JP2004100043A - Magnetic alloy material and its production method - Google Patents

Magnetic alloy material and its production method Download PDF

Info

Publication number
JP2004100043A
JP2004100043A JP2003291446A JP2003291446A JP2004100043A JP 2004100043 A JP2004100043 A JP 2004100043A JP 2003291446 A JP2003291446 A JP 2003291446A JP 2003291446 A JP2003291446 A JP 2003291446A JP 2004100043 A JP2004100043 A JP 2004100043A
Authority
JP
Japan
Prior art keywords
alloy
magnetic
sample
alloy material
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003291446A
Other languages
Japanese (ja)
Other versions
JP3630164B2 (en
Inventor
Ryosuke Kogure
木暮 亮介
Hirokazu Kanekiyo
金清 裕和
Takeshi Nishiuchi
西内 武司
Satoru Hirozawa
広沢 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2003291446A priority Critical patent/JP3630164B2/en
Publication of JP2004100043A publication Critical patent/JP2004100043A/en
Application granted granted Critical
Publication of JP3630164B2 publication Critical patent/JP3630164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an LaFe<SB>13</SB>based magnetic alloy material at an efficiency higher than that in the conventional one. <P>SOLUTION: The method comprises a stage where the molten metal of an alloy raw material having a prescribed composition is prepared; a stage where the molten metal of the alloy raw material is rapidly cooled to form a rapidly cooled alloy having a composition expressed by the compositional formula of Fe<SB>100-a-b-c</SB>RE<SB>a</SB>A<SB>b</SB>TM<SB>c</SB>(RE is at least one kind of rare earth element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er and Tm, and includes La by ≥90; A is at least one kind of element selected from the group consisting of Al, Si, Ga, Ge and Sn; TM is at least one kind of transition metal element selected from the group consisting of Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn; and 5 atomic%≤a≤10 atomic%, 4.7 atomic%≤b≤18 atomic%, and 0 atomic%≤c≤9 atomic%); and a stage where a compound phase with an NaZn<SB>13</SB>type crystal structure is formed in the rapidly cooled alloy by ≥70 atomic%. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、磁気冷凍作業物質あるいは磁歪材料として好適に用いられる磁性合金材料およびその製造方法に関する。 The present invention relates to a magnetic alloy material suitably used as a magnetic refrigeration working material or a magnetostrictive material, and a method for producing the same.

 近年、組成式:La1-zREz(Fe1-xx-yTMy13(A=Al、Si、Ga、Ge、Snのうち少なくとも1種の元素0.05≦x≦0.2、TMは遷移金属元素のうち少なくとも1種の元素0≦y≦0.1、REはLaを除く希土類元素のうち少なくとも1種の元素0≦z≦0.1)で表される磁性合金(以下、「LaFe13系磁性合金」と称する。)は、NaZn13型の結晶構造を有し、キュリー温度(Tc)付近で、大きな磁気熱量効果および磁気体積効果を示すことから、磁気冷凍作業物質および磁歪材料として、有望視されている(例えば、特許文献1、特許文献2および非特許文献1)。 Recently, the composition formula: La 1-z RE z ( Fe 1-x A xy TM y) 13 (A = Al, Si, Ga, Ge, at least one element 0.05 ≦ x ≦ among Sn 0.2 , TM is a magnetic alloy (0 ≦ y ≦ 0.1) of at least one of transition metal elements, and RE is a magnetic alloy (0 ≦ z ≦ 0.1 of at least one of rare earth elements other than La). Hereinafter, referred to as “LaFe 13 -based magnetic alloy”) has a NaZn 13 type crystal structure, and exhibits a large magnetocaloric effect and a large magneto-volume effect near the Curie temperature (Tc). And, as a magnetostrictive material, it is promising (for example, Patent Document 1, Patent Document 2, and Non-Patent Document 1).

 LaFe13系磁性合金は、従来、例えば、アーク溶解あるいは高周波溶解により得られた鋳造合金を真空中で1050℃、約168時間の熱処理をすることによって製造されていた。
特開2000−54086号公報 特開2002−69596号公報 「遍歴電子メタ磁性La(FexSi1-x)13化合物の強大な磁気体積および磁気熱量効果」、藤田麻哉、他、まてりあ、第41巻、第4号、269頁〜275頁、2002
Conventionally, LaFe 13 -based magnetic alloys have been produced, for example, by subjecting a cast alloy obtained by arc melting or high frequency melting to heat treatment at 1050 ° C. for about 168 hours in a vacuum.
JP 2000-54086 A JP-A-2002-69596 "Strong magnetic volume and magnetocaloric effect of itinerant electron metamagnetic La (FexSi1-x) 13 compound", Maya Fujita et al., Materia, 41, 4, 269-275, 2002

 しかしながら、従来のLaFe13系磁性合金の製造方法には、以下の問題点がある。 However, the conventional method for producing a LaFe 13 -based magnetic alloy has the following problems.

 所定の組成の合金溶湯から得られた鋳造合金は、上記組成式におけるAおよびTMの一部が固溶したα−Fe相と、残部で構成される相とを含む2つ以上の粗大な結晶相が複雑に入り組んだ組織(例えば後述の図6(a)参照)を有している。NaZn13型結晶構造を有する化合物相(以下、「LaFe13型化合物相」という。)は、これらの粗大な結晶相の界面から生成する(例えば後述の図6(b)参照)。従って、このような粗大な結晶相を有する組織から、LaFe13系磁性合金(金属間化合物)を得るためには、上述したように、高温で長時間の熱処理によって均質化(以下、「均質化熱処理」ということがある。)を施していた。この長時間に亘る均質化熱処理が不可欠なことから、LaFe13系磁性合金は量産性に乏しいという問題があった。 A cast alloy obtained from a molten alloy having a predetermined composition has two or more coarse crystals including an α-Fe phase in which a part of A and TM in the above composition formula is dissolved, and a phase constituted by the remainder. It has an organization in which phases are intricately complicated (for example, see FIG. 6A described later). A compound phase having a NaZn 13 type crystal structure (hereinafter, referred to as “LaFe 13 type compound phase”) is generated from an interface between these coarse crystal phases (for example, see FIG. 6B described later). Therefore, in order to obtain a LaFe 13 -based magnetic alloy (intermetallic compound) from a structure having such a coarse crystal phase, as described above, homogenization (hereinafter, referred to as “homogenization”) is performed at a high temperature for a long time. Heat treatment ”). Since the long-time homogenizing heat treatment is indispensable, there has been a problem that the LaFe 13 -based magnetic alloy has poor mass productivity.

 また、長時間の均質化熱処理の間に合金表面が酸化等の腐食によって劣化し、その結果、磁気熱量効果や磁気体積効果が劣化するという問題もあった。 の 間 に In addition, during the long-time homogenizing heat treatment, the alloy surface is deteriorated by corrosion such as oxidation, and as a result, there is a problem that the magnetocaloric effect and the magnetic volume effect are deteriorated.

 さらに、鋳造合金は一般に塊状であり、均質化熱処理も塊状のまま実行される。磁気冷凍作業物質は、熱交換液体(例えば水系不凍液などの比熱の大きな液体)との熱交換効率を高めるために粒状(粉末状)で用いられることが多いのに対して、塊状の鋳造合金は粉砕性に乏しく、生産効率を低下させる要因となる。 Furthermore, the cast alloy is generally in a lump, and the homogenization heat treatment is also performed in the lump. Magnetic refrigeration working materials are often used in granular (powder) form in order to increase the heat exchange efficiency with heat exchange liquids (for example, liquids having a large specific heat such as aqueous antifreeze). Poor grindability is a factor that lowers production efficiency.

 本発明はかかる諸点に鑑みてなされたものであり、その主な目的は、従来よりも高い効率でLaFe13系磁性合金材料を製造する方法を提供することにある。 The present invention has been made in view of the above points, and a main object thereof is to provide a method for producing a LaFe 13 -based magnetic alloy material with higher efficiency than before.

 本発明の磁性合金材料の製造方法は、所定の組成を有する合金原料の溶湯を用意する工程と、前記合金原料の溶湯を急冷することによって、組成式:Fe100-a-b-cREabTMc(REはLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、ErおよびTmからなる群から選択され、Laを90原子%以上含む少なくとも1種の希土類元素、AはAl、Si、Ga、GeおよびSnからなる群から選択される少なくとも1種の元素、TMはSc、Ti、V、Cr、Mn、Co、Ni、CuおよびZnからなる群から選択される少なくとも1種の遷移金属元素、5原子%≦a≦10原子%、4.7原子%≦b≦18原子%、0原子%≦c≦9原子%)で表される組成を有する急冷合金を形成する工程と、前記急冷合金中に、NaZn13型結晶構造を有する化合物相を70体積%以上形成する工程とを包含し、そのことによって、上記目的が達成される。 Method for producing a magnetic alloy material of the present invention includes the steps of preparing a melt of an alloy material having a predetermined composition, by quenching a melt of the alloy material, the composition formula: Fe 100-abc RE a A b TM c (RE is selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er and Tm, and at least one rare earth element containing 90 atomic% or more of La; A Is at least one element selected from the group consisting of Al, Si, Ga, Ge and Sn, and TM is at least one selected from the group consisting of Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn. Forming a quenched alloy having a composition represented by one kind of transition metal element, 5 atomic% ≦ a ≦ 10 atomic%, 4.7 atomic% ≦ b ≦ 18 atomic%, 0 atomic% ≦ c ≦ 9 atomic%) And during the quenching alloy, The compound phase having AZN 13 type crystal structure includes a step of forming 70 vol% or more, by the above-described object is achieved.

 好ましい実施形態において、前記化合物相を形成する工程は、前記急冷合金を400℃以上1200℃以下の温度で、1秒以上100時間以下の時間に亘って熱処理を施す工程を包含する。 In a preferred embodiment, the step of forming the compound phase includes a step of subjecting the quenched alloy to a heat treatment at a temperature of 400 ° C. to 1200 ° C. for a time of 1 second to 100 hours.

 前記熱処理工程は、前記急冷合金を10分以上熱処理する工程であることが好ましい。 The heat treatment step is preferably a step of heat treating the quenched alloy for 10 minutes or more.

 前記熱処理工程によって、全体に亘って、均質な組織を有するNaZn13型結晶構造を有する化合物相を形成することが好ましい。 It is preferable that the heat treatment step forms a compound phase having a NaZn 13 type crystal structure having a homogeneous structure throughout.

 ある実施形態において、前記急冷合金は、急冷直後において、NaZn13型結晶構造を有する前記化合物相を有することが好ましい。 In one embodiment, the quenched alloy preferably has the compound phase having a NaZn 13 type crystal structure immediately after quenching.

 前記急冷合金を形成する工程における冷却速度は、1×102℃/秒以上1×108℃/秒以下であることが好ましい。 The cooling rate in the step of forming the quenched alloy is preferably 1 × 10 2 ° C./sec or more and 1 × 10 8 ° C./sec or less.

 前記急冷合金は、厚さが10μm以上300μm以下の薄帯状であることが好ましい。 急 The quenched alloy is preferably in the form of a ribbon having a thickness of 10 µm or more and 300 µm or less.

 好ましい実施形態において、前記磁性合金原料は、磁気熱量効果を有する。 In a preferred embodiment, the magnetic alloy raw material has a magnetocaloric effect.

 好ましい実施形態において、前記急冷合金を粉砕する工程を更に含む。 In a preferred embodiment, the method further includes a step of pulverizing the quenched alloy.

 磁気相転移を示すキュリー温度Tcが180K以上330K以下の範囲内にあることが好ましい。前記組成式中のTMとしてCoを含み、Coの比率を制御することによって異なるキュリー温度Tcを有する複数の磁性合金材料を得ることができる。 キ ュ It is preferable that the Curie temperature Tc indicating the magnetic phase transition is in the range of 180K to 330K. A plurality of magnetic alloy materials having different Curie temperatures Tc can be obtained by including Co as TM in the above composition formula and controlling the ratio of Co.

 ある実施形態において、磁気相転移を起こす温度領域の半値幅ΔTcが30K以上である。 に お い て In one embodiment, the half width ΔTc of the temperature region where the magnetic phase transition occurs is 30K or more.

 本発明による磁性合金材料は、上記のいずれかの製造方法によって製造されたことを特徴とし、特に、磁気冷凍作業物質として好適に用いることができる。 磁性 The magnetic alloy material according to the present invention is characterized by being manufactured by any one of the above manufacturing methods, and can be particularly suitably used as a magnetic refrigeration working material.

 本発明によると、従来よりも高い生産効率でLaFe13系磁性合金材料を製造する方法が提供される。特に、薄帯状の急冷合金を形成するプロセスを採用すると粉砕性を向上させることが出来るので、粉末として用いられる磁気冷凍作業物質として磁性合金材料を高い効率で製造することが出来る。 According to the present invention, a method for producing a LaFe 13 -based magnetic alloy material with higher production efficiency than before is provided. In particular, when a process for forming a strip-shaped quenched alloy is employed, the pulverizability can be improved, and therefore, a magnetic alloy material can be produced with high efficiency as a magnetic refrigeration working material used as a powder.

 以下、本発明による磁性合金材料(LaFe13系磁性合金)の製造方法の実施形態を説明する。 Hereinafter, an embodiment of a method for producing a magnetic alloy material (LaFe 13 -based magnetic alloy) according to the present invention will be described.

 本発明の磁性合金材料の製造方法は、所定の組成を有する合金原料の溶湯を用意する第1工程と、合金原料の溶湯を急冷することによって、組成式:Fe100-a-b-cREabTMc(REはLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、ErおよびTmからなる群から選択され、Laを90原子%以上含む少なくとも1種の希土類元素、AはAl、Si、Ga、GeおよびSnからなる群から選択される少なくとも1種の元素、TMはSc、Ti、V、Cr、Mn、Co、Ni、CuおよびZnからなる群から選択される少なくとも1種の遷移金属元素、5原子%≦a≦10原子%、4.7原子%≦b≦18原子%、0原子%≦c≦9原子%)で表される組成を有する急冷合金を形成する第2工程と、急冷合金中にNaZn13型結晶構造を有する化合物相(すなわち、LaFe13型化合物相)を70体積%以上形成する第3工程とを包含している。 Method for producing a magnetic alloy material of the present invention includes a first step of preparing a melt of an alloy material having a predetermined composition, by quenching a melt of the alloy material, the composition formula: Fe 100-abc RE a A b TM c (RE is selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er and Tm, and at least one rare earth element containing 90 atomic% or more of La; A is at least one element selected from the group consisting of Al, Si, Ga, Ge and Sn, and TM is selected from the group consisting of Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn. A quenched alloy having a composition represented by at least one transition metal element, 5 atomic% ≦ a ≦ 10 atomic%, 4.7 atomic% ≦ b ≦ 18 atomic%, 0 atomic% ≦ c ≦ 9 atomic%) A second step of forming and N in the quenched alloy Compound phase having a Zn 13 type crystal structure (i.e., LaFe 13 type compound phase) encompasses a third step of forming a 70% by volume or more.

 本発明によるLaFe13系磁性合金の製造方法は、第2工程において急冷法(液体急冷法)を採用している。急冷合金は、鋳造合金よりも組成の均一性が高く、鋳造合金に見られる粗大な結晶相からなる多相構造(図6(a)参照)は観察されない。例えば、急冷合金を粉砕し、粒径が10μmから300μmの粒状としても、例えば熱処理することによって、それぞれの粒子の70体積%以上がLaFe13型化合物相で構成されるようになる。 In the method for producing a LaFe 13 -based magnetic alloy according to the present invention, a quenching method (liquid quenching method) is employed in the second step. The quenched alloy has higher composition uniformity than the cast alloy, and the multi-phase structure (see FIG. 6 (a)) composed of a coarse crystal phase found in the cast alloy is not observed. For example, even if the quenched alloy is pulverized into particles having a particle size of 10 μm to 300 μm, for example, by heat treatment, 70% by volume or more of each particle comes to be composed of the LaFe 13 type compound phase.

 勿論、熱処理条件などを調節することによって、90体積%以上がLaFe13型化合物相で構成された磁性合金材料を得ることができる。なお、上記組成式において、aが上記範囲を外れると、LaFe13型化合物相を70体積%以上形成することができない。bが4.7原子%未満ではLaFe13型化合物相が形成されず、18原子%を超えると磁気熱量効果(または磁気体積効果)が十分に得られない。また、cが上記範囲を外れても、磁気熱量効果(または磁気体積効果)が十分に得られず、磁気冷凍作業物質(または磁歪材料)として十分な特性の磁性合金材料が得られない。 Of course, by adjusting the heat treatment conditions and the like, a magnetic alloy material having 90% by volume or more of the LaFe 13 type compound phase can be obtained. In addition, in the above composition formula, if a is out of the above range, 70% by volume or more of the LaFe 13 type compound phase cannot be formed. When b is less than 4.7 atomic%, a LaFe 13 type compound phase is not formed, and when b exceeds 18 atomic%, a sufficient magnetocaloric effect (or magneto-volume effect) cannot be obtained. Further, if c is outside the above range, a sufficient magnetocaloric effect (or magnetovolume effect) cannot be obtained, and a magnetic alloy material having sufficient characteristics as a magnetic refrigeration working material (or magnetostrictive material) cannot be obtained.

 第3工程は、典型的には、第2工程で得られた急冷合金を400℃以上1200℃以下の温度で、1秒以上100時間以下の時間に亘って熱処理を施す工程を包含する。第2工程で得られる急冷合金は鋳造合金よりも均一な組織を有しているので、急冷合金の全体をLaFe13系磁性合金とするために必要な熱処理時間を短縮することができる。例えば、熱処理時間を24時間以下にすることが可能で、更には5分程度にまで短縮することもできる。なお、特性を向上するためには、合金の全体に亘って、均質な組織を有するLaFe13型化合物相を形成することが好ましい。合金の全体に亘って、均質な組織を有するLaFe13型化合物相を形成するためには、10分以上熱処理することが好ましい。例えば、後述するように、ロール表面速度を3m/秒以上30m/秒以下の範囲内に調節して得られた急冷合金については、10分以上熱処理を行えば、合金のほぼ全体に亘って、均質な組織を有するLaFe13型化合物相を形成することができる。なお、90分を超えて熱処理を行うと、α−Fe相が増大する恐れがあるので、熱処理時間は90分以下であることが好ましい。 The third step typically includes a step of subjecting the quenched alloy obtained in the second step to a heat treatment at a temperature of 400 ° C to 1200 ° C for a time of 1 second to 100 hours. Since the quenched alloy obtained in the second step has a more uniform structure than the cast alloy, it is possible to reduce the heat treatment time required for making the entire quenched alloy a LaFe 13 -based magnetic alloy. For example, the heat treatment time can be set to 24 hours or less, and can be further reduced to about 5 minutes. In order to improve the characteristics, it is preferable to form a LaFe 13 type compound phase having a homogeneous structure over the entire alloy. In order to form a LaFe 13 type compound phase having a homogeneous structure throughout the entire alloy, it is preferable to perform heat treatment for 10 minutes or more. For example, as described later, for a quenched alloy obtained by adjusting the roll surface speed within a range of 3 m / sec or more and 30 m / sec or less, if heat treatment is performed for 10 minutes or more, almost the entire alloy is obtained. A LaFe 13 type compound phase having a homogeneous structure can be formed. Note that if the heat treatment is performed for more than 90 minutes, the α-Fe phase may increase, so the heat treatment time is preferably 90 minutes or less.

 熱処理温度は、処理時間と関係で、所定のLaFe13系磁性合金が形成されるように設定される。ただし、400℃未満であると、処理時間が100時間を超えるので好ましくなく、1200℃を超えると酸化等による表面の劣化や特定元素の揮散などが顕著となるので好ましくない。熱処理時間を1時間程度にまで短縮することを考慮すると、900℃以上1200℃以下の温度で熱処理することが好ましい。また、雰囲気は酸化を抑制するために、真空中(例えば10-2Pa以下)あるいは不活性ガス(特に、希ガス)雰囲気とすることが好ましい。 The heat treatment temperature is set so as to form a predetermined LaFe 13 -based magnetic alloy in relation to the treatment time. However, when the temperature is lower than 400 ° C., the treatment time exceeds 100 hours, and it is not preferable. In consideration of shortening the heat treatment time to about one hour, it is preferable to perform the heat treatment at a temperature of 900 ° C. or more and 1200 ° C. or less. In order to suppress oxidation, the atmosphere is preferably in a vacuum (eg, 10 −2 Pa or less) or an inert gas (particularly, a rare gas) atmosphere.

 なお、本発明によるLaFe13系磁性合金の製造方法における第1工程は、例えば、従来と同じ方法で実行される。 The first step in the method for producing a LaFe 13 -based magnetic alloy according to the present invention is performed, for example, by the same method as the conventional method.

 本実施形態による製造方法を用いると、熱処理時間を短縮することができるので、生産性が改善される。更に、熱処理中にLaFe13系磁性合金表面の酸化等による劣化も抑制されるので、特性の低下も少ない。例えば、鋳造合金を長時間熱処理することによって得られたLaFe13系磁性合金は、表面から数mmの層は磁気冷凍作業物質として利用することができないが、本発明の実施形態によって得られた急冷合金(特に薄帯状急冷合金、合金薄帯)はそのまま磁気冷凍作業物質として用いることができる。従って、高価な原料の歩留まりが向上することによるコスト削減効果が得られる。また、後述するように、薄帯状の急冷合金を作製すれば、鋳造合金よりも粉砕性に優れるので、粉砕工程に掛かるプロセス時間を短縮できる利点も得られる。 When the manufacturing method according to the present embodiment is used, the heat treatment time can be shortened, so that the productivity is improved. Further, deterioration of the LaFe 13 -based magnetic alloy surface due to oxidation or the like during the heat treatment is also suppressed, so that there is little deterioration in characteristics. For example, a LaFe 13 -based magnetic alloy obtained by subjecting a cast alloy to heat treatment for a long time cannot use a layer several mm from the surface as a magnetic refrigeration working material, but the quenching obtained by the embodiment of the present invention. Alloys (especially thin strip quenched alloys and alloy thin strips) can be used as they are as magnetic refrigeration working materials. Therefore, a cost reduction effect can be obtained by improving the yield of expensive raw materials. Further, as will be described later, if a ribbon-shaped quenched alloy is produced, the pulverizability is superior to that of a cast alloy, so that an advantage that the process time required for the pulverization step can be shortened is also obtained.

 LaFe13系磁性合金が大きな磁気熱量効果または磁気体積効果を有するのは、キュリー温度付近で、一次相転移に近い磁気相転移を示すからであり、磁気熱量効果または磁気体積効果を大きくするためには、一次相転移に近い磁気相転移を示すLaFe13型化合物相を出来るだけ多く形成することが望まれる。従来は、鋳造法によって得られた合金(as−cast合金)に含まれる粗大なα−Fe相と粒界相との界面から、LaFe13型化合物相が形成されるために、長時間の均質化処理が必要であった。 The LaFe 13 based magnetic alloy has a large magnetocaloric effect or magnetovolume effect because it shows a magnetic phase transition close to the first-order phase transition near the Curie temperature. It is desired to form as many as possible LaFe 13 -type compound phases exhibiting a magnetic phase transition close to the first-order phase transition. Conventionally, a LaFe 13 type compound phase is formed from an interface between a coarse α-Fe phase and a grain boundary phase contained in an alloy (as-cast alloy) obtained by a casting method, so that a long-time homogenization is required. Treatment was required.

 一方、合金の作製方法として、鋳造法とともに急冷法が知られている。しかしながら、急冷法を用いてもα−Fe相は鋳造法と同様に生成されやすく、また、急冷プロセスを経ることによって組成ずれが生じる可能性や、LaFe13型化合物相以外の準安定相が生成される可能性があることから、急冷法を用いて、LaFe13系磁性合金を製造したという報告はされていない。 On the other hand, a quenching method as well as a casting method is known as a method for producing an alloy. However, even when the quenching method is used, the α-Fe phase is easily generated similarly to the casting method. In addition, there is a possibility that a composition shift occurs due to the quenching process, and a metastable phase other than the LaFe 13 type compound phase is generated. However, there is no report that a LaFe 13 -based magnetic alloy was manufactured by using the quenching method.

 本発明者が検討した結果、急冷法を用いると、上述したように均一で微細な組織が形成され、後に実施例として例示するように、急冷直後の状態で既にLaFe13型化合物相が生成される。ただし、急冷直後(as−cast)の状態をアモルファス組織とした後、熱処理によってLaFe13型化合物相を形成してもよい。 As a result of the study by the present inventor, when the quenching method is used, a uniform and fine structure is formed as described above, and a LaFe 13 type compound phase is already generated immediately after the quenching, as illustrated in Examples later. You. However, the LaFe 13 type compound phase may be formed by heat treatment after the state immediately after quenching (as-cast) is changed to an amorphous structure.

 急冷合金を形成する工程における冷却速度は、1×102℃/秒以上1×108℃/秒以下であることが好ましい。冷却速度が1×102℃/秒よりも遅いと、従来の鋳造法と同様に比較的粗大なα−Fe相を含む多相構造が形成され、100時間を超える均質化熱処理を要することになる。一方、冷却速度を1×108℃/秒よりも速くすると、急冷合金の厚さが小さくなる結果、生産効率が低下するため好ましくない。 The cooling rate in the step of forming the quenched alloy is preferably 1 × 10 2 ° C./sec or more and 1 × 10 8 ° C./sec or less. If the cooling rate is lower than 1 × 10 2 ° C./sec, a multi-phase structure containing a relatively coarse α-Fe phase is formed similarly to the conventional casting method, and a homogenizing heat treatment exceeding 100 hours is required. Become. On the other hand, if the cooling rate is higher than 1 × 10 8 ° C./sec, the thickness of the quenched alloy becomes small, which is not preferable because the production efficiency is reduced.

 このような冷却速度が得られる液体急冷法としては、ガスアトマイズ法、単ロール急冷法、双ロール急冷法、ストリップキャスト法、メルトスピニング法などを用いることができる。特に、メルトスピニング法、ストリップキャスト法などを用いると、厚さが20μm以上200μm以下の薄帯状の急冷合金を高い効率で製造できる。 液体 As a liquid quenching method capable of obtaining such a cooling rate, a gas atomizing method, a single-roll quenching method, a twin-roll quenching method, a strip casting method, a melt spinning method, or the like can be used. In particular, when a melt spinning method, a strip casting method, or the like is used, a strip-shaped quenched alloy having a thickness of 20 μm or more and 200 μm or less can be manufactured with high efficiency.

 例えば、図1に示す急冷装置を用いて、メルトスピニング法によって急冷合金を作製することができる。酸化しやすい希土類元素(上記組成式中のLaおよびRE)やFeを含む原料合金の酸化を防ぐため、不活性ガス雰囲気中で急冷工程を実行することが好ましい。不活性ガスとしては、ヘリウムまたはアルゴン等の希ガスや窒素を用いることができる。なお、窒素は希土類元素と比較的に反応しやすいため、ヘリウムまたはアルゴンなどの希ガスを用いることが好ましい。 For example, a quenched alloy can be produced by a melt spinning method using the quenching apparatus shown in FIG. The quenching step is preferably performed in an inert gas atmosphere in order to prevent oxidation of the raw material alloy containing rare earth elements (La and RE in the above composition formula) and Fe which are easily oxidized. As the inert gas, a rare gas such as helium or argon or nitrogen can be used. Note that it is preferable to use a rare gas such as helium or argon since nitrogen is relatively easily reacted with a rare earth element.

 図1の急冷装置は、真空または不活性ガス雰囲気を保持し、その圧力を調整することが可能な原料合金の溶解室1および急冷室2を備えている。図1(a)は全体構成図であり、図1(b)は、一部の拡大図である。 (1) The quenching apparatus shown in FIG. 1 includes a raw material alloy melting chamber 1 and a quenching chamber 2 capable of maintaining a vacuum or an inert gas atmosphere and adjusting the pressure. FIG. 1A is an overall configuration diagram, and FIG. 1B is a partially enlarged view.

 図1(a)に示されるように、溶解室1は、所望の合金組成になるように配合された原料20を高温にて溶解する溶解炉3と、底部に出湯ノズル5を有する貯湯容器4と、大気の進入を抑制しつつ配合原料を溶解炉3内に供給するための配合原料供給装置8とを備えている。貯湯容器4は原料合金の溶湯21を貯え、その出湯温度を所定のレベルに維持できる加熱装置(不図示)を有している。 As shown in FIG. 1A, a melting chamber 1 includes a melting furnace 3 for melting a raw material 20 blended so as to have a desired alloy composition at a high temperature, and a hot water storage container 4 having a tapping nozzle 5 at the bottom. And a blending material supply device 8 for supplying the blending material into the melting furnace 3 while suppressing the entry of the atmosphere. The hot water storage container 4 has a heating device (not shown) that stores the molten metal 21 of the raw material alloy and can maintain the temperature of the molten metal at a predetermined level.

 急冷室2は、出湯ノズル5から出た溶湯21を急冷凝固するための回転冷却ロール7を備えている。 The quenching chamber 2 is provided with a rotary cooling roll 7 for rapidly solidifying the molten metal 21 discharged from the tapping nozzle 5.

 この装置においては、溶解室1および急冷室2内の雰囲気およびその圧力が所定の範囲に制御される。そのために、雰囲気ガス供給口1b、2b、および8bとガス排気口1a、2a、および8aとが装置の適切な箇所に設けられている。特にガス排気口2aは、急冷室2内の絶対圧を30kPa〜常圧(大気圧)の範囲内(好ましくは100kPa以下)に制御するため、ポンプに接続されている。溶解室1の圧力を変化させることにより、ノズル5から出る溶湯の噴射圧を調節することができる。 に お い て In this apparatus, the atmosphere and the pressure in the melting chamber 1 and the quenching chamber 2 are controlled within a predetermined range. For this purpose, the atmosphere gas supply ports 1b, 2b, and 8b and the gas exhaust ports 1a, 2a, and 8a are provided at appropriate places in the apparatus. In particular, the gas exhaust port 2a is connected to a pump in order to control the absolute pressure in the quenching chamber 2 within a range of 30 kPa to normal pressure (atmospheric pressure) (preferably 100 kPa or less). By changing the pressure in the melting chamber 1, the injection pressure of the molten metal from the nozzle 5 can be adjusted.

 溶解炉3は傾動可能であり、ロート6を介して溶湯21を貯湯容器4内に適宜注ぎ込む。溶湯21は貯湯容器4内において不図示の加熱装置によって加熱される。 (4) The melting furnace 3 can be tilted, and the molten metal 21 is appropriately poured into the hot water storage container 4 via the funnel 6. The molten metal 21 is heated in the hot water storage container 4 by a heating device (not shown).

 貯湯容器4の出湯ノズル5は、溶解室1と急冷室2との隔壁に配置され、貯湯容器4内の溶湯21を下方に位置する冷却ロール7の表面に流下させる。出湯ノズル5のオリフィス径は、0.5mm以上4.0mm以下の範囲内に設定される。溶湯21の粘性に応じて、オリフィス径および/または溶解室1と急冷室2との間の圧力差(例えば10kPa以上)を調節することによって、溶湯21の出湯がスムーズに実行される。本実施形態で用いる装置によれば、合金溶湯の供給レートを1.5〜10kg/分に設定することができる。供給レートが10kg/分を超えると、溶湯急冷速度が遅くなり、多相構造が形成されるという不都合が生じる。合金溶湯の更に好ましい供給レートは2〜8kg/分である。 (4) The tapping nozzle 5 of the hot water storage container 4 is disposed on a partition wall between the melting chamber 1 and the quenching chamber 2, and causes the molten metal 21 in the hot water storage container 4 to flow down to the surface of the cooling roll 7 located below. The orifice diameter of tapping nozzle 5 is set in the range of 0.5 mm or more and 4.0 mm or less. By adjusting the orifice diameter and / or the pressure difference (for example, 10 kPa or more) between the melting chamber 1 and the quenching chamber 2 according to the viscosity of the molten metal 21, the molten metal 21 can be smoothly discharged. According to the apparatus used in the present embodiment, the supply rate of the molten alloy can be set to 1.5 to 10 kg / min. If the supply rate exceeds 10 kg / min, the quenching speed of the molten metal becomes slow, which causes a disadvantage that a multiphase structure is formed. A more preferred supply rate of the molten alloy is 2 to 8 kg / min.

 冷却ロール7は、Cu、Fe、またはCuやFeを含む合金から形成することが好ましい。CuやFe以外の材料で冷却ロールを作製すると、急冷合金の冷却ロールに対する剥離性が悪くなるため、急冷合金がロールに巻き付くおそれがあり好ましくない。冷却ロール7の直径は例えば300mm〜500mmである。冷却ロール7内に設けた水冷装置の水冷能力は、単位時間あたりの凝固潜熱と出湯量とに応じて算出し、調節される。 The cooling roll 7 is preferably formed from Cu, Fe, or an alloy containing Cu or Fe. If a cooling roll is made of a material other than Cu or Fe, the releasability of the quenched alloy from the cooling roll is deteriorated, and the quenched alloy may be wound around the roll, which is not preferable. The diameter of the cooling roll 7 is, for example, 300 mm to 500 mm. The water cooling capacity of the water cooling device provided in the cooling roll 7 is calculated and adjusted according to the solidification latent heat and the amount of hot water per unit time.

 まず、所定の原料合金の溶湯21を作製し、図1の溶解室1の貯湯容器4に貯える。次に、この溶湯21は出湯ノズル5から減圧Ar雰囲気中の水冷ロール7上に出湯され、冷却ロール7との接触によって急冷され、凝固する。上述したような均質な組織を得るには、合金溶湯の冷却速度を1×102〜1×108℃/秒とすることが好ましく、1×102〜1×106℃/秒とすることが更に好ましい。 First, a molten metal 21 of a predetermined raw material alloy is prepared and stored in the hot water storage container 4 of the melting chamber 1 in FIG. Next, the molten metal 21 is discharged from the tapping nozzle 5 onto the water-cooled roll 7 in a reduced-pressure Ar atmosphere, rapidly cooled by contact with the cooling roll 7, and solidified. To obtain a homogeneous structure as described above, it is preferable that the cooling rate of the molten alloy with 1 × 10 2 ~1 × 10 8 ℃ / sec, and 1 × 10 2 ~1 × 10 6 ℃ / sec Is more preferable.

 合金の溶湯21が冷却ロール7によって冷却される時間は、回転する冷却ロール7の外周表面に合金が接触してから離れるまでの時間に相当し、その間に、合金の温度は低下し、過冷却液体状態になる。その後、過冷却状態の合金は冷却ロール7から離れ、不活性雰囲気中を飛行する。合金は薄帯状で飛行している間に雰囲気ガスに熱を奪われる結果、その温度は更に低下する。本実施形態では、雰囲気ガスの圧力を10kPa〜常圧の範囲内に設定している。 The time during which the molten alloy 21 is cooled by the cooling roll 7 corresponds to the time from the contact of the alloy to the outer peripheral surface of the rotating cooling roll 7 until the alloy is separated, during which time the temperature of the alloy decreases and the supercooling occurs. Become liquid. Thereafter, the supercooled alloy leaves the cooling roll 7 and flies in an inert atmosphere. The alloy is deprived of heat by the ambient gas while flying in the form of a ribbon, which further reduces its temperature. In the present embodiment, the pressure of the atmosphere gas is set in a range from 10 kPa to normal pressure.

 本実施形態では、ロール表面速度を3m/秒以上30m/秒以下の範囲内に調節し、かつ、雰囲気ガスによる二次冷却効果を高めるために雰囲気ガス圧力を30kPa以上にすることによって、均質な組織を有する薄帯状の急冷合金を得ることができる。ロール表面速度を3m/秒未満にすると均質化熱処理の時間が長くなり、急冷薄帯の表面が酸化等の腐食によって劣化する恐れがあり、30m/秒を超えると急冷薄帯が薄くなりすぎることにより表面の劣化層を除いた均質な組織の部分の体積の割合が少なくなる恐れがある。 In this embodiment, the uniformity is obtained by adjusting the roll surface speed within the range of 3 m / sec or more and 30 m / sec or less, and setting the atmosphere gas pressure to 30 kPa or more to enhance the secondary cooling effect by the atmosphere gas. A strip-shaped quenched alloy having a structure can be obtained. When the roll surface speed is less than 3 m / sec, the time of the homogenization heat treatment is prolonged, and the surface of the quenched ribbon may be deteriorated by corrosion such as oxidation. When it exceeds 30 m / sec, the quenched ribbon becomes too thin. Therefore, there is a possibility that the ratio of the volume of the portion of the homogeneous structure excluding the degraded layer on the surface is reduced.

 なお、本発明で用いる合金溶湯の急冷法は、上述の片ロール法に限定されず、ノズルオリフィスによる流量制御を行なわない急冷方法であるストリップキャスト法を用いてもよい。ストリップキャスト法による場合は、ノズルオリフィスを用いないため、溶湯供給レートを大きくし、かつ、安定化しやすいという利点がある。しかし、冷却ロールと溶湯との間に雰囲気ガス巻き込みが発生しやすく、急冷面側での冷却速度が不均一する可能性がある。このような問題を解決するには、冷却ロールが置かれた空間の雰囲気圧力を上述した範囲に低下させ、雰囲気ガスの巻き込みを抑制する必要がある。また、生産効率は低下するが、ガスアトマイズ法を用いても良い。 The quenching method of the molten alloy used in the present invention is not limited to the one-roll method described above, and a strip casting method, which is a quenching method in which the flow rate is not controlled by the nozzle orifice, may be used. In the case of the strip casting method, since the nozzle orifice is not used, there is an advantage that the molten metal supply rate is increased and the melt is easily stabilized. However, entrainment of the atmosphere gas between the cooling roll and the molten metal is likely to occur, and the cooling rate on the quenching surface side may be uneven. In order to solve such a problem, it is necessary to reduce the atmospheric pressure in the space in which the cooling roll is placed to the above-described range to suppress the entrainment of the atmospheric gas. Although the production efficiency is reduced, a gas atomizing method may be used.

 本発明による実施形態のLaFe13系磁性合金の製造方法によると、外部磁界を0Tから1Tまで変化させたときの磁気エントロピー変化(−ΔSmag)が5JK-1kg-1を超える磁気熱量効果を有する磁気冷凍作業物質を得ることができる。上述した製造方法によると薄帯状のLaFe13系磁性急冷合金を得ることが出来るので、粒状(粉末状)の磁気冷凍作業物質を高い製造効率で製造することができる。 According to the manufacturing method of the LaFe 13 -based magnetic alloy of the embodiment according to the present invention, when the external magnetic field is changed from 0T to 1T, the change in magnetic entropy (−ΔS mag ) exceeds 5 JK −1 kg −1. Magnetic refrigeration working material having According to the above-described manufacturing method, a strip-shaped LaFe 13 -based magnetic quenched alloy can be obtained, so that a granular (powder-like) magnetic refrigeration working material can be manufactured with high manufacturing efficiency.

 本発明の実施形態によると、磁気相転移の生じるキュリー温度Tcが180K以上、もしくは190K以上で、330K以下の範囲内にあるLaFe13系磁性合金が得られる。上記組成式中のTMとしてCoを含み、Coの比率を制御することによってキュリー温度Tcの異なるLaFe13系磁性合金を得ることができる。例えば、Coの比率(上記組成式中のcに相当)が9のとき、Tc=330Kが得られる。なお、本明細書において、磁気相転移とは、強磁性から常磁性、強磁性から反強磁性、あるいは、反強磁性から常磁性への転移を指す。 According to the embodiment of the present invention, a LaFe 13 -based magnetic alloy having a Curie temperature Tc at which a magnetic phase transition occurs is 180K or more, or 190K or more and within 330K or less is obtained. LaFe 13 -based magnetic alloys having different Curie temperatures Tc can be obtained by containing Co as TM in the above composition formula and controlling the ratio of Co. For example, when the ratio of Co (corresponding to c in the above composition formula) is 9, Tc = 330K is obtained. In this specification, the magnetic phase transition refers to a transition from ferromagnetic to paramagnetic, from ferromagnetic to antiferromagnetic, or from antiferromagnetic to paramagnetic.

 また、本発明のある実施形態によって得られるLaFe13系磁性合金は、磁気相転移を起こす温度領域が比較的広く、例えば、転移温度領域の半値幅ΔTcが30K以上のLaFe13系磁性合金を得ることができる。従って、本実施形態によると、単一のLaFe13系磁性合金を磁気冷凍作業物質として用いても、磁気冷凍装置を構成することができる。もちろん、動作温度範囲に応じて、複数の組成の異なる(Tcの異なる)LaFe13系磁性合金を用いてもよいが、例えば、MnAs系磁気冷凍作業物質(特開2003−028532号公報)を用いる場合よりも少ない種類の合金で同じ動作温度範囲をカバーすることができる。また、本実施形態によるLaFe13系磁性合金を用いて、特開2003−028532号公報に記載されている蓄冷式熱交換器および磁気冷凍装置を構成することができる。 Further, the LaFe 13 -based magnetic alloy obtained according to an embodiment of the present invention has a relatively wide temperature range in which a magnetic phase transition occurs, and for example, obtains a LaFe 13 -based magnetic alloy having a half-width ΔTc of 30 K or more in the transition temperature range. be able to. Therefore, according to the present embodiment, a magnetic refrigeration apparatus can be configured even if a single LaFe 13 -based magnetic alloy is used as the magnetic refrigeration work material. Of course, a plurality of LaFe 13 -based magnetic alloys having different compositions (different Tc) may be used according to the operating temperature range. For example, a MnAs-based magnetic refrigeration working material (Japanese Patent Application Laid-Open No. 2003-028532) is used. Fewer alloys can cover the same operating temperature range. Further, the regenerative heat exchanger and the magnetic refrigerator described in JP-A-2003-028532 can be configured using the LaFe 13 -based magnetic alloy according to the present embodiment.

 本発明によるLaFe13系磁性合金は、磁気冷凍作業物質として特に好適に用いられるが、例えば、特許文献1や特許文献2に開示されているように、磁歪材料としても好適に用いることが出来る。 The LaFe 13 -based magnetic alloy according to the present invention is particularly preferably used as a magnetic refrigeration working material, but can also be suitably used as a magnetostrictive material as disclosed in, for example, Patent Documents 1 and 2.

 以下、実験例を示して、本発明によるLaFe13系磁性合金の製造方法の具体例を説明するが、本発明はこれに限られない。 Hereinafter, specific examples of the method for producing a LaFe 13 -based magnetic alloy according to the present invention will be described with reference to experimental examples, but the present invention is not limited thereto.

 (実験例1)
 [原料合金溶湯の作製工程]
 La(Fe0.88Si0.1213の組成を有するLaFe13型化合物相が得られるように、La、FeおよびSi原料を所定量配合し、高周波溶解炉を用いて鋳造合金を作製した。この段階で得られた鋳造合金を試料(e)とする。
(Experimental example 1)
[Making process of raw material alloy]
Predetermined amounts of La, Fe and Si raw materials were blended so that a LaFe 13 type compound phase having a composition of La (Fe 0.88 Si 0.12 ) 13 was obtained, and a cast alloy was produced using a high frequency melting furnace. The cast alloy obtained at this stage is referred to as a sample (e).

 [急冷工程]
 図1と同様の構成の実験機を用いて、塊状の鋳造合金約10gの溶湯を直径0.8mmの石英製ノズルから20m/秒で回転するCuロールに噴射し、合金薄帯を作製した。ここで得られた薄帯合金を試料(a)とする。
[Quenching process]
Using an experimental machine having the same configuration as that of FIG. 1, a molten metal of about 10 g of a massive casting alloy was injected from a quartz nozzle having a diameter of 0.8 mm onto a Cu roll rotating at 20 m / sec to produce an alloy ribbon. The thin ribbon alloy obtained here is used as a sample (a).

 [熱処理工程]
 試料(a)をNb箔に包み、石英管に入れ、ロータリーポンプで真空排気しながら(実質的に10Pa以下の真空度)、1000℃で1時間熱処理を施した。得られた急冷合金を試料(b)とする。
[Heat treatment process]
The sample (a) was wrapped in an Nb foil, placed in a quartz tube, and heat-treated at 1000 ° C. for 1 hour while evacuating (substantially 10 Pa or less) with a rotary pump. The obtained quenched alloy is used as a sample (b).

 試料(a)を10-2Pa以下に真空排気した石英管に封入して、1050℃で24時間熱処理を施した急冷合金を試料(c)とし、120時間熱処理を施した急冷合金を試料(d)とする。 The sample (a) was sealed in a quartz tube evacuated to 10 −2 Pa or less and heat-treated at 1050 ° C. for 24 hours as a sample (c), and the quenched alloy heat-treated for 120 hours was used as a sample ( d).

 試料(e)(鋳造合金)約10gを10-2Pa以下に真空排気した石英管に封入して、1050℃で1時間、24時間および120時間熱処理を施した鋳造合金を試料(f)、試料(g)、および試料(h)とする。 Sample (e) (cast alloy) About 10 g of a cast alloy sealed in a quartz tube evacuated to 10 −2 Pa or less and heat-treated at 1050 ° C. for 1, 24, and 120 hours was used as sample (f). Sample (g) and sample (h).

 [評価]
 各試料の結晶構造をX線回折法(XRD法)で評価した。それぞれの試料を150μm以下に粉砕した粉末を用いた。ターゲットにはCuを用いた。スキャンスピードは4.0°/min、サンプリング幅は0.02°、測定範囲は20〜80°とした。
[Evaluation]
The crystal structure of each sample was evaluated by an X-ray diffraction method (XRD method). Powders obtained by pulverizing each sample to 150 μm or less were used. Cu was used for the target. The scan speed was 4.0 ° / min, the sampling width was 0.02 °, and the measurement range was 20 to 80 °.

 得られた試料(a)〜(h)の熱処理条件および合金中の生成相をまとめて表1に示す。 Table 1 summarizes the heat treatment conditions of the obtained samples (a) to (h) and the phases generated in the alloy.

 また、各試料の形態および組成分布を電子線マイクロアナライザ(EPMA)を用いて評価した。EPMA観察用の試料は次のようにして作製した。それぞれの試料合金をエポキシ樹脂に含浸し表面を研磨した後、厚さ約20nmのAu蒸着を施したものをEPMA用試料とした。EPMAの加速電圧は15kVとした。照射電流はB.E.I.(反射電子像)で1.0nAとした。 形態 The morphology and composition distribution of each sample were evaluated using an electron beam microanalyzer (EPMA). A sample for EPMA observation was prepared as follows. Each of the sample alloys was impregnated with an epoxy resin and polished on the surface, and then subjected to Au evaporation to a thickness of about 20 nm to obtain EPMA samples. The accelerating voltage of EPMA was 15 kV. Irradiation current is B. E. FIG. I. (Reflection electron image) was set to 1.0 nA.

 各試料の磁気特性(磁気熱量効果)を評価した。磁気冷凍作業物質には、磁気熱量効果の大きい材料が好ましい。磁気熱量効果の評価には磁気エントロピー変化−ΔSmagが用いられる。一般に−ΔSmagが大きいほど磁気熱量効果は大きい。高磁界VSM(試料振動式磁束計)を用いて0Tから1Tまで0.2T間隔で設定した一定強度の印加磁界下で磁化(M)−温度(T)曲線を測定し、測定結果から下記の式(1)を用いて−ΔSmagを算出した。
  −ΔSmag = ∫0 H(∂M/∂T)HdH  ・・・・(1)
 (ここで、−ΔSmagは磁気エントロピー変化、Hは磁界、Mは磁化、Tは絶対温度である。)
The magnetic properties (magnetoretic effect) of each sample were evaluated. As the magnetic refrigeration working material, a material having a large magnetocaloric effect is preferable. For the evaluation of the magnetocaloric effect, a magnetic entropy change-ΔS mag is used. In general, the larger -ΔS mag is, the larger the magnetocaloric effect is. The magnetization (M) -temperature (T) curve was measured using a high magnetic field VSM (sample vibrating magnetometer) under an applied magnetic field of a constant strength set at 0.2T intervals from 0T to 1T, and the following results were obtained from the measurement results. -ΔS mag was calculated using equation (1).
−ΔS mag = ∫ 0 H (∂M / ∂T) H dH (1)
(Here, -ΔS mag is the magnetic entropy change, H is the magnetic field, M is the magnetization, and T is the absolute temperature.)

 急冷合金を用いて作製した試料(a)、(b)、(c)および(d)のXRDの測定結果を図2に示す。また、試料(c)について得られた−ΔSmagの温度依存性を図3に示す。更に、試料(c)のEPMAによる反射電子像(B.E.I)を図4に示す。 FIG. 2 shows the XRD measurement results of the samples (a), (b), (c) and (d) produced using the quenched alloy. FIG. 3 shows the temperature dependence of -ΔS mag obtained for sample (c). FIG. 4 shows a backscattered electron image (BEI) of the sample (c) by EPMA.

 比較のために、鋳造合金を用いて作製した試料(e)、(f)、(g)および(h)のXRDの測定結果を図5に示す。また、試料(e)および(h)のEPMAによる反射電子像(B.E.I)を図6(a)および(c)に示す。図6(b)には、熱処理時間が8時間の試料の反射電子像を合せて示している。 XFor comparison, FIG. 5 shows the XRD measurement results of the samples (e), (f), (g) and (h) produced using the cast alloy. 6A and 6C show the backscattered electron images (BEI) of the samples (e) and (h) by EPMA. FIG. 6B also shows a backscattered electron image of the sample in which the heat treatment time is 8 hours.

 図2と図5とを比較しながら、本発明の実施例の急冷合金試料と従来の鋳造合金試料との組織の違いを説明する。 (5) The difference in structure between the quenched alloy sample of the embodiment of the present invention and the conventional cast alloy sample will be described by comparing FIG. 2 and FIG.

 図2からわかるように、実施例による急冷合金は、急冷直後(試料(a))からLaFe13型化合物相(図中○)が形成されている。なお、試料(a)においてはLa、Fe、Siからなる(La、Fe、Si)化合物相(図中▲)およびα−Fe相も形成されている。1時間の熱処理を施すと(試料(b))、(La、Fe、Si)化合物相はほぼ消失し、α−Fe相も減少する。その後、熱処理時間を長くすると、α−Fe相に由来するピークの強度が若干増大する以外は、ほとんど変化が見られず、この場合、約1時間の熱処理で、急冷合金のほぼ全てがLaFe13型化合物相となっていることがわかる。また、図4に示した試料(c)の反射電子像を見ると、薄帯の端部にFeが多く存在する以外は、薄帯の全体に亘ってほぼ均一な組成分布を有していることがわかる。 As can be seen from FIG. 2, in the quenched alloy according to the example, a LaFe 13 type compound phase (○ in the figure) is formed immediately after quenching (sample (a)). In the sample (a), a (La, Fe, Si) compound phase composed of La, Fe, and Si (、 in the figure) and an α-Fe phase were also formed. When heat treatment is performed for 1 hour (sample (b)), the (La, Fe, Si) compound phase almost disappears, and the α-Fe phase also decreases. After that, when the heat treatment time is increased, almost no change is observed except for a slight increase in the intensity of the peak derived from the α-Fe phase. In this case, almost all of the quenched alloy becomes LaFe 13 by heat treatment for about 1 hour. It turns out that it is a type compound phase. In addition, the reflection electron image of the sample (c) shown in FIG. 4 shows that the ribbon has a substantially uniform composition distribution throughout the ribbon except that a large amount of Fe is present at the end of the ribbon. You can see that.

 また、図3に示した磁気エントロピー変化−ΔSmagの温度依存性からわかるように、実施例による急冷合金(試料(c))は、大きな磁気エントロピー変化を示している。0T〜1Tまでの−ΔSmagは、7.5Jkg-1-1であった。現在、室温付近で動作する磁気冷凍試験機に使用されているGd(ガドリニウム)は、0Tから1Tで−ΔSmag=3Jkg-1-1程度であり、これと比較しても大きな磁気エントロピー変化を有していることがわかる。なお、鋳造合金を用いて作製した試料(h)の表面の酸化層(厚さ約2mm)を除去した後の試料について求めた−ΔSmagは19Jkg-1-1であった。試料(c)の−ΔSmagが試料(h)よりも低い原因は、表面の酸化層の有無が影響しているものと考えられる。工業的な利用可能性を考えると、この−ΔSmagの低下よりも、熱処理時間の短縮効果、原料コストの低減効果、さらには、粉砕工程の簡略化による利点が大きいと考えられる。また、図3からわかるように、試料(c)の磁気相転移が起こる温度領域の半値幅ΔTcは30K以上あり、磁気冷凍作業物質としての動作温度範囲が広いという利点もある。 Further, as can be seen from the temperature dependence of the magnetic entropy change -ΔS mag shown in FIG. 3, the quenched alloy (sample (c)) according to the example shows a large magnetic entropy change. −ΔS mag from 0T to 1T was 7.5 Jkg −1 K −1 . At present, Gd (gadolinium) used in a magnetic refrigeration tester operating near room temperature is about -ΔS mag = 3 Jkg -1 K -1 from 0T to 1T, and a large change in magnetic entropy is compared with this. It can be seen that it has In addition, −ΔS mag obtained for the sample after removing the oxide layer (thickness: about 2 mm) on the surface of the sample (h) manufactured using the cast alloy was 19 Jkg −1 K −1 . It is considered that the reason why −ΔS mag of the sample (c) is lower than that of the sample (h) is due to the presence or absence of an oxide layer on the surface. Considering the industrial applicability, it is considered that the effect of shortening the heat treatment time, reducing the cost of raw materials, and further simplifying the pulverization process is greater than the reduction of -ΔS mag . Further, as can be seen from FIG. 3, the half width ΔTc of the temperature region where the magnetic phase transition of the sample (c) occurs is 30K or more, and there is an advantage that the operating temperature range as the magnetic refrigeration working material is wide.

 一方、図5に示した、従来の鋳造合金を用いて作製した試料(e)から(h)のXRDの測定結果および図6に示した反射電子像を見ると、鋳造合金(試料(e))にはLaFe13型化合物相は存在せず、熱処理が進むに連れて、徐々に(La、Fe、Si)化合物相およびα−Fe相が減少し、LaFe13型化合物相が形成されている様子がわかる。また、図5と図2とを比較すると分かるように、急冷合金を1時間熱処理した試料(b)では、(La、Fe、Si)化合物相はほぼ完全に消失しているのに対し、鋳造合金を24時間熱処理した試料(g)においては(La、Fe、Si)化合物相が残存している。 On the other hand, the XRD measurement results of the samples (e) to (h) prepared using the conventional cast alloy shown in FIG. 5 and the reflected electron images shown in FIG. 6 show that the cast alloy (sample (e) ) Has no LaFe 13 type compound phase, and as the heat treatment proceeds, the (La, Fe, Si) compound phase and the α-Fe phase gradually decrease to form a LaFe 13 type compound phase. You can see the situation. As can be seen from a comparison between FIG. 5 and FIG. 2, in the sample (b) in which the quenched alloy was heat-treated for 1 hour, the (La, Fe, Si) compound phase almost completely disappeared, whereas In the sample (g) obtained by heat-treating the alloy for 24 hours, the (La, Fe, Si) compound phase remains.

 このように、急冷合金を用いることによって、短時間の熱処理によって、LaFe13型化合物相を主相とするLaFe13系磁性合金が得られることがわかる。 Thus, it can be seen that by using a quenched alloy, a LaFe 13 -based magnetic alloy having a LaFe 13 type compound phase as a main phase can be obtained by a short-time heat treatment.

 更に、最適な熱処理時間を求めるための実験を行った結果を説明する。 Furthermore, the result of an experiment for obtaining an optimum heat treatment time will be described.

 (実験例2)
 [試料作製]
 上述の実験例1と同様に、La(Fe0.88Si0.1213の組成を有するLaFe13型化合物相が得られるように、La、FeおよびSi原料を所定量配合し、高周波溶解炉を用いて鋳造合金を作製した。得られた塊状の鋳造合金約10gの溶湯を直径0.8mmの石英製ノズルから20m/秒で回転するCuロールに噴射し、薄帯合金を試料(i)を得た。
(Experimental example 2)
[Sample preparation]
In the same manner as in Experimental Example 1 described above, predetermined amounts of La, Fe and Si raw materials are blended so as to obtain a LaFe 13 type compound phase having a composition of La (Fe 0.88 Si 0.12 ) 13 , and a high frequency melting furnace is used. A cast alloy was made. The molten metal of about 10 g of the obtained massive casting alloy was injected from a 0.8 mm diameter quartz nozzle onto a Cu roll rotating at 20 m / sec to obtain a thin strip alloy as a sample (i).

 試料(i)をAr気流中で、1050℃で、1分、5分、10分、30分および60分間それぞれ熱処理した薄帯合金を試料(j)、試料(k)、試料(l)、試料(m)および試料(n)とした。 Sample (j), sample (k), sample (l), and the ribbon alloy obtained by heat-treating sample (i) in an Ar gas stream at 1,050 ° C. for 1, 5, 10, 30, and 60 minutes, respectively. Sample (m) and sample (n) were used.

 また、上述の方法と同様に、La(Fe1-xSix13(x=0.10,0.11,0.12,0.13,0.14)の組成を有する鋳造合金を作製した。それぞれの鋳造合金から、上述の方法に従って、薄帯合金を作製した。ただし、ここでは、Cuロールの回転速度は10m/秒とした。 Further, similarly to the above method, producing a cast alloy having a composition of La (Fe 1-x Si x ) 13 (x = 0.10,0.11,0.12,0.13,0.14) did. From each cast alloy, a thin strip alloy was produced according to the method described above. However, here, the rotation speed of the Cu roll was 10 m / sec.

 得られた薄帯合金をNb箔に包み、Ar気流中1050℃で1時間熱処理して得られた薄帯合金をそれぞれ試料(o)、試料(p)、試料(q)、試料(r)および試料(s)とした。 The obtained ribbon alloy was wrapped in an Nb foil, and heat-treated at 1050 ° C. for 1 hour in an Ar gas flow, and the obtained ribbon alloy was sample (o), sample (p), sample (q), and sample (r), respectively. And sample (s).

 一方、比較のために、上述の鋳造合金約10gを10-2Pa以下に真空排気した石英管に封入して1050℃で120時間熱処理を施した合金をそれぞれ試料(t)、試料(u)、試料(v)、試料(w)および試料(x)とした。 On the other hand, for comparison, about 10 g of the above-mentioned cast alloy was sealed in a quartz tube evacuated to 10 −2 Pa or less and heat-treated at 1050 ° C. for 120 hours. , Sample (v), sample (w) and sample (x).

 本発明による実施例の試料(i)から(s)と比較例の試料(t)から(x)の組成および作製条件を表2にまとめて示す。 Table 2 shows the compositions and preparation conditions of the samples (i) to (s) of the examples according to the present invention and the samples (t) to (x) of the comparative examples.

 [評価]
 実験例1と同様の方法で、各試料の評価を行った。試料(i)、試料(j)、試料(k)、試料(l)、試料(m)および試料(n)の結晶構造をXRDで評価した結果を図7に示す。
[Evaluation]
Each sample was evaluated in the same manner as in Experimental Example 1. FIG. 7 shows the results of XRD evaluation of the crystal structures of Sample (i), Sample (j), Sample (k), Sample (l), Sample (m), and Sample (n).

 図7からわかるように、急冷直後の合金薄帯(試料(i))に熱処理を施すと、熱処理時間が僅か1分(試料(j))であってもα−Fe相が減少することが明確に観察される。このことから、ごく僅かな時間(例えば1秒)であっても急冷直後よりもLaFe13型化合物相が増大する効果が得られると考えられる。 As can be seen from FIG. 7, when the alloy ribbon immediately after the quenching (sample (i)) is subjected to heat treatment, the α-Fe phase may decrease even if the heat treatment time is only 1 minute (sample (j)). Observed clearly. From this, it is considered that the effect of increasing the LaFe 13 -type compound phase more than immediately after quenching can be obtained even for a very short time (for example, 1 second).

 熱処理時間をさらに長くしても、熱処理時間が1時間(試料(n))まではα−Fe相に由来するピークの強度は変化しない。先に図2を参照しながら説明したように、熱処理時間が24時間(試料(c))になると、α−Fe相は逆に増大する。α−Fe相に由来する回折ピーク強度の熱処理時間依存性から、熱処理時間が約1時間まではα−Fe相は増大しないと考えられる。すなわち、急冷合金の最適な熱処理時間は約1時間以下である。 、 Even if the heat treatment time is further extended, the peak intensity derived from the α-Fe phase does not change until the heat treatment time is 1 hour (sample (n)). As described above with reference to FIG. 2, when the heat treatment time reaches 24 hours (sample (c)), the α-Fe phase increases conversely. From the dependence of the diffraction peak intensity derived from the α-Fe phase on the heat treatment time, it is considered that the α-Fe phase does not increase until the heat treatment time is about 1 hour. That is, the optimal heat treatment time for the quenched alloy is about 1 hour or less.

 次に、試料(i)、試料(k)および試料(n)の破断面を電界放射型走査電子顕微鏡(FE−SEM)で観察した結果を図8(a)、(b)および(c)に示す。 Next, the results of observing the fracture surfaces of the sample (i), the sample (k), and the sample (n) with a field emission scanning electron microscope (FE-SEM) are shown in FIGS. 8A, 8B, and 8C. Shown in

 図8(a)からわかるように、急冷直後の合金薄帯(試料(i))には、1μm以下の粒子状の微細組織が観察されるが、熱処理を5分施した試料(k)では図8(b)からわかるように、1μm程度の比較的大きな粒子状の組織が形成されている。さらに熱処理時間を1時間とした試料(n)では、図8(c)に示すように、粒子状の組織は観察されず均質な組織となっている。 As can be seen from FIG. 8 (a), in the alloy ribbon (sample (i)) immediately after the quenching, a particulate microstructure of 1 μm or less is observed, but in the sample (k) subjected to the heat treatment for 5 minutes. As can be seen from FIG. 8B, a relatively large particulate structure of about 1 μm is formed. Further, in the sample (n) in which the heat treatment time was set to 1 hour, as shown in FIG. 8 (c), no particulate structure was observed and the sample had a homogeneous structure.

 このように、熱処理を施すことによって、α−Fe相が減少するとともに、LaFe13型化合物相が増大し、組織の均質化が進む。 Thus, by performing the heat treatment, the α-Fe phase is reduced, and the LaFe 13 type compound phase is increased, so that the structure is homogenized.

 図9に、実施例の試料(o)、試料(p)、試料(q)、試料(r)、試料(s)および比較例の試料(t)、試料(u)、試料(v)、試料(w)および試料(x)の磁気特性(磁気熱量効果)を評価した結果を示す。 FIG. 9 shows sample (o), sample (p), sample (q), sample (r), sample (s) and sample (t), sample (u), sample (v), and comparative example of the example. The result of having evaluated the magnetic characteristic (magnetoretic effect) of sample (w) and sample (x) is shown.

 実施例の各試料の磁気エントロピー変化−ΔSmagの温度依存性と、対応する比較例の各試料の磁気エントロピー変化−ΔSmagの温度依存性とを比較すると、いずれも205K以下では−ΔSmagの最大値は15〜21Jkg-1-1であり、205Kを超えると−ΔSmagの最大値は9Jkg-1-1以下となり、ほぼ同程度の値となっていることがわかる。すなわち、本発明の実施例によると、急冷合金を1時間熱処理することによって、従来の製造方法に従って鋳造合金を120時間に亘って熱処理したものと同等の磁気エントロピー変化−ΔSmagの温度依存性を有するLaFe13系磁性合金材料を製造できた。 And the temperature dependence of the magnetic entropy change -Derutaesu mag of each sample of Example, a comparison between the temperature dependence of the magnetic entropy change -Derutaesu mag of each sample of the comparative example corresponding Both of -Derutaesu mag at 205K or less It can be seen that the maximum value is 15 to 21 Jkg -1 K -1 , and that when the temperature exceeds 205 K, the maximum value of -ΔS mag is 9 Jkg -1 K -1 or less, which is almost the same value. That is, according to the embodiment of the present invention, the quenched alloy is heat-treated for 1 hour, so that the temperature dependence of the magnetic entropy change-ΔS mag is equivalent to that obtained by heat-treating the cast alloy for 120 hours according to the conventional manufacturing method. A LaFe 13 -based magnetic alloy material having the same was produced.

 本発明によると、従来よりも高い生産効率でLaFe13系磁性合金材料を製造することが可能となる。従って、磁性冷凍作業物質や磁歪材料を従来よりも安く提供することが可能となり、例えば、磁気冷凍装置を実用的なコストで提供するが可能となる。磁気冷凍装置は、気体圧縮型の様に冷媒を用いることが無いので、環境に優しく、また、永久磁石材料の併用により高いエネルギー変換効率が得られるという特長を有している。 According to the present invention, it is possible to produce a LaFe 13 -based magnetic alloy material with higher production efficiency than before. Therefore, it is possible to provide the magnetic refrigeration working material and the magnetostrictive material at a lower price than before, and for example, it is possible to provide a magnetic refrigeration apparatus at a practical cost. The magnetic refrigerating apparatus is environmentally friendly because it does not use a refrigerant unlike the gas compression type, and has the characteristics that a high energy conversion efficiency can be obtained by using a permanent magnet material together.

(a)は、本発明による急冷合金を製造する方法に用いる装置の全体構成例を示す断面図であり、(b)は急冷凝固が行われる部分の拡大図である。(A) is a sectional view showing an example of an entire configuration of an apparatus used for a method of manufacturing a rapidly cooled alloy according to the present invention, and (b) is an enlarged view of a portion where rapid solidification is performed. 急冷合金を用いて作製した試料(a)、(b)、(c)および(d)のXRDの測定結果を示す図である。It is a figure which shows the measurement result of XRD of the samples (a), (b), (c) and (d) produced using the quenched alloy. 急冷合金を用いて作製した試料(c)について得られた−ΔSmagの温度依存性を示す図である。It is a diagram showing temperature dependence of the resulting -Derutaesu mag for sample (c) was prepared using the rapidly solidified alloy. 急冷合金を用いて作製した試料(c)のEPMAによる反射電子像(B.E.I)を示す写真である。It is a photograph which shows the reflection electron image (BEI) by EPMA of the sample (c) produced using the quenched alloy. 鋳造合金を用いて作製した試料(e)、(f)、(g)および(h)のXRDの測定結果を示す図である。It is a figure which shows the measurement result of XRD of the samples (e), (f), (g), and (h) produced using the casting alloy. 鋳造合金を用いて作製した試料のEPMAによる反射電子像(B.E.I)を示す写真である。It is a photograph which shows the reflection electron image (BEI) by EPMA of the sample manufactured using the casting alloy. 急冷合金を用いて作製した試料(i)、試料(j)、(k)、(l)、(m)および(n)のXRDの測定結果を示す図である。It is a figure which shows the measurement result of the XRD of the sample (i), the sample (j), (k), (l), (m) and (n) produced using the quenched alloy. 急冷合金を用いて作製した試料(i)、(k)および(n)のFE−SEMによる破断面の組織を示す写真である。It is a photograph which shows the structure of the fracture surface by FE-SEM of the samples (i), (k), and (n) produced using the quenched alloy. 薄帯合金を用いて作製した試料(o)、試料(p)、試料(q)、試料(r)および試料(s)について得られた−ΔSmagの温度依存性を示すグラフ(上段)と、鋳造合金を用いて作製した試料(t)、試料(u)、試料(v)、試料(w)および試料(x)について得られた−ΔSmagの温度依存性を示すグラフ(下段)である。A graph (upper part) showing the temperature dependence of -ΔS mag obtained for the sample (o), the sample (p), the sample (q), the sample (r) and the sample (s) manufactured using the ribbon alloy. , A sample (t), a sample (u), a sample (v), a sample (w), and a sample (x) produced using a cast alloy are shown in a graph (lower part) showing the temperature dependence of −ΔS mag obtained. is there.

符号の説明Explanation of reference numerals

 1b、2b、8b、および9b 雰囲気ガス供給口
 1a、2a、8a、および9a ガス排気口
 1 溶解室
 2 急冷室
 3 溶解炉
 4 貯湯容器
 5 出湯ノズル
 6 ロート
 7 回転冷却ロール
 21 溶湯
 22 合金薄帯
1b, 2b, 8b, and 9b Atmosphere gas supply ports 1a, 2a, 8a, and 9a Gas exhaust port 1 Melting chamber 2 Quenching chamber 3 Melting furnace 4 Hot water storage tank 5 Hot water nozzle 6 Roth 7 Rotary cooling roll 21 Molten metal ribbon

Claims (13)

 所定の組成を有する合金原料の溶湯を用意する工程と、
 前記合金原料の溶湯を急冷することによって、組成式:Fe100-a-b-cREabTMc(REはLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、ErおよびTmからなる群から選択され、Laを90原子%以上含む少なくとも1種の希土類元素、AはAl、Si、Ga、GeおよびSnからなる群から選択される少なくとも1種の元素、TMはSc、Ti、V、Cr、Mn、Co、Ni、CuおよびZnからなる群から選択される少なくとも1種の遷移金属元素、5原子%≦a≦10原子%、4.7原子%≦b≦18原子%、0原子%≦c≦9原子%)で表される組成を有する急冷合金を形成する工程と、
 前記急冷合金中に、NaZn13型結晶構造を有する化合物相を70体積%以上形成する工程と、
 を包含する、磁性合金材料の製造方法。
A step of preparing a molten alloy material having a predetermined composition;
By quenching a melt of the alloy material, the composition formula: Fe 100-abc RE a A b TM c (RE is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er And Tm, at least one rare earth element containing 90 atomic% or more of La, A is at least one element selected from the group consisting of Al, Si, Ga, Ge and Sn, and TM is Sc , Ti, V, Cr, Mn, Co, Ni, Cu and Zn, at least one transition metal element, 5 at% ≦ a ≦ 10 at%, 4.7 at% ≦ b ≦ 18 Atomic%, 0 atomic% ≦ c ≦ 9 atomic%) to form a quenched alloy having a composition represented by:
Forming a compound phase having a NaZn 13 type crystal structure in the quenched alloy at 70% by volume or more;
A method for producing a magnetic alloy material, comprising:
 前記化合物相を形成する工程は、前記急冷合金を400℃以上1200℃以下の温度で、1秒以上100時間以下の時間に亘って熱処理を施す工程を包含する、請求項1に記載の磁性合金材料の製造方法。 The magnetic alloy according to claim 1, wherein the step of forming the compound phase includes a step of subjecting the quenched alloy to a heat treatment at a temperature of 400 ° C. to 1200 ° C. for a time of 1 second to 100 hours. Material manufacturing method.  前記熱処理工程は、前記急冷合金を10分以上熱処理する工程である、請求項2に記載の磁性合金材料の製造方法。 The method for producing a magnetic alloy material according to claim 2, wherein the heat treatment step is a step of heat-treating the quenched alloy for 10 minutes or more.  前記熱処理工程によって、全体に亘って、均質な組織を有するNaZn13型結晶構造を有する化合物相を形成する、請求項2または3に記載の磁性合金の製造方法。 4. The method for producing a magnetic alloy according to claim 2, wherein the heat treatment step forms a compound phase having a NaZn 13 type crystal structure having a homogeneous structure throughout.  前記急冷合金は、急冷直後において、NaZn13型結晶構造を有する前記化合物相を有する、請求項1から4のいずれかに記載の磁性合金材料の製造方法。 The method for producing a magnetic alloy material according to claim 1, wherein the quenched alloy has the compound phase having a NaZn 13 type crystal structure immediately after quenching.  前記急冷合金を形成する工程における冷却速度は、1×102℃/秒以上1×108℃/秒以下である、請求項1から5のいずれかに記載の磁性合金材料の製造方法。 The method for producing a magnetic alloy material according to claim 1, wherein a cooling rate in the step of forming the quenched alloy is 1 × 10 2 ° C./sec or more and 1 × 10 8 ° C./sec or less.  前記急冷合金は、厚さが10μm以上300μm以下の薄帯状である、請求項1から6のいずれかに記載の磁性合金材料の製造方法。 The method for producing a magnetic alloy material according to any one of claims 1 to 6, wherein the quenched alloy is a thin ribbon having a thickness of 10 µm or more and 300 µm or less.  前記磁性合金原料は、磁気熱量効果を有する、請求項1から7のいずれかに記載の磁性合金材料の製造方法。 The method according to any one of claims 1 to 7, wherein the magnetic alloy material has a magnetocaloric effect.  前記急冷合金を粉砕する工程を更に含む、請求項1か8のいずれかに記載の磁性合金材料の製造方法。 The method for producing a magnetic alloy material according to any one of claims 1 to 8, further comprising a step of pulverizing the quenched alloy.  磁気相転移を示すキュリー温度Tcが180K以上330K以下の範囲内にある、請求項1から9のいずれかに記載の磁性合金材料の製造方法。 The method for producing a magnetic alloy material according to any one of claims 1 to 9, wherein the Curie temperature Tc indicating a magnetic phase transition is in a range of 180 K or more and 330 K or less.  前記組成式中のTMとしてCoを含む、請求項1から10のいずれかに記載の磁性合金材料の製造方法。 11. The method for producing a magnetic alloy material according to claim 1, wherein Co is contained as TM in the composition formula.  磁気相転移を起こす温度領域の半値幅ΔTcが30K以上である、請求項1から11のいずれかに記載の磁性合金材料の製造方法。 The method for producing a magnetic alloy material according to any one of claims 1 to 11, wherein the half-width ΔTc of the temperature region where the magnetic phase transition occurs is 30K or more.  請求項1から12のいずれかに記載の製造方法によって製造された磁性合金材料。 A magnetic alloy material produced by the production method according to any one of claims 1 to 12.
JP2003291446A 2002-08-21 2003-08-11 Magnetic alloy material and method for producing the same Expired - Fee Related JP3630164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003291446A JP3630164B2 (en) 2002-08-21 2003-08-11 Magnetic alloy material and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002240113 2002-08-21
JP2003291446A JP3630164B2 (en) 2002-08-21 2003-08-11 Magnetic alloy material and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004323258A Division JP4371040B2 (en) 2002-08-21 2004-11-08 Magnetic alloy material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004100043A true JP2004100043A (en) 2004-04-02
JP3630164B2 JP3630164B2 (en) 2005-03-16

Family

ID=32301088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003291446A Expired - Fee Related JP3630164B2 (en) 2002-08-21 2003-08-11 Magnetic alloy material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3630164B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099928A (en) * 2002-09-05 2004-04-02 Sumitomo Special Metals Co Ltd Magnetic alloy material
JP2005036302A (en) * 2002-10-25 2005-02-10 Showa Denko Kk Method of producing rare earth-containing alloy, rare earth-containing alloy, method of producing rare earth-containing alloy powder, rare earth-containing alloy powder, method of producing rare earth-containing alloy sintered compact, rare earth-containing alloy sintered compact, magnetostriction element, and magnetic refrigeration working substance
JP2005226124A (en) * 2004-02-13 2005-08-25 Hitachi Metals Ltd Magnetic alloy and its manufacturing method
JP2006124783A (en) * 2004-10-29 2006-05-18 Hitachi Metals Ltd Magnetic grain and method for producing the same
JP2006274345A (en) * 2005-03-29 2006-10-12 Hitachi Metals Ltd Magnetic alloy powder and its production method
JP2006307332A (en) * 2005-04-01 2006-11-09 Neomax Co Ltd Magnetic alloy material and method of manufacturing the same
JP2007263392A (en) * 2006-03-27 2007-10-11 Toshiba Corp Magnetic refrigerating material and magnetic refrigerating device
US7563330B2 (en) 2005-05-13 2009-07-21 Kabushiki Kaisha Toshiba Magnetic material and manufacturing method thereof
US7578892B2 (en) 2005-03-31 2009-08-25 Hitachi Metals, Ltd. Magnetic alloy material and method of making the magnetic alloy material
US7695574B2 (en) 2002-10-25 2010-04-13 Showda Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
US7833361B2 (en) 2006-09-29 2010-11-16 Kabushiki Kaisha Toshiba Alloy and method for producing magnetic refrigeration material particles using same
US7914628B2 (en) 2005-03-24 2011-03-29 Kabushiki Kaisha Toshiba Magnetic refrigeration material and method of manufacturing thereof
GB2471403B (en) * 2008-10-01 2012-07-11 Vacuumschmelze Gmbh & Co Kg Article for use in magnetic heat exchange, intermediate article and method for producing an article for use in magnetic heat exchange
WO2012124721A1 (en) * 2011-03-16 2012-09-20 株式会社三徳 Magnetic refrigeration material
KR101233462B1 (en) 2008-10-01 2013-02-14 바쿰슈멜체 게엠베하 운트 코. 카게 Article comprising at least one magnetocalorically active phase and method of working an article comprising at least one magnetocalorically active phase
JP2014044003A (en) * 2012-08-27 2014-03-13 Denso Corp Method of manufacturing heat exchanger composed of magnetic refrigerating material, and heat exchanger
KR101921220B1 (en) 2011-07-05 2018-11-22 가부시키가이샤 산도쿠 Magnetic refrigeration material and magnetic refrigeration device
US11056254B2 (en) 2015-10-19 2021-07-06 National Institute Of Advanced Industrial Science And Technology Method of manufacturing magnetic material
CN114029461A (en) * 2021-10-13 2022-02-11 朗峰新材料(菏泽)有限公司 Preparation facilities of high magnetic induction soft magnetic material amorphous ultra-thin area

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108034940B (en) * 2017-11-24 2020-08-25 宁波祥福机械科技有限公司 Turbine supercharging rotor shaft and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054086A (en) * 1998-07-31 2000-02-22 Kazuaki Fukamichi Super-magnetostrictive material
JP2002069596A (en) * 2000-09-05 2002-03-08 Kazuaki Fukamichi Ultra-magnetostrictive material
JP2003096547A (en) * 2001-09-21 2003-04-03 Toshiba Corp Magnetic refrigeration material and producing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054086A (en) * 1998-07-31 2000-02-22 Kazuaki Fukamichi Super-magnetostrictive material
JP2002069596A (en) * 2000-09-05 2002-03-08 Kazuaki Fukamichi Ultra-magnetostrictive material
JP2003096547A (en) * 2001-09-21 2003-04-03 Toshiba Corp Magnetic refrigeration material and producing method thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099928A (en) * 2002-09-05 2004-04-02 Sumitomo Special Metals Co Ltd Magnetic alloy material
JP2005036302A (en) * 2002-10-25 2005-02-10 Showa Denko Kk Method of producing rare earth-containing alloy, rare earth-containing alloy, method of producing rare earth-containing alloy powder, rare earth-containing alloy powder, method of producing rare earth-containing alloy sintered compact, rare earth-containing alloy sintered compact, magnetostriction element, and magnetic refrigeration working substance
US7695574B2 (en) 2002-10-25 2010-04-13 Showda Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
US8110049B2 (en) 2002-10-25 2012-02-07 Showa Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
JP2005226124A (en) * 2004-02-13 2005-08-25 Hitachi Metals Ltd Magnetic alloy and its manufacturing method
JP2006124783A (en) * 2004-10-29 2006-05-18 Hitachi Metals Ltd Magnetic grain and method for producing the same
US7914628B2 (en) 2005-03-24 2011-03-29 Kabushiki Kaisha Toshiba Magnetic refrigeration material and method of manufacturing thereof
JP2006274345A (en) * 2005-03-29 2006-10-12 Hitachi Metals Ltd Magnetic alloy powder and its production method
US7578892B2 (en) 2005-03-31 2009-08-25 Hitachi Metals, Ltd. Magnetic alloy material and method of making the magnetic alloy material
JP2006307332A (en) * 2005-04-01 2006-11-09 Neomax Co Ltd Magnetic alloy material and method of manufacturing the same
US7563330B2 (en) 2005-05-13 2009-07-21 Kabushiki Kaisha Toshiba Magnetic material and manufacturing method thereof
JP2007263392A (en) * 2006-03-27 2007-10-11 Toshiba Corp Magnetic refrigerating material and magnetic refrigerating device
US7833361B2 (en) 2006-09-29 2010-11-16 Kabushiki Kaisha Toshiba Alloy and method for producing magnetic refrigeration material particles using same
KR101233462B1 (en) 2008-10-01 2013-02-14 바쿰슈멜체 게엠베하 운트 코. 카게 Article comprising at least one magnetocalorically active phase and method of working an article comprising at least one magnetocalorically active phase
GB2471403B (en) * 2008-10-01 2012-07-11 Vacuumschmelze Gmbh & Co Kg Article for use in magnetic heat exchange, intermediate article and method for producing an article for use in magnetic heat exchange
KR101233549B1 (en) * 2008-10-01 2013-02-14 바쿰슈멜체 게엠베하 운트 코. 카게 Article for use in magnetic heat exchange, intermediate article and method for producing an article for use in magnetic heat exchange
US9633769B2 (en) 2011-03-16 2017-04-25 Santoku Corporation Magnetic refrigeration material
EP2687618A1 (en) * 2011-03-16 2014-01-22 Santoku Corporation Magnetic refrigeration material
EP2687618A4 (en) * 2011-03-16 2014-11-05 Santoku Corp Magnetic refrigeration material
JP5809689B2 (en) * 2011-03-16 2015-11-11 株式会社三徳 Magnetic refrigeration material
WO2012124721A1 (en) * 2011-03-16 2012-09-20 株式会社三徳 Magnetic refrigeration material
KR101915242B1 (en) 2011-03-16 2018-11-06 가부시키가이샤 산도쿠 Magnetic refrigeration material
KR101921220B1 (en) 2011-07-05 2018-11-22 가부시키가이샤 산도쿠 Magnetic refrigeration material and magnetic refrigeration device
JP2014044003A (en) * 2012-08-27 2014-03-13 Denso Corp Method of manufacturing heat exchanger composed of magnetic refrigerating material, and heat exchanger
US11056254B2 (en) 2015-10-19 2021-07-06 National Institute Of Advanced Industrial Science And Technology Method of manufacturing magnetic material
CN114029461A (en) * 2021-10-13 2022-02-11 朗峰新材料(菏泽)有限公司 Preparation facilities of high magnetic induction soft magnetic material amorphous ultra-thin area

Also Published As

Publication number Publication date
JP3630164B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
US7670443B2 (en) Magnetic alloy material and method of making the magnetic alloy material
US8110049B2 (en) Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
JP3630164B2 (en) Magnetic alloy material and method for producing the same
US7578892B2 (en) Magnetic alloy material and method of making the magnetic alloy material
US7833361B2 (en) Alloy and method for producing magnetic refrigeration material particles using same
JP5157076B2 (en) Method for producing sintered body of magnetic alloy
TWI464757B (en) Manufacture of rare earth magnets
US7201810B2 (en) Rare earth alloy sintered compact and method of making the same
US20100003156A1 (en) Rare earth magnet and production process thereof
EP1867744A1 (en) Magnetic alloy and method for producing same
GB2424901A (en) A magnetic Fe-rare earth-Al/Si alloy
JP2012190949A (en) Rare-earth magnet and production method therefor
US9633769B2 (en) Magnetic refrigeration material
JP3947066B2 (en) Magnetic alloy material
JP4371040B2 (en) Magnetic alloy material and method for producing the same
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JP2024020341A (en) Anisotropic rare earth sintered magnet and method for manufacturing the same
JP2011162811A (en) Rare earth-iron based alloy powder for magnetic refrigeration
JP4788300B2 (en) Iron-based rare earth alloy nanocomposite magnet and manufacturing method thereof
JP3474684B2 (en) High performance R-Fe-BC system magnet material with excellent corrosion resistance
JP3784085B2 (en) Magnetic material having stable coercive force and method for producing the same
JP2022072860A (en) Rare earth magnet and production method thereof
JP2024023206A (en) Anisotropic rare earth sintered magnet and manufacturing method thereof
US20110318215A1 (en) METHOD FOR PRODUCTION OF NdFeBCu MAGNET AND NdFeBCu MAGNET MATERIAL
JPH08316015A (en) Manufacture of samarium-iron-nitrogen magnet powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040723

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Ref document number: 3630164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees