FIG. 4 is a graph showing temperature dependency of strain ΔL / L of La (Fe 0.88 Si 0.12 ) 13 H q (q = 0.0, 1.6).
FIG. 5 is a graph showing a change in Tc when hydrogen of La (Fe 0.88 Si 0.12 ) 13 H 1.6 is released.
FIG. 6 shows the Curie temperature (Tc) of La (Fe 0.88 Si 0.12 ) 13 H q and the lattice constant at room temperature.
FIG. 7 shows magnetization curves of La (Fe 0.88 Si 0.12 ) 13 H 1.6 (Tc = 333 K) at each temperature (330, 336, 338, 342 K).

Claims (7)

一般式:La(Fe1-xx13- δq(ただし、AはAl,Si,Ga,Ge,Snのうち少なくとも1種の元素、Dは水素、窒素のうち少なくとも1種の元素、x,δ,qは原子比で0.05≦x≦0.2、−1≦δ≦1、0<q<2)で示される組成からなるメタ磁性転移を発現する磁性体。General formula: La (Fe 1-x A x ) 13- δ D q (where A is at least one element selected from Al, Si, Ga, Ge, and Sn, D is at least one selected from hydrogen and nitrogen) Elements, x, δ, and q are magnetic materials that exhibit a metamagnetic transition having a composition represented by atomic ratios 0.05 ≦ x ≦ 0.2, −1 ≦ δ ≦ 1, and 0 <q <2. 一般式:La(Fe1-xx-yTMy13- δq(ただし、AはAl,Si,Ga,Ge,Snのうち少なくとも1種の元素、TMはFeを除く遷移金属元素のうち少なくとも1種の元素、Dは水素、窒素のうち少なくとも1種の元素、x,y,δ,qは原子比で0.05≦x≦0.2、0<y<0.1、−1≦δ≦1、0<q<2)で示される組成からなるメタ磁性転移を発現する磁性体。General formula: La (Fe 1-x A xy TM y ) 13- δ D q (where A is at least one element of Al, Si, Ga, Ge, Sn, TM is a transition metal element excluding Fe) Among them, at least one element, D is hydrogen, at least one element of nitrogen, x, y, δ, q are atomic ratios 0.05 ≦ x ≦ 0.2, 0 <y <0.1, − A magnetic substance that exhibits a metamagnetic transition having a composition represented by 1 ≦ δ ≦ 1, 0 <q <2). 一般式:La1-zREz(Fe1-xx13- δq(ただし、AはAl,Si,Ga,Ge,Snのうち少なくとも1種の元素、REはLaを除く希土類元素のうち少なくとも1種の元素、Dは水素、窒素のうち少なくとも1種の元素、x,z,δ,qは原子比で0.05≦x≦0.2、0<z≦0.1、−1≦δ≦1、0<q<2)で示される組成からなるメタ磁性転移を発現する磁性体。General formula: La 1-z RE z (Fe 1-x A x ) 13- δ D q (where A is at least one element of Al, Si, Ga, Ge, Sn, and RE is a rare earth excluding La) At least one element of elements, D is hydrogen, at least one element of nitrogen, x, z, δ, q are atomic ratios 0.05 ≦ x ≦ 0.2, 0 <z ≦ 0.1 -1 ≦ δ ≦ 1, 0 <q <2), and a magnetic substance that exhibits a metamagnetic transition. 一般式:La1-zREz(Fe1-xx-yTMy13- δq(ただし、AはAl,Si,Ga,Ge,Snのうち少なくとも1種の元素、TMはFeを除く遷移金属元素のうち少なくとも1種の元素、REはLaを除く希土類元素のうち少なくとも1種の元素、Dは水素、窒素のうち少なくとも1種の元素、x,y,z,δ,qは原子比で0.05≦x≦0.2、0<y<0.1、x>y、0<z≦0.1、−1≦δ≦1、0<q<2)で示される組成からなるメタ磁性転移を発現する磁性体。General formula: La 1-z RE z (Fe 1-x A xy TM y ) 13- δ D q (where A is at least one element of Al, Si, Ga, Ge, and Sn, and TM is Fe. At least one element of transition metal elements to be excluded, RE is at least one element of rare earth elements excluding La, D is at least one element of hydrogen and nitrogen, x, y, z, δ, q are Composition represented by atomic ratio 0.05 ≦ x ≦ 0.2, 0 <y <0.1, x> y, 0 <z ≦ 0.1, −1 ≦ δ ≦ 1, 0 <q <2) A magnetic material that exhibits a metamagnetic transition. 一般式:La(Fe1-a-bSiaCob13q(ただし、Dは水素、窒素のうち少なくとも1種の元素、0.10≦a≦0.16、0<b≦0.08、0<q<2)で示される組成からなるメタ磁性転移を発現する磁性体。General formula: La (Fe 1 -ab Si a Co b ) 13 D q (where D is at least one element of hydrogen and nitrogen, 0.10 ≦ a ≦ 0.16, 0 <b ≦ 0.08) , 0 <q <2), a magnetic substance that exhibits a metamagnetic transition. TMがCo,Ni,Cuのうちの少なくとも1種の元素である請求項2又は請求項4記載のメタ磁性転移を発現する磁性体。  5. The magnetic material exhibiting a metamagnetic transition according to claim 2, wherein TM is at least one element selected from Co, Ni, and Cu. 10原子%以下で不可避的不純物を含む請求項1ないし6のいずれかに記載のメタ磁性転移を発現する磁性体。  The magnetic body which develops the metamagnetic transition according to any one of claims 1 to 6, comprising 10% by atom or less and inevitable impurities.
JP2000268192A 2000-09-05 2000-09-05 Magnetic material Expired - Fee Related JP4471249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000268192A JP4471249B2 (en) 2000-09-05 2000-09-05 Magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000268192A JP4471249B2 (en) 2000-09-05 2000-09-05 Magnetic material

