JP2006124783A - Magnetic grain and method for producing the same - Google Patents

Magnetic grain and method for producing the same Download PDF

Info

Publication number
JP2006124783A
JP2006124783A JP2004315305A JP2004315305A JP2006124783A JP 2006124783 A JP2006124783 A JP 2006124783A JP 2004315305 A JP2004315305 A JP 2004315305A JP 2004315305 A JP2004315305 A JP 2004315305A JP 2006124783 A JP2006124783 A JP 2006124783A
Authority
JP
Japan
Prior art keywords
atomic
phosphoric acid
magnetic particles
amount
producing magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004315305A
Other languages
Japanese (ja)
Inventor
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004315305A priority Critical patent/JP2006124783A/en
Publication of JP2006124783A publication Critical patent/JP2006124783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide magnetic grains having magnetocaloric effect practical in the vicinity of room temperature, and also having excellent corrosion resistance, and to provide a method for producing the same. <P>SOLUTION: The magnetic grains are obtained by providing the surface of each alloy grain having a composition expressed by (La-Y)<SB>A</SB>M<SB>B</SB>Si<SB>C</SB>H<SB>D</SB>T<SB>bal</SB>(wherein, M is one or more kinds of elements selected from Ti, Zr and Hf; T includes Fe as an essential element, and, if required, also includes one or more kinds of elements selected from Co, Ni and Cr, and, 6.0≤A≤7.5 atomic%, 0≤B≤5.0 atomic%, 8.0≤C≤14.0 atomic% and 0≤D≤15.0 atomic% are satisfied) with a chemical conversion film with phosphoric acid. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、環境に優しい冷蔵庫及びエアコン等を実現する高効率な冷凍システムを実現可能な磁気熱量効果を有し、かつ耐候性及び耐食性の良好な磁性粒子、及びその製造方法に関する。   The present invention relates to a magnetic particle having a magnetocaloric effect capable of realizing a highly efficient refrigeration system that realizes an environmentally friendly refrigerator, an air conditioner, and the like, and a method for producing the same.

冷蔵庫・エアコンなどに使用されるフロンガスが大気中に漏出されると、オゾン層破壊の原因となるので、フロン回収破壊法などの法的規制が行われているが、完全にフロンを大気中に漏らさずに、回収することは困難である。このため冷媒としてフロンガス及び代替フロンガスを使用する代わりに、磁性材料の磁気熱量効果を利用して磁気冷蔵サイクルを実現することが検討されている。近年、非特許文献1に開示されるように、室温で作動する磁気冷凍材料の研究が行われている。室温付近で磁気熱量効果を発揮する材料としては、Gd粒子、Mn-As-Sb系、Gd5Ge2Si2などが知られているが、特に特許文献1に開示されている、NaZn13型結晶構造を有するLa(Fe0.88Si0.12)13H1.0系磁性材料は、キュリー温度が室温付近にあり、且つ大きな磁気エントロピー差を持つため、実用性が大きいと考えられる。
A.Fujita,S.Fujieda,K.Fukamichi,Y.Yamazaki and Y.Iijima,Material Transactions 43(2002)1202. 特開2003−96547号公報((0022)〜(0024))
If chlorofluorocarbon gas used in refrigerators and air conditioners leaks into the atmosphere, it will cause ozone depletion, so legal regulations such as the chlorofluorocarbon recovery and destruction law have been implemented. It is difficult to recover without leaking. For this reason, it has been studied to realize a magnetic refrigeration cycle using the magnetocaloric effect of a magnetic material instead of using chlorofluorocarbon gas and alternative chlorofluorocarbon gas as a refrigerant. In recent years, as disclosed in Non-Patent Document 1, research on magnetic refrigeration materials that operate at room temperature has been conducted. Gd particles, Mn-As-Sb system, Gd 5 Ge 2 Si 2 and the like are known as materials that exhibit magnetocaloric effect near room temperature. In particular, the NaZn 13 type disclosed in Patent Document 1 is known. A La (Fe 0.88 Si 0.12 ) 13 H 1.0- based magnetic material having a crystal structure is considered to be highly practical because the Curie temperature is around room temperature and has a large magnetic entropy difference.
A.Fujita, S.Fujieda, K.Fukamichi, Y.Yamazaki and Y.Iijima, Material Transactions 43 (2002) 1202. JP 2003-96547 A ((0022) to (0024))

しかし、特許文献1に記載されたLa(Fe・Si)13H0系磁性材料は、まず真空溶解などによりLa-Fe-Si系合金を作製し、次いでこの合金に水素吸蔵処理を施した後、粉末化することにより製造されるが、現時点では、工業的に生産するための合金組成ならびに製造方法は全く確立されていない。また、本系材料は、NaZn13型結晶構造を形成するために、Laを比較的大量に含有させる必要がある。Laは酸化しやすい希土類元素であるため、耐候性及び耐食性が低い材料である。熱交換媒体として流体や気体が用いられ、この流体中で磁性材料が使用されるため、錆の発生や磁気特性の低下が起きないように考慮する必要がある。特許文献1には耐食性を改善するためにCo,Ni,Mn,Crといった遷移金属元素のグループから選択された1種又は2種以上の元素を置換することが記載されているが、これらの元素のうちMnは耐食性改善には効果はなく、また上記元素を多量に置換すると、磁気的性質が大きく変化するので、微量しか添加できず、耐食性は十分に改善されないという問題がある。 However, the La (Fe · Si) 13 H 0- based magnetic material described in Patent Document 1 first produces a La—Fe—Si alloy by vacuum melting or the like, and then performs hydrogen storage treatment on the alloy. However, at present, the alloy composition and the production method for industrial production have not been established at all. Further, the present material needs to contain a relatively large amount of La in order to form a NaZn 13 type crystal structure. Since La is a rare earth element that easily oxidizes, it is a material with low weather resistance and corrosion resistance. Since a fluid or gas is used as the heat exchange medium, and a magnetic material is used in the fluid, it is necessary to consider so as not to cause rust and deterioration of magnetic characteristics. Patent Document 1 describes replacing one or more elements selected from a group of transition metal elements such as Co, Ni, Mn, and Cr in order to improve corrosion resistance. Among them, Mn is not effective in improving the corrosion resistance, and when a large amount of the above elements are substituted, the magnetic properties change greatly, so that only a very small amount can be added, and the corrosion resistance is not sufficiently improved.

酸化されやすい材料に耐食性を付与させるための一般的な表面処理の手法としては、樹脂などの高分子化合物で被覆する方法や耐食性を有する金属をめっきなどにより形成する方法もあるが、磁気熱量効果を発揮させるための粒子の表面処理膜としては、単純に耐食性が良いだけでは不十分で、熱を媒介する作用も行うため、熱伝導性に優れた被膜であることが必要である。このため、高分子被膜は一般的に熱伝導性が低いことから本発明の対象とする磁性粒子のコーティング皮膜としては好ましくない。他の乾式コーティング手法としてはCVD法などがあるが、CVD法では基体を200〜400℃に加熱する必要があり、本発明の対象とする磁性粒子のように酸化し易い材料のコーティングには適用が困難である。   General surface treatment methods for imparting corrosion resistance to materials that are easily oxidized include coating with a polymer compound such as a resin and forming a metal having corrosion resistance by plating, etc., but the magnetocaloric effect As the surface treatment film of the particles for exhibiting the above, it is not sufficient that the corrosion resistance is simply good, and it is necessary to be a film having excellent heat conductivity because it also acts to mediate heat. For this reason, since a polymer film generally has low thermal conductivity, it is not preferable as a coating film for magnetic particles as a subject of the present invention. Other dry coating methods include the CVD method, but the CVD method requires heating the substrate to 200 to 400 ° C., and is applicable to the coating of materials that are easily oxidized such as the magnetic particles of the present invention. Is difficult.

したがって、本発明が解決しようとする課題は、室温付近で実用性のある磁気熱量効果を有し、かつ優れた耐食性を有する磁性粒子を得ることのできる磁性粒子およびその製造方法を提供することである。   Therefore, the problem to be solved by the present invention is to provide a magnetic particle capable of obtaining a magnetic particle having a practical magnetocaloric effect near room temperature and having excellent corrosion resistance, and a method for producing the same. is there.

本発明者らは、NaZn13型結晶構造を形成する、酸化しやすい元素を多量に含む磁性粒子に耐食性を付与すべく、種々検討した結果、耐食性を改善する元素を添加するよりも、該磁性粒子に耐食性コーティングを施すことが有効であり、さらにこの種磁性粒子の表面処理方法としては、湿式コーティング(めっき)やドライコーティングなどの一般的な手法ではなく、リン酸による化成皮膜が最も適していることを知見した。
すなわち本発明の磁性粒子は、(La・Y)AMBSiCHDTbal(ただし、MはTi、Zr、Hfから選ばれた一種又は2種以上の元素、Tは、Feを必須元素として含みかつCo、Ni、Crから選ばれた一種又は二種以上の元素を必要に応じ含み、6.0≦A≦7.5原子%、0≦B≦5.0原子%、8.0≦C≦14.0原子%、0≦D≦15.0原子%)で表される組成を有する磁性粒子の表面に、リン酸による化成皮膜を設けたことを特徴とする。
As a result of various investigations in order to impart corrosion resistance to magnetic particles containing a large amount of easily oxidizable elements that form a NaZn 13 type crystal structure, the present inventors have found that the magnetic properties of the magnetic particles are higher than the addition of elements that improve corrosion resistance. It is effective to apply a corrosion-resistant coating to the particles, and the surface treatment method for this kind of magnetic particles is not a general method such as wet coating (plating) or dry coating. I found out.
That magnetic particles of the present invention, (La · Y) A M B Si C H D T bal ( although, M is Ti, Zr, one selected from Hf or more elements, T is the Fe essential One or two or more elements selected from Co, Ni, and Cr are included as necessary, and 6.0 ≦ A ≦ 7.5 atomic%, 0 ≦ B ≦ 5.0 atomic%, 8.0 ≦ C ≦ 14.0 atomic%, (0 ≦ D ≦ 15.0 atomic%) is characterized in that a chemical conversion film made of phosphoric acid is provided on the surface of a magnetic particle having a composition represented by:

また、多孔質のバルク形状の磁性合金の孔内部に、このリン酸を添加した液を通し、多孔質外部及び孔の内壁面全体にリン酸皮膜を施すことも本発明の均等の範囲である。   In addition, it is also within the equivalent scope of the present invention that the phosphoric acid-added liquid is passed through the pores of the porous magnetic alloy having a porous shape so that a phosphoric acid film is applied to the porous outer surface and the entire inner wall surface of the pore. .

具体的な製造方法として、リン酸を含む液中で、(La・Y)AMBSiCHDTbal(ただし、MはTi、Zr、Hfから選ばれた一種又は2種以上の元素、Tは、Feを必須元素として含みかつCo、Ni、Crから選ばれた一種又は二種以上の元素を必要に応じ含み、6.0≦A≦7.5原子%、0≦B≦5.0原子%、8.0≦C≦14.0原子%、0≦D≦15.0原子%)で表される組成を有する粒子を浸漬した状態で攪拌することで、リン酸による化成処理膜を形成する。液として通常の水でもよいが、水中の酸素が粒子と結合するのを防ぐために有機溶媒を用いることが好ましい。また、リン酸の添加量は有機溶媒に対して0.05〜1.0g/100ccであることが好ましい。0.05g/100cc未満であると化成処理皮膜が十分に形成されず、満足な耐食性が得られない。また、1.0g/100ccを超えると磁性粒子の磁気特性の低下が大きく好ましくない。このリン酸による化成処理膜の膜厚は5〜50nm程度である。攪拌する液の温度は室温以上80℃以下が好ましい。 As a specific manufacturing method, in a liquid containing phosphoric acid, (La · Y) A M B Si C H D T bal (where M is one or more elements selected from Ti, Zr, and Hf) , T contains Fe as an essential element, and optionally contains one or more elements selected from Co, Ni, and Cr, 6.0 ≦ A ≦ 7.5 atomic%, 0 ≦ B ≦ 5.0 atomic%, 8.0 ≦ C ≦ 14.0 atomic%, 0 ≦ D ≦ 15.0 atomic%) is stirred in a dipped state to form a chemical conversion treatment film with phosphoric acid. Although normal water may be used as the liquid, it is preferable to use an organic solvent in order to prevent oxygen in the water from binding to the particles. Moreover, it is preferable that the addition amount of phosphoric acid is 0.05-1.0 g / 100cc with respect to an organic solvent. If it is less than 0.05 g / 100 cc, the chemical conversion film is not sufficiently formed, and satisfactory corrosion resistance cannot be obtained. On the other hand, if it exceeds 1.0 g / 100 cc, the magnetic properties of the magnetic particles are greatly lowered, which is not preferable. The film thickness of the chemical conversion treatment with phosphoric acid is about 5 to 50 nm. The temperature of the liquid to be stirred is preferably from room temperature to 80 ° C.

リン酸を含む液中で前記合金粒子を攪拌した後、液中に水酸化物を添加して再度攪拌し、リン酸の中和処理を行うことが好ましい。水酸化物は特に限定されないが、例えば有機溶媒(アルコール等)に可溶な無機水酸化物が好ましい。無機水酸化物のうちでも水酸化ナトリウム、水酸化カリウムまたは水酸化アンモニウムが有用である。良好な耐食性を得るために、攪拌する液に対して、0.005〜0.2g/100ccとし、0.01〜0.1g/100ccとするのが好ましい。水酸化物の添加量が0.005重量部未満では耐食性の向上が困難であり、0.2重量部超では耐食性の向上効果が飽和する。つまりは余分なリン酸が不可避に残留するため、これを除去するための中和処理である。残留しているリン酸の濃度に対して適宜中和される添加量を測定して添加することが好ましい。   After stirring the alloy particles in a liquid containing phosphoric acid, it is preferable to add a hydroxide to the liquid and stir again to carry out phosphoric acid neutralization treatment. The hydroxide is not particularly limited, but for example, an inorganic hydroxide soluble in an organic solvent (alcohol or the like) is preferable. Of the inorganic hydroxides, sodium hydroxide, potassium hydroxide or ammonium hydroxide is useful. In order to obtain good corrosion resistance, 0.005 to 0.2 g / 100 cc and preferably 0.01 to 0.1 g / 100 cc with respect to the liquid to be stirred. If the amount of hydroxide added is less than 0.005 parts by weight, it is difficult to improve the corrosion resistance, and if it exceeds 0.2 parts by weight, the effect of improving the corrosion resistance is saturated. In other words, since excess phosphoric acid inevitably remains, it is a neutralization treatment for removing this. It is preferable to add by measuring the amount of neutralization appropriately neutralized with respect to the concentration of the remaining phosphoric acid.

前記粒子を攪拌後、さらに不活性ガス中または真空中で50℃以上400℃以下の加熱処理を施すことが好ましい。この加熱処理により、粒子の外部に存在するリン酸化合物が安定化され、さらに腐食の激しい環境下にも耐えられる耐食性を付与される。   After stirring the particles, it is preferable to perform a heat treatment at 50 ° C. or higher and 400 ° C. or lower in an inert gas or vacuum. By this heat treatment, the phosphoric acid compound existing outside the particles is stabilized, and corrosion resistance that can withstand even in a corrosive environment is imparted.

冷却装置などに使用される場合、本系磁性粒子はポーラスなバルク体の状態で組み込まれるため、表面処理が行われる磁性粒子の粒径は0.5〜1500μmであることが望ましい。粒径が0.5μm未満では表面積の大きいポーラスな磁性粒子結合体が得られず、粒径が1500μmを越えると、磁性粒子結合体を形成することができない。   When used in a cooling device or the like, since the present magnetic particles are incorporated in a porous bulk state, the particle size of the magnetic particles to be surface-treated is preferably 0.5 to 1500 μm. If the particle size is less than 0.5 μm, a porous magnetic particle combination with a large surface area cannot be obtained, and if the particle size exceeds 1500 μm, the magnetic particle combination cannot be formed.

本発明の磁性粒子において、各元素の組成は磁気熱量効果を得るために次のように定められる。まず、Laは本化合物の結晶構造であるNaZn13型構造を形成するのに必須な元素である。La量はA=6.0原子%未満では、溶解合金中にα-Feが過剰に形成され、均質化処理を行っても、α-Feを消失させることは不可能である。また、A=7.5原子%を超えるとNaZn13型結晶構造だけでなく、ThMn12型,Th2Zn17型,CaCu5型の結晶構造が形成され、磁化曲線に変化を生じさせるため磁気熱量効果材料として好ましくない。好ましくは6.5≦A≦7.3原子%が望ましい。一方、Siは同じようにNaZn13型構造を形成するのに必須な元素である。Si量はC=8.0原子%未満ではNaZn13型結晶構造が十分に形成できにくい。C=14.0原子%を超えると逆にNaZn13型結晶構造が十分に形成しにくくなり、且つ磁気熱量効果に不要なFe2Siが形成される結果となる。好ましくは9.0〜13原子%である。Siを置き換え得る元素としてAlがあるが、Alなどの不可避不純物は少ないことが望ましいが、磁気冷凍性能を低下させない範囲で許容される。水素量Dはキュリー温度の向上に必須な元素であり、D=15.0原子%を超えると結晶格子が過剰に膨張し、NaZn13型結晶構造を壊す結果となる。水素量D=3.5原子%未満ではキュリー温度が室温より低くなるので3.5原子%以上とすることが好ましい。そして、MはTi,Zr,Hfの1種以上であり、コスト及び効果の点でZrが最も好ましい。Feに対する置換量としてはB=0.01原子%未満では上記効果は小さく、B=5.0原子%以上ではFe-M系相を形成するため好ましくない。残部はFeやCo,Ni,Crである。Co,Ni,Crの添加量はFeに対して0.01〜30原子%の範囲で置換される。0.01原子%以下では耐食性改善に効果は少なく、置換量が30原子%を越えると磁気特性が低下してしまう。そして、YはLa金属より酸化し難いため、耐食性改善に効果があり、Laの0.1〜40原子%の範囲で置換される。0.01原子%以下では耐食性改善に効果は少なく、置換量が40原子%を越えるとNaZn13型結晶構造を形成し難くなる。 In the magnetic particle of the present invention, the composition of each element is determined as follows in order to obtain the magnetocaloric effect. First, La is an essential element for forming the NaZn 13 type structure which is the crystal structure of this compound. If the amount of La is less than A = 6.0 atomic%, α-Fe is excessively formed in the molten alloy, and even if homogenization is performed, it is impossible to eliminate α-Fe. In addition, when A = 7.5 atomic% is exceeded, not only the NaZn 13 type crystal structure but also ThMn 12 type, Th 2 Zn 17 type, and CaCu 5 type crystal structures are formed, and the magnetocaloric effect is caused by causing a change in the magnetization curve. It is not preferable as a material. Preferably 6.5 ≦ A ≦ 7.3 atomic%. On the other hand, Si is an element essential for forming a NaZn 13 type structure. When the amount of Si is less than C = 8.0 atomic%, it is difficult to sufficiently form a NaZn 13 type crystal structure. On the other hand, when C = 14.0 atomic% is exceeded, the NaZn 13 type crystal structure is hardly formed and Fe 2 Si unnecessary for the magnetocaloric effect is formed. Preferably it is 9.0-13 atomic%. Al is an element that can replace Si, but it is desirable that there are few unavoidable impurities such as Al, but it is allowed as long as the magnetic refrigeration performance is not deteriorated. The amount of hydrogen D is an essential element for improving the Curie temperature. When D exceeds 15.0 atomic%, the crystal lattice expands excessively, resulting in the destruction of the NaZn 13 type crystal structure. If the amount of hydrogen D is less than 3.5 atomic%, the Curie temperature becomes lower than room temperature, so it is preferable to set it to 3.5 atomic% or more. M is at least one of Ti, Zr, and Hf, and Zr is most preferable from the viewpoint of cost and effect. When the substitution amount for Fe is less than B = 0.01 atomic%, the above effect is small, and when B = 5.0 atomic% or more, an Fe—M phase is formed, which is not preferable. The balance is Fe, Co, Ni, and Cr. Co, Ni, and Cr are added in an amount of 0.01 to 30 atomic% with respect to Fe. If it is 0.01 atomic% or less, the effect of improving the corrosion resistance is small, and if the substitution amount exceeds 30 atomic%, the magnetic properties are deteriorated. And since Y is harder to oxidize than La metal, it is effective in improving corrosion resistance and is substituted in the range of 0.1 to 40 atomic% of La. If it is 0.01 atomic% or less, the effect of improving the corrosion resistance is small, and if the substitution amount exceeds 40 atomic%, it becomes difficult to form a NaZn 13 type crystal structure.

有機溶媒を使用すれば磁性粒子を大気から遮断し、酸化を抑制する効果が得られる。例えばエタノール、メタノールまたはプロピルアルコール等のアルコール、あるいはケトンなどが挙げられる。   If an organic solvent is used, the magnetic particles can be shielded from the atmosphere and the effect of suppressing oxidation can be obtained. For example, alcohol such as ethanol, methanol or propyl alcohol, or ketone can be used.

液中に添加するリン酸はリン酸化合物でも良い。適用できるリン酸化合物として、例えばオルトリン酸、モノメチルリン酸、モノエチルリン酸、1−ヒドロキシエチリデン2−ジホスホン酸、亜リン酸、次リン酸、ピロリン酸、三リン酸、四リン酸、ラウリルリン酸、ステアリルリン酸、2−エチルヘキシルリン酸、イソデシルリン酸、ブチルリン酸、モノイソプロピルリン酸、プロピルリン酸、アミノトリメチレンホスホン酸、ヒドロキシメチルアクリレートアシドホスフェート、ヒドロキシメチルメタクリレートアシッドホスフェート、(2−ヒドロキシエチル)アクリレートアシドホスフェート、(2−ヒドロキシエチル)メタクリレートアシドホスフェートなどがあるが、これらに限定されるものではない。   The phosphoric acid added to the liquid may be a phosphoric acid compound. Examples of applicable phosphoric acid compounds include orthophosphoric acid, monomethyl phosphoric acid, monoethyl phosphoric acid, 1-hydroxyethylidene 2-diphosphonic acid, phosphorous acid, hypophosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, lauryl phosphoric acid, Stearyl phosphate, 2-ethylhexyl phosphate, isodecyl phosphate, butyl phosphate, monoisopropyl phosphate, propyl phosphate, aminotrimethylene phosphonate, hydroxymethyl acrylate acid phosphate, hydroxymethyl methacrylate acid phosphate, (2-hydroxyethyl) acrylate Examples include, but are not limited to, acid phosphate and (2-hydroxyethyl) methacrylate acid phosphate.

本発明の磁性粒子の製造方法によれば、リン酸による化成処理膜を磁性粒子に被覆することにより、室温で磁気熱量効果を発揮する(La・Y)AMBSiCHDTbalで表される磁性粒子の表面に耐食性被膜を形成することが可能となる。 According to the manufacturing method of the magnetic particles of the present invention, by coating the chemical conversion film with phosphoric acid to the magnetic particles, it exhibits a magnetocaloric effect at room temperature (La · Y) A M B Si C H D T bal It becomes possible to form a corrosion-resistant film on the surface of the magnetic particle represented.

以下、実施例により本発明を詳細に説明するが、それら実施例により本発明が限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by these Examples.

(実施例1)
溶解後の最終組成がLa7.14Si10.2Febal(原子%)となるように純度99.9%以上の電解鉄、La金属、フェロシリコンを秤量し、総重量が20kgとなるように真空溶解炉で溶解した。溶解後、La-Fe-Si系溶融物をタンディッシュを介して回転する銅製ロール上に流し込み、La-Fe-Si系合金薄片を製造した。得られた薄片を島津メクテム社製雰囲気加圧炉PHSGを用いて、水素吸蔵処理を行った。水素吸蔵条件は300℃×5h、水素圧を5065hPaに設定して行った。水素吸蔵処理が施された合金塊はジョークラッシャーなどにより酸素量を5ppmに制御した窒素ガス雰囲気中のバンタムミルで粉砕し、平均粒径180μmの粉末を得た。次いで、ホソカワミクロン社製分級機ミクロンセパレータを用いて、粒径が10μm以下の粒子を除去し、上記組成の合金粒子を製造した。
次に表面処理剤として以下の(1)、(2)を準備した。
(1)リン酸0.75gを100ccのIPAに溶解した溶液(リン酸は85質量%濃度の水溶液、関東化学(株)製)
(2)エタノール100ccにNaOH 0.2gを溶解した溶液(pH=12.0)
次に、IPA60cc中に上記の合金粒子20gを入れたもの(1試料分)を、それぞれ合計4個のビーカーに用意した。次に各ビーカーを20,40,60及び80℃にそれぞれ加熱し、次いで各ビーカー内をそれぞれスターラーで撹拌しながら各ビーカー毎に(1)の溶液40ccを5分毎4回に分けて、20分間かけて添加・混合した。この場合のリン酸添加量は0.3g/ビーカーに相当する。(1)の溶液を添加するのは極力均一なリン酸皮膜を被覆するためである。次に各合金粒子の表面にリン酸皮膜が極力均一に被覆されるように各ビーカーの上澄み液を50cc捨て、次に(2)の溶液を50cc添加後10分間スターラーで撹拌し、次いで上澄み液を捨てた。これら一連の処理の間、各ビーカー内のIPA、合金粒子はそれぞれ20,40,60及び80℃に保持された。次に不活性ガス(窒素)気流中で室温で乾燥した。次にロータリーポンプで真空排気しつつ220℃で1時間加熱し、次いで室温まで冷却して本発明による磁性粒子を得た。
この磁性粒子を80℃、相対湿度(RH)90%に保持した恒温恒湿槽に入れて13時間保持し、次いで室温の大気中に戻す恒温恒湿試験を行った。これによる磁性粒子の参加による質量増加がどの程度になるかを測定した。なお、比較例として何も被覆処理していない磁性粒子も同様に測定した。
表1に示すように恒温恒湿試験前/後のリン酸被覆磁性粒子の質量増加は比較例と比べて小さく、本発明の表面処理方法により良好な耐食性が付与されていることがわかった。
Example 1
A vacuum melting furnace that weighs 99.9% or more of electrolytic iron, La metal, and ferrosilicon so that the final composition after dissolution is La 7.14 Si 10.2 Fe bal (atomic%), and the total weight is 20 kg. And dissolved. After melting, the La-Fe-Si melt was poured onto a rotating copper roll via a tundish to produce La-Fe-Si alloy flakes. The obtained flakes were subjected to a hydrogen storage treatment using an atmospheric pressure furnace PHSG manufactured by Shimadzu Mectem. The hydrogen storage conditions were set to 300 ° C. × 5 h and the hydrogen pressure set to 5065 hPa. The alloy lump subjected to the hydrogen occlusion treatment was pulverized with a bantam mill in a nitrogen gas atmosphere in which the oxygen amount was controlled to 5 ppm by a jaw crusher or the like to obtain a powder having an average particle diameter of 180 μm. Next, using a classifier micron separator manufactured by Hosokawa Micron Corporation, particles having a particle size of 10 μm or less were removed to produce alloy particles having the above composition.
Next, the following (1) and (2) were prepared as surface treatment agents.
(1) A solution of 0.75 g of phosphoric acid dissolved in 100 cc IPA (phosphoric acid is an 85% strength by weight aqueous solution, manufactured by Kanto Chemical Co., Inc.)
(2) Solution of 0.2g NaOH dissolved in 100cc ethanol (pH = 12.0)
Next, a total of four beakers each containing 20 g of the above alloy particles in IPA 60 cc (one sample) were prepared. Next, each beaker was heated to 20, 40, 60, and 80 ° C., and then the beaker was stirred with a stirrer, and 40 cc of the solution (1) was divided into 4 times every 5 minutes for each beaker. Added and mixed over a minute. The amount of phosphoric acid added in this case corresponds to 0.3 g / beaker. The reason why the solution (1) is added is to coat the phosphate film as uniform as possible. Next, 50 cc of the supernatant of each beaker is discarded so that the surface of each alloy particle is coated with the phosphate coating as uniformly as possible. Next, 50 cc of the solution in (2) is added and stirred with a stirrer for 10 minutes, and then the supernatant is added. Abandoned. During these series of treatments, the IPA and alloy particles in each beaker were kept at 20, 40, 60 and 80 ° C., respectively. Next, it was dried at room temperature in an inert gas (nitrogen) stream. Next, it was heated at 220 ° C. for 1 hour while being evacuated with a rotary pump, and then cooled to room temperature to obtain magnetic particles according to the present invention.
A constant temperature and humidity test was performed in which the magnetic particles were placed in a constant temperature and humidity chamber maintained at 80 ° C. and a relative humidity (RH) of 90% for 13 hours, and then returned to the atmosphere at room temperature. The mass increase due to the participation of magnetic particles was measured. In addition, as a comparative example, magnetic particles not coated with anything were measured in the same manner.
As shown in Table 1, the increase in the mass of the phosphoric acid-coated magnetic particles before / after the constant temperature and humidity test was smaller than that of the comparative example, and it was found that good corrosion resistance was imparted by the surface treatment method of the present invention.

Figure 2006124783
Figure 2006124783

(実施例2)
実施例1で用いたIPAの替わりに通常の水を使用し、それ以外は実施例1と同様にして実験を行った。水の温度は60℃として磁性粒子を攪拌した。
この磁性粒子を80℃、相対湿度(RH)90%に保持した恒温恒湿槽に入れて13時間保持し、次いで室温の大気中に戻す恒温恒湿試験を行った。これによる磁性粒子の参加による質量増加がどの程度になるかを測定した。
表1に示すように恒温恒湿試験前/後のリン酸被覆磁性粒子の質量増加は実施例1程ではないものの十分に小さく、本発明の表面処理方法により良好な耐食性が付与されていることがわかった。
(Example 2)
Experiments were performed in the same manner as in Example 1 except that normal water was used instead of IPA used in Example 1. The temperature of water was 60 ° C., and the magnetic particles were stirred.
A constant temperature and humidity test was performed in which the magnetic particles were placed in a constant temperature and humidity chamber maintained at 80 ° C. and a relative humidity (RH) of 90% for 13 hours, and then returned to the atmosphere at room temperature. The mass increase due to the participation of magnetic particles was measured.
As shown in Table 1, the increase in mass of the phosphoric acid-coated magnetic particles before / after the constant temperature and humidity test is not as large as that of Example 1, but is sufficiently small, and good corrosion resistance is imparted by the surface treatment method of the present invention. I understood.

(実施例3)
実施例1と同様にして窒素気流中で室温で乾燥したリン酸被覆磁性粒子を得た。この微粉に真空加熱処理を施さなかった以外は実施例1と同様にして恒温恒湿試験を行い、恒温恒湿試験前/後のリン酸被覆磁性粒子の質量を測定した。測定結果を表1に示す。
表1に示すように恒温恒湿試験前/後のリン酸被覆磁性粒子の質量増加は十分に小さく、本発明の表面処理方法により良好な耐食性が付与されていることがわかった。
(Example 3)
In the same manner as in Example 1, phosphoric acid-coated magnetic particles dried at room temperature in a nitrogen stream were obtained. A constant temperature and humidity test was conducted in the same manner as in Example 1 except that this fine powder was not subjected to vacuum heat treatment, and the mass of the phosphoric acid-coated magnetic particles before and after the constant temperature and humidity test was measured. The measurement results are shown in Table 1.
As shown in Table 1, the increase in mass of the phosphoric acid-coated magnetic particles before and after the constant temperature and humidity test was sufficiently small, and it was found that good corrosion resistance was imparted by the surface treatment method of the present invention.

(実施例4)
リン酸添加量と耐食性との相関を調べるために以下の検討を行った。
溶解後の最終組成がLa7.14Si10.2Febal(原子%)となるように純度99.9%以上の電解鉄、La金属、フェロシリコンを秤量し、総重量が20kgとなるように真空溶解炉で溶解した。溶解後、La-Fe-Si系溶融物をタンディッシュを介して回転する銅製ロール上に流し込み、La-Fe-Si系合金薄片を製造した。得られた薄片を島津メクテム社製雰囲気加圧炉PHSGを用いて、水素吸蔵処理を行った。水素吸蔵条件は300℃×5h、水素圧を5065hPaに設定して行った。水素吸蔵処理が施された合金塊はジョークラッシャーなどにより酸素量を5ppmに制御した窒素ガス雰囲気中のバンタムミルで粉砕し、平均粒径180μmの粉末を得た。次いで、ホソカワミクロン社製分級機ミクロンセパレータを用いて、粒径が10μm以下の粒子を除去し、上記組成の合金粒子を製造した。
次にIPA中に添加するリン酸の添加量を変化させた以下の溶液(3)、(4)を準備した。また実施例1と同じ溶液(2)を使用した。
(3)リン酸0.75gを100ccのIPAに溶解した溶液
(4)リン酸0.50gを100ccのIPAに溶解した溶液
(5)リン酸0.25gを100ccのIPAに溶解した溶液
IPA60cc中に合金粒子20gを浸漬したもの(1試料分)を、それぞれ合計2個のビーカーに用意した。次に各ビーカーを60℃に加熱し、次いで各ビーカー内をそれぞれスターラーで撹拌しながら各ビーカー毎に(3)及び(4)の溶液をそれぞれ40ccだけ20分間かけて添加し、混合した。これによるリン酸添加量は0.1g,0.2g,0.3gに相当する。次に各ビーカーの上澄み液を40cc捨てた。次に(2)の溶液10cc及びIPA30ccを添加後10分間スターラーで撹拌し、次いで上澄み液を捨てた。これら一連の処理の間、攪拌するIPAは60℃に保持された。次に窒素気流中で室温で乾燥した。次にロータリーポンプで真空排気しつつ220℃で1時間加熱し、次いで室温まで冷却して本発明による磁性粒子を得た。
この磁性粒子を80℃、相対湿度(RH)90%に保持した恒温恒湿槽に入れて13時間保持し、次いで室温の大気中に戻す恒温恒湿試験を行った。これによる磁性粒子の参加による質量増加がどの程度になるかを測定した。表2に結果を示す。
Example 4
In order to investigate the correlation between the addition amount of phosphoric acid and the corrosion resistance, the following examination was performed.
A vacuum melting furnace that weighs 99.9% or more of electrolytic iron, La metal, and ferrosilicon so that the final composition after dissolution is La 7.14 Si 10.2 Fe bal (atomic%), and the total weight is 20 kg. And dissolved. After melting, the La-Fe-Si melt was poured onto a rotating copper roll via a tundish to produce La-Fe-Si alloy flakes. The obtained flakes were subjected to a hydrogen storage treatment using an atmospheric pressure furnace PHSG manufactured by Shimadzu Mectem. The hydrogen storage conditions were set to 300 ° C. × 5 h and the hydrogen pressure set to 5065 hPa. The alloy lump subjected to the hydrogen occlusion treatment was pulverized with a bantam mill in a nitrogen gas atmosphere in which the oxygen amount was controlled to 5 ppm by a jaw crusher or the like to obtain a powder having an average particle diameter of 180 μm. Next, using a classifier micron separator manufactured by Hosokawa Micron Corporation, particles having a particle size of 10 μm or less were removed to produce alloy particles having the above composition.
Next, the following solutions (3) and (4) in which the amount of phosphoric acid added to IPA was changed were prepared. The same solution (2) as in Example 1 was used.
(3) Solution in which 0.75 g of phosphoric acid is dissolved in 100 cc IPA (4) Solution in which 0.50 g of phosphoric acid is dissolved in 100 cc IPA (5) Solution in which 0.25 g of phosphoric acid is dissolved in 100 cc IPA
A total of two beakers prepared by immersing 20 g of alloy particles in IPA 60 cc (one sample) were prepared. Next, each beaker was heated to 60 ° C., and then the solution of (3) and (4) was added to each beaker by 40 cc over 20 minutes while stirring the inside of each beaker with a stirrer. The amount of phosphoric acid added thereby corresponds to 0.1 g, 0.2 g, and 0.3 g. Next, 40 cc of the supernatant of each beaker was discarded. Next, 10 cc of the solution (2) and 30 cc of IPA were added and stirred for 10 minutes with a stirrer, and then the supernatant was discarded. During this series of treatments, the stirring IPA was maintained at 60 ° C. Next, it was dried at room temperature in a nitrogen stream. Next, it was heated at 220 ° C. for 1 hour while being evacuated with a rotary pump, and then cooled to room temperature to obtain magnetic particles according to the present invention.
The magnetic particles were placed in a constant temperature and humidity chamber maintained at 80 ° C. and a relative humidity (RH) 90%, maintained for 13 hours, and then returned to the room temperature atmosphere. The mass increase due to the participation of magnetic particles was measured. Table 2 shows the results.

Figure 2006124783
Figure 2006124783

Claims (9)

(La・Y)AMBSiCHDTbal(ただし、MはTi、Zr、Hfから選ばれた一種又は2種以上の元素、Tは、Feを必須元素として含みかつCo、Ni、Crから選ばれた一種又は二種以上の元素を必要に応じ含み、6.0≦A≦7.5原子%、0≦B≦5.0原子%、8.0≦C≦14.0原子%、0≦D≦15.0原子%)で表される組成を有する合金粒子の表面に、リン酸による化成皮膜を設けたことを特徴とする磁性粒子。 (La · Y) A M B Si C H D T bal (where M is one or more elements selected from Ti, Zr, and Hf, T includes Fe as an essential element, and Co, Ni, One or more elements selected from Cr are included as necessary, 6.0 ≦ A ≦ 7.5 atomic%, 0 ≦ B ≦ 5.0 atomic%, 8.0 ≦ C ≦ 14.0 atomic%, 0 ≦ D ≦ 15.0 atomic%) A magnetic particle comprising a chemical conversion film formed of phosphoric acid on the surface of an alloy particle having a composition represented by リン酸を含む液中で、(La・Y)AMBSiCHDTbal(ただし、MはTi、Zr、Hfから選ばれた一種又は2種以上の元素、Tは、Feを必須元素として含みかつCo、Ni、Crから選ばれた一種又は二種以上の元素を必要に応じ含み、6.0≦A≦7.5原子%、0≦B≦5.0原子%、8.0≦C≦14.0原子%、0≦D≦15.0原子%)で表される組成を有する合金粒子を浸漬し、攪拌することで、表面にリン酸による化成処理膜を形成することを特徴とする磁性粒子の製造方法。 In a solution containing phosphoric acid, (La · Y) A M B Si C H D T bal (where M is one or more elements selected from Ti, Zr and Hf, and T is essential for Fe) One or two or more elements selected from Co, Ni, and Cr are included as necessary, and 6.0 ≦ A ≦ 7.5 atomic%, 0 ≦ B ≦ 5.0 atomic%, 8.0 ≦ C ≦ 14.0 atomic%, A method for producing magnetic particles, characterized in that a chemical conversion treatment film with phosphoric acid is formed on a surface by immersing and stirring alloy particles having a composition represented by 0 ≦ D ≦ 15.0 atomic%). 前記リン酸の添加量は前記液の量に対して0.05〜1.0g/100ccであることを特徴とする請求項2に記載の磁性粒子の製造方法。 The method for producing magnetic particles according to claim 2, wherein the amount of phosphoric acid added is 0.05 to 1.0 g / 100 cc with respect to the amount of the liquid. 前記リン酸を含む液中で前記粒子を攪拌した後、前記液中に水酸化物を添加して中和処理を行うことを特徴とする請求項2又は3に記載の磁性粒子の製造方法。 4. The method for producing magnetic particles according to claim 2, wherein the particles are stirred in the liquid containing phosphoric acid, and then neutralized by adding a hydroxide to the liquid. 5. 前記水酸化物の添加量は前記リン酸を含む液の量のに対して0.005〜0.2g/100ccである請求項4に記載の磁性粒子の製造方法。 The method for producing magnetic particles according to claim 4, wherein the amount of the hydroxide added is 0.005 to 0.2 g / 100 cc with respect to the amount of the liquid containing phosphoric acid. 前記液は有機溶媒中にリン酸を添加したものであることを特徴とする請求項2〜5に記載の磁性粒子の製造方法。 The method for producing magnetic particles according to claim 2, wherein the liquid is obtained by adding phosphoric acid to an organic solvent. 前記水酸化物が無機水酸化物を有機溶媒中に溶解した状態で添加されることを特徴とする請求項4又は6に記載の磁性粒子の製造方法。 The method for producing magnetic particles according to claim 4 or 6, wherein the hydroxide is added in a state where an inorganic hydroxide is dissolved in an organic solvent. 前記粒子を攪拌後、さらに不活性ガス中または真空中で50℃以上400℃以下の加熱処理を施すことを特徴とする請求項2〜7に記載の磁性粒子の製造方法。 The method for producing magnetic particles according to claim 2, wherein the particles are further subjected to heat treatment at 50 ° C. or more and 400 ° C. or less in an inert gas or vacuum after stirring. 前記磁性粒子の粒径は0.5〜1500μmの範囲にあることを特徴とする請求項2から8のいずれかに記載の磁性粒子の製造方法。
The method for producing magnetic particles according to any one of claims 2 to 8, wherein the magnetic particles have a particle size in a range of 0.5 to 1500 µm.
JP2004315305A 2004-10-29 2004-10-29 Magnetic grain and method for producing the same Pending JP2006124783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004315305A JP2006124783A (en) 2004-10-29 2004-10-29 Magnetic grain and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004315305A JP2006124783A (en) 2004-10-29 2004-10-29 Magnetic grain and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006124783A true JP2006124783A (en) 2006-05-18

Family

ID=36719803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004315305A Pending JP2006124783A (en) 2004-10-29 2004-10-29 Magnetic grain and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006124783A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531968A (en) * 2008-05-16 2010-09-30 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Magnetic heat exchange structure and method of manufacturing magnetic heat exchange structure
WO2010115791A1 (en) 2009-04-08 2010-10-14 Basf Se Heat transfer medium for magnetocaloric materials
WO2015098895A1 (en) * 2013-12-26 2015-07-02 株式会社 Mtg Skin care agent
CN111656462A (en) * 2017-12-04 2020-09-11 马格诺瑟姆解决方案有限公司 Method for producing a magnetocaloric composite material and corresponding heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069596A (en) * 2000-09-05 2002-03-08 Kazuaki Fukamichi Ultra-magnetostrictive material
JP2003096547A (en) * 2001-09-21 2003-04-03 Toshiba Corp Magnetic refrigeration material and producing method thereof
JP2004100043A (en) * 2002-08-21 2004-04-02 Sumitomo Special Metals Co Ltd Magnetic alloy material and its production method
JP2004260036A (en) * 2003-02-27 2004-09-16 Hitachi Metals Ltd Surface treatment method for rare earth magnet powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069596A (en) * 2000-09-05 2002-03-08 Kazuaki Fukamichi Ultra-magnetostrictive material
JP2003096547A (en) * 2001-09-21 2003-04-03 Toshiba Corp Magnetic refrigeration material and producing method thereof
JP2004100043A (en) * 2002-08-21 2004-04-02 Sumitomo Special Metals Co Ltd Magnetic alloy material and its production method
JP2004260036A (en) * 2003-02-27 2004-09-16 Hitachi Metals Ltd Surface treatment method for rare earth magnet powder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531968A (en) * 2008-05-16 2010-09-30 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Magnetic heat exchange structure and method of manufacturing magnetic heat exchange structure
WO2010115791A1 (en) 2009-04-08 2010-10-14 Basf Se Heat transfer medium for magnetocaloric materials
US8945417B2 (en) 2009-04-08 2015-02-03 Basf Se Heat carrier medium for magnetocaloric materials
US9318245B2 (en) 2009-04-08 2016-04-19 Basf Se Heat carrier medium for magnetocaloric materials
WO2015098895A1 (en) * 2013-12-26 2015-07-02 株式会社 Mtg Skin care agent
JPWO2015098895A1 (en) * 2013-12-26 2017-03-23 株式会社 Mtg Skin care agent
CN111656462A (en) * 2017-12-04 2020-09-11 马格诺瑟姆解决方案有限公司 Method for producing a magnetocaloric composite material and corresponding heat exchanger
CN111656462B (en) * 2017-12-04 2023-12-26 马格诺瑟姆解决方案有限公司 Method for producing a magnetocaloric composite material and corresponding heat exchanger

Similar Documents

Publication Publication Date Title
JP6437536B2 (en) Corrosion inhibitors for Fe2P structure magnetocaloric materials in water
Li et al. Corrosion and wear resistance of micro‐arc oxidation composite coatings on magnesium alloy AZ31—the influence of inclusions of carbon spheres
US20120040202A1 (en) Coated magnetic alloy material and method for the manufacture thereof
US8945417B2 (en) Heat carrier medium for magnetocaloric materials
CN107253703A (en) The nitride magnet that can change and its manufacture method without rare earth
CN104805430A (en) High temperature resistant coating compositions
CN103667809B (en) High-strength anti-corrosion samarium-yttrium rare earth aluminum alloy for heat exchanger and manufacture method thereof
Zhang et al. Corrosion behavior of magnetic refrigeration material La–Fe–Co–Si in distilled water
JP2009253107A (en) Magnetic refrigeration substance, and manufacturing method therefor
JP2006124783A (en) Magnetic grain and method for producing the same
Zehra et al. Lanthanides: The key to durable and sustainable corrosion protection
JP2011162811A (en) Rare earth-iron based alloy powder for magnetic refrigeration
JP5509731B2 (en) Rare earth nitride, method for producing the same, magnetic refrigeration material and cold storage material
CN101514458B (en) Inhibitor in aqueous heat exchange medium for La-Fe-Si series room temperature magnetic refrigeration materials
CN110504076B (en) High-corrosion-resistance rare earth magnetic refrigeration material and use method thereof in refrigerator
CN105256296A (en) Normal/low-temperature chemical conversion solution for 35CrMnSi steel and preparing method thereof
CN109989053A (en) Passivating method for being passivated the passivating solution of permanent-magnet material and using the passivating solution to permanent-magnet material
JP7137869B2 (en) Aluminum alloy material excellent in corrosion resistance and strength and its manufacturing method
JP2008064343A (en) Heat exchanger
Zhu et al. Magnetic field effects on the corrosion behavior of magnetocaloric alloys LaFe13. 9Si1. 4 under paramagnetic states
JP3966631B2 (en) Rare earth / iron / boron permanent magnet manufacturing method
JP3993613B2 (en) Magnet and manufacturing method thereof
JP2006249493A (en) METHOD FOR PRODUCING FePt ALLOY PARTICLE GROUP WITH PROTECTIVE AGENT
JP6878845B2 (en) Rare earth-iron-nitrogen magnet fine powder manufacturing method
JP4372105B2 (en) High corrosion resistance permanent magnet and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101001