Publications (3)

Publication Number Publication Date
JP2002069596A JP2002069596A (en) 2002-03-08
JP2002069596A5 JP2002069596A5 (en) 2007-08-16
JP4471249B2 true JP4471249B2 (en) 2010-06-02

Family

ID=18755000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000268192A Expired - Fee Related JP4471249B2 (en) 2000-09-05 2000-09-05 Magnetic material

Country Status (1)

Country Link
JP (1) JP4471249B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005842A1 (en) * 2002-07-05 2004-01-15 Matsushita Electric Industrial Co., Ltd. Reader and authentication device including the same
US7186303B2 (en) 2002-08-21 2007-03-06 Neomax Co., Ltd. Magnetic alloy material and method of making the magnetic alloy material
JP3630164B2 (en) * 2002-08-21 2005-03-16 株式会社Neomax Magnetic alloy material and method for producing the same
JP3947066B2 (en) * 2002-09-05 2007-07-18 株式会社Neomax Magnetic alloy material
US7695574B2 (en) 2002-10-25 2010-04-13 Showda Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
JP4399771B2 (en) * 2003-10-08 2010-01-20 日立金属株式会社 Magnetic particle and method for producing the same, and magnetic particle unit
JP4218032B2 (en) * 2004-02-13 2009-02-04 日立金属株式会社 Magnetic alloy and method for producing the same
JP2006124783A (en) * 2004-10-29 2006-05-18 Hitachi Metals Ltd Magnetic grain and method for producing the same
US7578892B2 (en) 2005-03-31 2009-08-25 Hitachi Metals, Ltd. Magnetic alloy material and method of making the magnetic alloy material
EP1867744B1 (en) * 2005-04-05 2012-05-23 Hitachi Metals, Ltd. Magnetic alloy and method for producing same
KR101088535B1 (en) 2007-02-12 2011-12-05 바쿰슈멜체 게엠베하 운트 코. 카게 Article for magnetic heat exchange and method of manufacturing the same
GB2459066B (en) * 2007-02-12 2012-02-15 Vacuumschmelze Gmbh & Co Kg Article for magnetic heat exchange and method of manufacturing the same
CN101681707B (en) 2007-12-27 2014-04-02 真空熔焠有限两合公司 Composite article with magnetocalorically active material and method for production thereof
JP5520306B2 (en) 2008-10-01 2014-06-11 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Product having at least one magnetocalorically active phase and method of processing a product having at least one magnetocalorically active phase
GB2463931B (en) 2008-10-01 2011-01-12 Vacuumschmelze Gmbh & Co Kg Method for producing a magnetic article
DE102008054522B4 (en) * 2008-12-11 2013-11-21 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. A method of coating the surface of a magnetic alloy material and such an alloy material
US9773591B2 (en) 2009-05-06 2017-09-26 Vacuumschmelze Gmbh & Co. Kg Article for magnetic heat exchange and method of fabricating an article for magnetic heat exchange
CN101882493B (en) * 2009-05-08 2015-09-09 包头稀土研究院 Magnetic alloy material and manufacture method thereof and magnetic refrigerating system
US9895748B2 (en) 2009-10-14 2018-02-20 Vacuumschmelze & Gmbh & Co. Kg Article for magnetic heat exchange and method of manufacturing the same
GB2482880B (en) 2010-08-18 2014-01-29 Vacuumschmelze Gmbh & Co Kg An article for magnetic heat exchange and a method of fabricating a working component for magnetic heat exchange

Also Published As

Publication number Publication date
JP2002069596A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
JP4471249B2 (en) Magnetic material
JP2002069596A5 (en)
Takenaka et al. Magnetovolume effect and negative thermal expansion in Mn3 (Cu1− xGex) N
Yang et al. Structure and magnetic properties of the MnBi low temperature phase
JP3466481B2 (en) Giant magnetostrictive material
Clark Magnetostrictive RFe2 intermetallic compounds
Wang et al. Characterization of polycrystalline Fe 2 B compound with high saturation magnetization
Takenaka et al. Magnetostructural correlations in nitrogen-deficient antiperovskite Mn3CuN1-δ
Levin et al. Reversible spin-flop and irreversible metamagneticlike transitions induced by a magnetic field in the layered Gd 5 Ge 4 antiferromagnet
JP3452210B2 (en) Manufacturing method of magnetostrictive material
Dai et al. Magnetism, elasticity, and magnetostriction of FeCoGa alloys
Hu et al. Anisotropy compensation and magnetostrictive properties in Tbx Dy1− x (Fe0. 9Mn0. 1) 1.93 Laves compounds: Experimental and theoretical analysis
Szymczak From almost zero magnetostriction to giant magnetostrictive effects: recent results
Zhang et al. Design of high resistivity light-rare-earth-based PrFe1. 93 magnetostrictive alloys: Si doping and high-pressure annealing
Du et al. Magnetostriction in twin-free single crystals Tb y Dy 1− y Fe 2 with the addition of aluminum or manganese
US5565830A (en) Rare earth-cobalt supermagnetostrictive alloy
Hu et al. Structural, magnetic and magnetostrictive behavior in Nd (Fe1− xCox) 1.9 compounds
Wecker et al. Magnetic hardening of (Sm, Zr) Fe3 alloys
Wang et al. Magnetic properties of Sm Fe Ti V alloys
Stern et al. Fe 3 Pd ferromagnetic shape memory alloys
Shih et al. The effect of beryllium addition on magnetostriction of the Tb0. 3Dy0. 7Fe2 alloy
EP1399932A1 (en) Terbium-dysprosium-iron magnetostrictive materials and devices using these materials
JP6930230B2 (en) Metal-Insulation System Nanogranular Thin Film and Thin Film Magnetic Sensor
Gabay et al. Effect of Mg content in melt-spun Mn–Bi–Mg–Sb–In alloys on the structure and properties of field-annealed magnets
Boulet et al. Structural chemistry, magnetic properties and electrical resistivity of the ternary germanides R2RuGe2 (R= Y, La–Nd, Gd–Er)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A681

Effective date: 20091117

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees