JP2006274345A - Magnetic alloy powder and its production method - Google Patents

Magnetic alloy powder and its production method Download PDF

Info

Publication number
JP2006274345A
JP2006274345A JP2005094875A JP2005094875A JP2006274345A JP 2006274345 A JP2006274345 A JP 2006274345A JP 2005094875 A JP2005094875 A JP 2005094875A JP 2005094875 A JP2005094875 A JP 2005094875A JP 2006274345 A JP2006274345 A JP 2006274345A
Authority
JP
Japan
Prior art keywords
alloy powder
magnetic alloy
alloy
less
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005094875A
Other languages
Japanese (ja)
Inventor
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005094875A priority Critical patent/JP2006274345A/en
Publication of JP2006274345A publication Critical patent/JP2006274345A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain homogeneous La (Fe-Si)<SB>13</SB>ordinary temperature magnetic refrigeration alloy powder free of α-Fe without solution heat treatment. <P>SOLUTION: Fe-Si system alloy powder and a mixture including lanthanum oxide and alkaline earth metal are held for ≥2 hours at 950 to 1,200°C in an inert gaseous atmosphere or in vacuum and is thereafter cooled down to ≤200°C and the reaction product resulted therefrom is washed and dried. The magnetic alloy which is ≤500 μm in maximum grain size, is paramagnetic at ordinary temperature (23°C), and is ≤5 Am<SP>2</SP>/kg in saturation magnetization is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フロンガスを使用しない磁気冷凍に使用される磁性材料に関し、磁気熱量効果を利用した環境にやさしい冷蔵庫およびエアコン等を実現する効率的な冷凍システムに使用される磁性合金粉末及びその製造方法に関する。   The present invention relates to a magnetic material used for magnetic refrigeration that does not use Freon gas, and relates to a magnetic alloy powder used in an efficient refrigeration system that realizes an environment-friendly refrigerator, air conditioner, and the like using the magnetocaloric effect, and a method for manufacturing the same. About.

現在世界規模での社会的環境問題として、オゾン層破壊、地球温暖化が挙げられている。オゾン層破壊の原因がエアコン等の冷凍機に使用されるフロンガスであることが指摘され、1992年モントリオールでの国際会議において、特定フロンの1995年中の全廃が定められた。しかし、特定フロンの代替として使用が認められている、いわゆる代替フロンにおいても二酸化炭素の数千倍から、数万倍の温暖化作用があり、1997年の地球温暖化防止京都会議において削減対象となった。欧州では、将来自動車への代替フロンの搭載を全廃ことが既に決定されている。このような状況により、省エネルギーでかつ低環境負荷の冷凍空調機器の開発が急務となっており、全くフロンを使用しない磁気冷凍技術が注目され始めている。磁気冷凍技術は従来極低温の実現には広く利用されているが、しかし常温域においては、作業物質の格子振動による熱容量が大きいこと、磁気系の熱ゆう乱によるエネルギーが大きくなることなどから、実用化が困難であった。   Currently, global environmental issues include the destruction of the ozone layer and global warming. It was pointed out that the cause of the ozone depletion was chlorofluorocarbon gas used in refrigerators such as air conditioners, and at the international conference in Montreal in 1992, specific chlorofluorocarbons were completely abolished in 1995. However, the so-called CFC substitute, which is approved for use as a substitute for specific CFCs, has a warming action that is several thousand to tens of thousands of carbon dioxide, and it is a target for reduction at the Kyoto Conference on Global Warming Prevention in 1997. became. In Europe, it has already been decided to completely eliminate the use of alternative CFCs in automobiles in the future. Under such circumstances, development of energy-saving and low environmental load refrigeration air-conditioning equipment has become an urgent task, and magnetic refrigeration technology that does not use chlorofluorocarbons has begun to attract attention. Magnetic refrigeration technology has been widely used to realize cryogenic temperatures, but at room temperature, the heat capacity due to lattice vibration of the work material is large, and the energy due to thermal disturbance of the magnetic system increases. It was difficult to put it into practical use.

常温磁気冷凍材料としては、安価で大きな磁気熱量効果を示す磁性材料が必要である。従来常温磁気冷凍材料としては、室温付近に磁気変態点(キュリー温度)を有するGd(ガドリニウム)が知られているが、Gdは希土類元素の中でも希少で高価な金属であり、工業的に実用性のある材料ではない。近年、Gdに替わる常温磁気冷凍材料として、メタ磁性転移を示す磁性材料が注目されている。メタ磁性転移を示す磁気冷凍磁性材料は、キュリー点の近傍で磁場を印加することにより常磁性から強磁性へ磁気変態する材料で比較的弱い磁場により大きな磁化変化が得られるため大きな磁気熱量変化が得られるという特長を有する。
このような磁性材料としては、GdSiGe2、Mn(As1−xSb)やMnFe(P1−xAs)、La(Fe-Si)13などが提案されている。これら常温磁気冷凍作業物質の中では、原料コスト、環境負荷、製造工程での安全性等を考慮すると、La(Fe-Si)13合金が最も実用材料として有望な候補物質であると考えられる。本材料に関しては、大学では主に物性研究を中心に検討がおこなわれている。(非特許文献1,2)常温磁気冷凍材料であるLa(Fe-Si)13はNaZn13型結晶構造を有するLa(Fe-Si)13結晶格子中に水素を侵入型で固溶させることにより、結晶格子を膨張させキュリー温度を上昇させたものである。本材料の工業的な製造方法として、予め単相のLa(Fe-Si)13母合金を作製し、気固相反応により水素を格子間に固溶させることにより所望のLa(Fe-Si)13合金を得ることが検討されている。(非特許文献3)
しかしながら、LaとFeは固相領域で互いに固溶域を持たないため工業的に単一なLa(Fe-Si)13母合金を得ることが極めて困難である。(非特許文献4)
As the room-temperature magnetic refrigeration material, a magnetic material that is inexpensive and exhibits a large magnetocaloric effect is required. Conventionally, Gd (gadolinium) having a magnetic transformation point (Curie temperature) near room temperature is known as a room temperature magnetic refrigeration material, but Gd is a rare and expensive metal among rare earth elements and is industrially practical. It is not a certain material. In recent years, magnetic materials exhibiting metamagnetic transition have attracted attention as room temperature magnetic refrigeration materials that replace Gd. Magnetic refrigeration magnetic materials exhibiting a metamagnetic transition are materials that undergo a magnetic transformation from paramagnetism to ferromagnetism by applying a magnetic field in the vicinity of the Curie point. It has the feature that it can be obtained.
As such magnetic materials, Gd 5 Si 2 Ge 2, Mn (As 1-x Sb x) and MnFe (P 1-x As x ), La (Fe-Si) such as 13 H x is proposed . Among these room-temperature magnetic refrigeration work materials, considering raw material cost, environmental load, safety in the manufacturing process, etc., La (Fe—Si) 13 H x alloy is considered to be the most promising candidate substance as a practical material. It is done. With regard to this material, studies are mainly conducted at universities focusing on physical property research. (Non-Patent Documents 1 and 2) La (Fe—Si) 13 H x which is a room temperature magnetic refrigeration material causes hydrogen to enter solid solution in a La (Fe—Si) 13 crystal lattice having a NaZn 13 type crystal structure. As a result, the crystal lattice is expanded to raise the Curie temperature. As an industrial production method for this material, a single-phase La (Fe—Si) 13 master alloy is prepared in advance, and hydrogen is dissolved between lattices by a gas-solid phase reaction to obtain a desired La (Fe—Si). It has been investigated to obtain 13 H x alloys. (Non Patent Literature 3)
However, since La and Fe do not have a solid solution region in the solid phase region, it is extremely difficult to obtain an industrially single La (Fe—Si) 13 master alloy. (Non-Patent Document 4)

La(Fe-Si)13母合金を得るために、La、Fe、Si合金を1600℃以上の高温で高周波溶解やアーク溶解し鋳造したインゴットには、初晶として多量のα−Feが析出している。特許文献1では、このα−Feを消失させるため、合金鋳塊に均一化熱処理をすることが開示されている。また、特許文献2に開示されるような水アトマイズ法、ガスアトマイズ法、ストリップキャスト法等の急冷凝固法などが適用され、α−Feの析出を抑制することが検討されている。
固体物理 vol 37. (2002) 419. 金属 vol 73. (2003) 849. Appl. Phys. Lett. 79 (2003) 653. Binary Phase Diagrams,ASM,Eds. T.B. Massalski (1986) 特開2003−96547号公報(0036) 特開2004−100043号公報(0034)
In order to obtain a La (Fe—Si) 13 master alloy, a large amount of α-Fe is precipitated as a primary crystal in an ingot in which La, Fe, and Si alloy are cast by high-frequency melting or arc melting at a high temperature of 1600 ° C. or higher. ing. Patent Document 1 discloses that the alloy ingot is subjected to uniform heat treatment in order to eliminate the α-Fe. In addition, a rapid solidification method such as a water atomizing method, a gas atomizing method, and a strip casting method as disclosed in Patent Document 2 is applied to suppress the precipitation of α-Fe.
Solid physics vol 37. (2002) 419. Metal vol 73. (2003) 849. Appl. Phys. Lett. 79 (2003) 653. Binary Phase Diagrams, ASM, Eds. TB Massalski (1986) JP 2003-96547 A (0036) JP 2004-100043 A (0034)

しかしながら、この合金中のα−Feは長時間の溶体化処理を行っても完全に消失させることが困難である。また、急冷凝固法などの手段を用いても、急冷状態で単相のLa(Fe-Si)13合金を得ることも極めて困難である。急冷法によると急冷まま(As cast)で析出している、強磁性のα−Feを鋳造法に比較して短時間で低減出来るという特長はあるが、急冷後1000℃以上での溶体化処理が必要であり、完全にα−Feを消失させることは困難である。母合金中に残存するα−Feは、強磁性であるため磁場が優先的に進入するため、少量でも磁気熱量特性を低下させるという問題点を有する。 However, it is difficult to completely eliminate α-Fe in this alloy even after a long-time solution treatment. In addition, it is extremely difficult to obtain a single-phase La (Fe—Si) 13 alloy in a rapidly cooled state even by using means such as a rapid solidification method. According to the rapid cooling method, the ferromagnetic α-Fe that is precipitated while being rapidly cooled (as cast) can be reduced in a short time compared to the casting method, but after rapid cooling, solution treatment at 1000 ° C or higher. Is necessary, and it is difficult to completely eliminate α-Fe. Since α-Fe remaining in the mother alloy is ferromagnetic, the magnetic field preferentially enters, so that there is a problem that the magnetocaloric characteristics are deteriorated even with a small amount.

本発明者等は、室温磁気冷凍材料として用いられるLa(Fe-Si)13合金の母合金である、NaZn13型結晶構造を有するLa(Fe-Si)13単相母合金の製造方法を鋭意検討した結果、予め所望の組成に調整したFe−Si合金粉末に、希土類酸化物(La)と金属Caを所定の量混合した混合物を950〜1200℃で不活性ガス雰囲気中または真空中で2時間以上保持した後、得られた反応生成物を水中でデカンテーションすることにより反応副生成物であるCaOを水酸化カルシウム(Ca(OH))として水中に溶解除去することにより、α−Feの残存しないLa(Fe-Si)13単相合金粉末が得られることを見出した。 The present inventors have prepared a method for producing a La (Fe—Si) 13 single phase mother alloy having a NaZn 13 type crystal structure, which is a mother alloy of a La (Fe—Si) 13 H x alloy used as a room temperature magnetic refrigeration material. As a result of intensive studies, a mixture of a predetermined amount of rare earth oxide (La 2 O 3 ) and metal Ca mixed with Fe—Si alloy powder adjusted to a desired composition in advance in an inert gas atmosphere at 950 to 1200 ° C. Alternatively, after holding in vacuum for 2 hours or more, decant the obtained reaction product in water to dissolve and remove CaO as a reaction by-product as calcium hydroxide (Ca (OH) 2 ) in water. Thus, it was found that La (Fe—Si) 13 single-phase alloy powder without α-Fe remaining was obtained.

NaZn13型結晶構造を有する本合金の製造方法は、所定の組成比に配合したFeおよびSiを高周波溶解やアーク溶解により溶解鋳造し、得られたFe-Siインゴットを500μm以下に粉砕するか、あるいは高周波溶解した溶湯を高圧の不活性ガスあるいは水等により噴霧し、直接500μm以下の粉末を得る。また、溶湯を回転するロール上に噴霧して直接粉末を得たり、あるいは薄帯を粉砕し粉末を得ることも可能である。 The manufacturing method of this alloy having a NaZn 13 type crystal structure is obtained by melting and casting Fe and Si blended in a predetermined composition ratio by high frequency melting or arc melting, and pulverizing the obtained Fe-Si ingot to 500 μm or less, Alternatively, the molten metal melted at high frequency is sprayed with a high-pressure inert gas or water to directly obtain a powder of 500 μm or less. It is also possible to obtain a powder directly by spraying the molten metal on a rotating roll, or to obtain a powder by grinding a ribbon.

上記得られたFe−Si系粉末に、所定の希土類酸化物(La)と希土類酸化物を還元するためのカルシウムを少なくとも化学量論組成以上混合する。この混合物を、アルゴン等の不活性雰囲気中で950〜1200℃に加熱保持することにより、希土類酸化物が還元され、還元反応により生成した希土類金属がFe−Si粉末中に拡散し、その結果反応生成物としてLa(Fe-Si)13合金とCaOのケーキ上混合物が得られる。この混合物を、水中に投入し所定時間と回数デカンテーションを繰り返すことによりCaOが水中に水酸化カルシウムとして排出されることにより、単相のLa(Fe-Si)13合金粉末を得ることが可能である。反応温度が950℃未満では、LaのFe-Si合金への拡散速度が遅く粉末中心部にFe-Si相が未反応で残存するため好ましくない、また反応温度が1200℃を超えると反応生成物が焼結しデカンテーションにおいてCaOの排出が困難となり好ましくない。反応時間が、2時間未満では希土類金属の拡散が十分でなく粉末中心部にFe-Siが残存する。 A predetermined rare earth oxide (La 2 O 3 ) and calcium for reducing the rare earth oxide are mixed with the obtained Fe—Si-based powder at least in a stoichiometric composition. By heating and maintaining this mixture at 950 to 1200 ° C. in an inert atmosphere such as argon, the rare earth oxide is reduced, and the rare earth metal produced by the reduction reaction diffuses into the Fe—Si powder, resulting in a reaction. A mixture of La (Fe—Si) 13 alloy and CaO on the cake is obtained as a product. By introducing this mixture into water and repeating decantation for a predetermined time and number of times, CaO is discharged into the water as calcium hydroxide, so that a single-phase La (Fe—Si) 13 alloy powder can be obtained. is there. If the reaction temperature is less than 950 ° C., the diffusion rate of La into the Fe—Si alloy is slow, and the Fe—Si phase remains unreacted in the center of the powder, which is not preferable, and if the reaction temperature exceeds 1200 ° C., the reaction product Sintered and decantation makes it difficult to discharge CaO, which is not preferable. If the reaction time is less than 2 hours, the rare earth metal does not diffuse sufficiently and Fe—Si remains in the center of the powder.

またFe-Si系合金の粒径が500μm以上では、反応に長時間を要するため適当でない。また、粒径が10μm以下では水素化処理後の粉末が活性で酸化等の問題があるため、Fe-Si原料粉末粒径としては、10〜500μmが好ましい。磁性合金粉末中の酸素は、希土類酸化物あるいはCaO等の非磁性酸化物として存在するため、0.15mass%以上では磁気冷凍性能が低下するため好ましくない。希土類酸化物の還元剤として用いるアルカリ土類金属は主にCaが使用される。Caの替わりに、MgあるいはCaとMgの混合物を使用することも可能である。デカンテーションによりCaOを取り除いた粉末を脱水し、不活性雰囲気中あるいは真空中40〜80℃で乾燥後得られる粉末はLa(Fe・Si)13単相であり、鋳造インゴットなどのような単相化のための溶体化処理を必要としないという利点がある。本発明の製法を用いると、粉末中のCa量は、0.005mass%以上となることが特徴である。但し、Ca量が多量に残留すると磁気特性を悪化させるため、0.2mass%以下であることが好ましい。さらに好ましい範囲は0.01mass%から0.1mass%以下である。 Further, if the particle size of the Fe—Si alloy is 500 μm or more, the reaction takes a long time, which is not suitable. In addition, when the particle size is 10 μm or less, the powder after the hydrogenation treatment is active and has problems such as oxidation. Therefore, the Fe—Si raw material powder particle size is preferably 10 to 500 μm. Oxygen in the magnetic alloy powder exists as a rare-earth oxide or a non-magnetic oxide such as CaO. Therefore, if it is 0.15 mass% or more, the magnetic refrigeration performance is lowered, which is not preferable. Ca is mainly used as the alkaline earth metal used as the reducing agent for the rare earth oxide. Instead of Ca, it is also possible to use Mg or a mixture of Ca and Mg. The powder from which CaO has been removed by decantation is dehydrated and dried in an inert atmosphere or in vacuum at 40 to 80 ° C., and the resulting powder is La (Fe · Si) 13 single phase, such as a cast ingot. There is an advantage that no solution treatment is required for heat treatment. When the production method of the present invention is used, the amount of Ca in the powder is characterized by 0.005 mass% or more. However, if a large amount of Ca remains, the magnetic properties are deteriorated, so 0.2 mass% or less is preferable. A more preferable range is 0.01 mass% to 0.1 mass%.

本製造方法により得られる磁性粉末は、組成式が、(La1−xTMbal(ただし、RはYを含む希土類元素であり、AはSiまたはSiとAl、Ga、Ge、Snからなる群から選択される元素の少なくとも1種以上であり、TMはFeまたはFeとSc、Ti、V、Cr、Mn、Co、Ni、Cu、Znからなる群から選択される元素の少なくとも1種以上であり、原子%で、0≦x≦0.2、5≦a≦10、7≦b≦19%、残部TMおよび不可避不純物)となる。また、粒子径が500μm以下であり、室温で常磁性を示し、2Tの印加磁界を印加して測定した磁化の値は最大で5A/m以下である。希土類金属Laの一部をCe,Pr,Nd、Dy等のランタノイド元素と置換することが可能である、20%以上の置換ではNaZn13相以外の第2相が析出するため好ましくない。またFeの一部を、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Znからなる群から選択される元素の少なくとも1種以上で置換することも可能である。さらに、Siの一部をAl、Ga、Ge、Snからなる群から選択される元素の少なくとも1種以上で置換することが可能である。Feの一部を他の元素(Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn)で置換する場合、あるいはSiの一部を他の元素(Al、Ga、Ge、Sn)で置換する場合には、予めFe−Si合金と所定の組成となるように合金化することが好ましい。 Magnetic powder obtained by the present production method, composition formula, (La 1-x R x ) a A b TM bal ( wherein, R is a rare earth element including Y, A is Si or Si and Al, Ga, And at least one element selected from the group consisting of Ge and Sn, and TM is an element selected from the group consisting of Fe or Fe and Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn At least one of the following, and in atomic%, 0 ≦ x ≦ 0.2, 5 ≦ a ≦ 10, 7 ≦ b ≦ 19%, the balance TM and inevitable impurities). Further, the particle diameter is 500 μm or less, paramagnetism is exhibited at room temperature, and the value of magnetization measured by applying a 2T applied magnetic field is 5 A / m 2 or less at maximum. A part of the rare earth metal La can be substituted with a lanthanoid element such as Ce, Pr, Nd, Dy, etc. If the substitution is 20% or more, a second phase other than the NaZn 13 phase is precipitated, which is not preferable. Further, a part of Fe can be substituted with at least one element selected from the group consisting of Sc, Ti, V, Cr, Mn, Co, Ni, Cu, and Zn. Furthermore, a part of Si can be replaced with at least one element selected from the group consisting of Al, Ga, Ge, and Sn. When a part of Fe is replaced with another element (Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn), or a part of Si is replaced with another element (Al, Ga, Ge, Sn) In the case of substituting with, it is preferable to alloy with an Fe—Si alloy in advance so as to have a predetermined composition.

本発明において、室温近傍で磁気冷凍効果を発揮させるためには、本発明の材料組成が重要な意味を有する。組成式:(La1−xTMbalの中で、aが5at%未満ではLa(Fe・Si)13を形成するための希土類元素が不足し反応生成物中に強磁性のFe-Siが残存する。またaが10at%を超えると、希土類元素が過剰となり反応物中に希土類リッチな非磁性相あるいは希土類酸化物が生成されるため水素吸蔵後の磁気熱量効果を低下させる。好ましいaの範囲は6.5〜8.5原子%である。bが7.0at%未満では、La(Fe・Si)13相が不安定となりFe-Si相が残存する、bが19at%を超えると、飽和磁化が低下するために磁気熱量効果が低下するという問題がある。好ましいbの範囲は9〜12原子%である。本合金において、Laの一部をYを含む他のランタノイド元素と置換することが可能である。Laの一部を20at%以下のYを含むランタノイド元素で置換しても、単相のNaZn13型の(La1−x)(Fe・Si)13合金粉末(RはYを含みLaを除くランタノイド元素)を得ることが可能である。Rの置換量xが0.2を超えると、結晶構造が異なる異相が析出するため磁気熱量効果を低下させるため好ましくない。好ましくは10at%以下とする。 In the present invention, the material composition of the present invention has an important meaning in order to exhibit the magnetic refrigeration effect near room temperature. Formula: in (La 1-x R x) a A b TM bal, a ferromagnetic in the reaction product insufficient rare earth elements to form a La (Fe · Si) 13 is less than 5at% Fe-Si remains. On the other hand, if a exceeds 10 at%, the rare earth element becomes excessive and a rare earth-rich nonmagnetic phase or rare earth oxide is generated in the reaction product, so that the magnetocaloric effect after hydrogen storage is reduced. A preferable range of a is 6.5 to 8.5 atomic%. When b is less than 7.0 at%, the La (Fe · Si) 13 phase becomes unstable and the Fe—Si phase remains, and when b exceeds 19 at%, the saturation magnetization is reduced and the magnetocaloric effect is reduced. There is a problem. A preferable range of b is 9 to 12 atomic%. In this alloy, part of La can be replaced with other lanthanoid elements including Y. Even if a part of La is replaced with a lanthanoid element containing 20 at% or less of Y, single-phase NaZn 13 type (La 1-x R x ) (Fe · Si) 13 alloy powder (R includes Y and La Lanthanoid elements) can be obtained. If the substitution amount x of R exceeds 0.2, a heterogeneous phase having a different crystal structure is precipitated, so that the magnetocaloric effect is lowered. Preferably it is 10 at% or less.

Feの一部をSc、Ti、V、Cr、Mn、Co、Ni、Cu、Znなどの元素と一部置換することも可能である。これらの元素は、全合金組成中10原子%を超えると磁気特性を悪化させるので10原子%以下とする。また、Siの一部をAl、Ga、Ge、Snなどの元素と置換することも可能である。置換量により、磁気変態温度の調整が可能となる。   It is also possible to partially replace part of Fe with elements such as Sc, Ti, V, Cr, Mn, Co, Ni, Cu, and Zn. If these elements exceed 10 atomic% in the total alloy composition, the magnetic properties are deteriorated. It is also possible to replace a part of Si with an element such as Al, Ga, Ge, or Sn. The magnetic transformation temperature can be adjusted by the substitution amount.

本発明により、常温磁気冷凍材料であるLa(Fe-Si)13を製造するために必要なNaZn13型結晶構造を有する単相のLa−Fe−Si系合金粉末を溶体化処理なしで製造することが可能である。本発明により、得られたLa−Fe−Si系合金粉末を、200〜350℃で水素を含む反応ガスと反応させることにより、α−Feの無い均質なLa(Fe-Si)13常温磁気冷凍合金粉末が得られる。 According to the present invention, a single-phase La—Fe—Si based alloy powder having a NaZn 13 type crystal structure necessary for producing La (Fe—Si) 13 H x which is a room temperature magnetic refrigeration material can be obtained without solution treatment. It is possible to manufacture. According to the present invention, the obtained La—Fe—Si based alloy powder is reacted with a reaction gas containing hydrogen at 200 to 350 ° C. to obtain homogeneous La (Fe—Si) 13 H x normal temperature without α-Fe. Magnetic refrigeration alloy powder is obtained.

以下本発明を実施例により説明するが、これら実施例により本発明が限定されるものではない。
(実施例1)
アーク溶解で、Fe94.7mass%−Si5.3mass%(Fe90原子%−Si10原子%)の組成となる、Fe-Si合金インゴットを溶製した。このインゴットを、予めデイスク状粉砕機で500μm以下に粉砕した。500μm以下のFe-Si粉末83.8gと酸化ランタン19.1g、金属カルシウム18.1g(化学量論の1.1倍)を秤量し、V型混合機にて10分間混合し、反応前混合物とした。上記混合物を、鉄製トレイ中に設置し、アルゴン雰囲気中1050℃で4時間熱処理し、還元拡散反応させた。熱処理後、得られた反応生成物を約2Lの水に投入し1時間放置後、水洗を繰り返し行った。水洗を繰り返し、水のPHが8.5以下になったところで水洗を中止し、脱水し得られた粉末を80℃で2時間真空中で乾燥した。得られたLa−FeSi系合金の合金組成はLa6.9Si9.3Febal(残留酸素量0.12mass%、Ca量0.03mass%)である。乾燥後の粉末のX線回折図を第1図に示す。この回折図より、この合金粉末はNaZn13型単相であることが解る。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
Example 1
An Fe—Si alloy ingot having a composition of Fe 94.7 mass% —Si 5.3 mass% (Fe 90 atomic% —Si 10 atomic%) was melted by arc melting. This ingot was pulverized in advance to 500 μm or less with a disc-shaped pulverizer. Weigh 83.8 g of Fe-Si powder of 500 μm or less, 19.1 g of lanthanum oxide, and 18.1 g of metallic calcium (1.1 times the stoichiometry), and mix for 10 minutes with a V-type mixer. It was. The mixture was placed in an iron tray and heat-treated at 1050 ° C. for 4 hours in an argon atmosphere to cause a reduction diffusion reaction. After the heat treatment, the obtained reaction product was put into about 2 L of water, allowed to stand for 1 hour, and then washed with water repeatedly. Washing with water was repeated, and when the pH of water became 8.5 or less, washing with water was stopped, and the powder obtained by dehydration was dried in vacuum at 80 ° C. for 2 hours. The alloy composition of the obtained La—FeSi alloy is La 6.9 Si 9.3 Fe bal (residual oxygen content 0.12 mass%, Ca content 0.03 mass%). The X-ray diffraction pattern of the powder after drying is shown in FIG. From this diffractogram, it can be seen that this alloy powder is a NaZn 13 type single phase.

(比較例1,2)
アーク溶解により、La7.0Si11.0Febal(原子%)となるように合金組成を調整し、La−Si−Fe系母合金を作成した。母合金の作成工程で発生したα−Feの消失を狙って、この母合金に1050℃で48時間の均一加熱処理を行った。母合金の組織観察写真を図3に、均一化熱処理後の組織観察写真を図4に示す。熱処理後もこの母合金は完全には均一化されていない。磁気冷凍材料とした際に、α−Feによる磁気熱量特性の低下が懸念される。また、同合金組成の溶湯をCu製の単ロールを用いた超急例法(ロール周速度15m/s)によるα−Feの抑制効果を確認した。超急冷を行った薄帯の組織観察写真を図5に示す。
(Comparative Examples 1 and 2)
The alloy composition was adjusted so as to be La 7.0 Si 11.0 Fe bal (atomic%) by arc melting, and a La—Si—Fe based master alloy was prepared. Aiming at the disappearance of α-Fe generated in the production process of the mother alloy, the mother alloy was subjected to a uniform heat treatment at 1050 ° C. for 48 hours. FIG. 3 shows a structure observation photograph of the mother alloy, and FIG. 4 shows a structure observation photograph after the uniform heat treatment. Even after the heat treatment, the master alloy is not completely homogenized. When a magnetic refrigeration material is used, there is a concern that the magnetocaloric characteristics may be degraded by α-Fe. Moreover, the inhibitory effect of (alpha) -Fe by the super rapid example method (roll peripheral speed 15m / s) using the single roll made from Cu for the molten metal of the same alloy composition was confirmed. FIG. 5 shows a structure observation photograph of the ultrathin ribbon.

(実施例2)
アーク溶解で、Fe88.8mass%-Si11.2mass%(Fe80原子%−Si20原子%)なる組成の合金を溶製し、実施例1と同様に500μm以下の粉末とした。このFe-Si系粉末83gと酸化ランタン19.9gおよび金属カルシウム18.1g(化学量論の1.05倍)を秤量し、実施例1と同様にV型混合機で混合し、反応前混合物を得た。この混合物を、1150℃で4時間アルゴン雰囲気中で還元拡散反応させた後、得られた反応物を実施例1と同様に水洗、乾燥しLa-Fe-Si系合金粉末を得た。得られたLa−FeSi系合金の合金組成はLa6.86Si18.67Febal(残留酸素量0.12mass%、Ca量0.03mass%)である。乾燥後の粉末の、X線回折および室温の飽和磁化とキュリー温度の測定を行った。X線回折の結果、この粉末はNaZn13型単相であり、室温では第2図に示すように常磁性であり、磁化が5Am/kg以下であることが解った。
(Example 2)
An alloy having a composition of Fe 88.8 mass% -Si 11.2 mass% (Fe 80 atomic% -Si 20 atomic%) was melted by arc melting to obtain a powder of 500 μm or less in the same manner as in Example 1. 83 g of this Fe—Si powder, 19.9 g of lanthanum oxide, and 18.1 g of metallic calcium (1.05 times the stoichiometry) were weighed and mixed in a V-type mixer in the same manner as in Example 1 to obtain a pre-reaction mixture. Got. The mixture was subjected to a reduction diffusion reaction in an argon atmosphere at 1150 ° C. for 4 hours, and the obtained reaction product was washed with water and dried in the same manner as in Example 1 to obtain a La—Fe—Si alloy powder. The alloy composition of the obtained La-FeSi alloy is La 6.86 Si 18.67 Fe bal (residual oxygen content 0.12 mass%, Ca content 0.03 mass%). The powder after drying was measured for X-ray diffraction and room temperature saturation magnetization and Curie temperature. As a result of X-ray diffraction, it was found that this powder was a NaZn 13 type single phase, was paramagnetic at room temperature, as shown in FIG. 2, and had a magnetization of 5 Am 2 / kg or less.

(実施例3)
アーク溶解で、実施例1と同様にFe94.7mass%−Si5.3mass%(Fe90原子%−Si10原子%)なる組成の、Fe-Si系合金粉末を作製した。この合金粉末に、最終生成物のLaとFe-Siの組成比が1:11〜14となるように、酸化ランタンの量を変えて、還元剤のCa量を化学量論組成の1.1倍となるように秤量調整した後、混合した混合物を反応温度と時間を変えてアルゴン雰囲気中で還元拡散反応させた。得られた反応生成物を実施例1と同様に水洗、乾燥し得られた粉末のX線回折と室温での磁化測定を行った。反応温度が900℃、反応時間が1時間の条件で還元拡散反応させた粉末は弱い強磁性を示し、Feの弱い回折線が観察された。またランタンとFe-Siの組成比が14の粉末も強磁性を示すことを確認した。表1に結果を示す。
(Example 3)
Fe-Si based alloy powder having a composition of Fe 94.7 mass% -Si 5.3 mass% (Fe 90 atomic% -Si 10 atomic%) was prepared by arc melting as in Example 1. In this alloy powder, the amount of lanthanum oxide was changed so that the composition ratio of La and Fe—Si in the final product was 1:11 to 14, and the amount of Ca of the reducing agent was changed to 1.1 of the stoichiometric composition. After adjusting the weight so as to be doubled, the mixed mixture was subjected to a reduction diffusion reaction in an argon atmosphere while changing the reaction temperature and time. The obtained reaction product was washed with water and dried in the same manner as in Example 1, and X-ray diffraction and magnetization measurement at room temperature were performed. The powder subjected to the reduction diffusion reaction under the conditions of a reaction temperature of 900 ° C. and a reaction time of 1 hour showed weak ferromagnetism, and a weak diffraction line of Fe was observed. It was also confirmed that the powder having a composition ratio of lanthanum and Fe—Si of 14 showed ferromagnetism. Table 1 shows the results.

本発明による磁性粉末は、磁気冷凍材料としてフロンガスを使用しない冷凍空調機器に応用が出来、環境に優しい冷凍機、エアコン等を実現する高効率な冷凍システムに利用可能である。   The magnetic powder according to the present invention can be applied to refrigeration and air-conditioning equipment that does not use chlorofluorocarbon as a magnetic refrigeration material, and can be used in a highly efficient refrigeration system that realizes an environment-friendly refrigerator, air conditioner and the like.

本発明による、磁性粉末のXRD図。The XRD figure of the magnetic powder by this invention. 本発明による、磁性粉末の磁化曲線。The magnetization curve of the magnetic powder according to the present invention. アーク溶解インゴットの鋳造ままの組織。An as-cast structure of an arc melting ingot. アーク溶解インゴットの1050℃×48h溶体化後の組織。Structure after arc melting ingot of 1050 ° C. × 48 h. ストリップキャスト合金の鋳造ままの組織。An as-cast structure of strip cast alloy.

Claims (7)

Fe-Si系合金粉末と、酸化ランタンおよびアルカリ土類金属を含む混合物を不活性ガス雰囲気中または真空中で950〜1200℃の温度域で2時間以上保持し、その後200℃以下に冷却し、反応生成物を水洗および乾燥することを特徴とするLa−Si−Fe系の磁性合金粉末の製造方法。 Holding the mixture containing the Fe—Si-based alloy powder, lanthanum oxide and alkaline earth metal in an inert gas atmosphere or in a vacuum at a temperature range of 950 to 1200 ° C. for 2 hours or more, then cooling to 200 ° C. or less, A method for producing a La—Si—Fe-based magnetic alloy powder, wherein the reaction product is washed with water and dried. Fe-Si系合金粉末と、酸化ランタンを80%以上含むランタノイド酸化物(Y酸化物を含む)およびアルカリ土類金属の混合物を不活性ガス雰囲気中または真空中で950〜1200℃の温度域で2時間以上保持し、その後200℃以下に冷却し、反応生成物を水洗および乾燥することを特徴とするLa−Si−Fe系の磁性合金粉末の製造方法。 A mixture of Fe—Si based alloy powder, lanthanoid oxide (including Y oxide) containing 80% or more of lanthanum oxide and alkaline earth metal in an inert gas atmosphere or in a vacuum at a temperature range of 950 to 1200 ° C. A method for producing a La—Si—Fe-based magnetic alloy powder, which is maintained for 2 hours or more, then cooled to 200 ° C. or less, and the reaction product is washed with water and dried. 前記磁性合金の組成式が、(La1−xTMbal(ただし、RはYを含む希土類元素であり、AはSiまたはSiとAl、Ga、Ge、Snからなる群から選択される元素の少なくとも1種以上であり、TMはFeまたはFeとSc、Ti、V、Cr、Mn、Co、Ni、Cu、Znからなる群から選択される元素の少なくとも1種以上であり、原子%で、0≦x≦0.2、5≦a≦10、7≦b≦19%、残部TMおよび不可避不純物)となるように原料材料を混合することを特徴とする請求項1または2に記載の磁性合金粉末の製造方法。 The composition formula of the magnetic alloy, (La 1-x R x ) a A b TM bal ( wherein, R is a rare earth element including Y, A is a group consisting of Si or Si and Al, Ga, Ge, Sn TM is at least one element selected from the group consisting of Fe or Fe and Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn. The raw material is mixed so that the atomic percent is 0 ≦ x ≦ 0.2, 5 ≦ a ≦ 10, 7 ≦ b ≦ 19%, the balance TM and inevitable impurities). Or the manufacturing method of the magnetic alloy powder of 2. 組成式が、(La1−xTMbal(ただし、RはYを含む希土類元素であり、AはSiまたはSiとAl、Ga、Ge、Snからなる群から選択される元素の少なくとも1種以上であり、TMはFeまたはFeとSc、Ti、V、Cr、Mn、Co、Ni、Cu、Znからなる群から選択される元素の少なくとも1種以上であり、原子%で、0≦x≦0.2、5≦a≦10、7≦b≦19%、残部TMおよび不可避不純物)の磁性合金粉末であり、磁性合金粉末中にアルカリ土類金属量が0.005mass%以上0.2mass%以下含有することを特徴とする磁性合金粉末。 Composition formula, (La 1-x R x ) a A b TM bal ( wherein, R is a rare earth element including Y, A is selected from Si or Si and Al, Ga, Ge, from a group consisting of Sn At least one element, and TM is at least one element selected from the group consisting of Fe or Fe and Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, and atomic% And 0 ≦ x ≦ 0.2, 5 ≦ a ≦ 10, 7 ≦ b ≦ 19%, the balance TM and inevitable impurities), and the amount of alkaline earth metal in the magnetic alloy powder is 0.005 mass. % To 0.2 mass% of magnetic alloy powder. 磁性合金粉末中の酸素量が0.15mass%以下であることを特徴とする請求項4に記載の磁性合金粉末。 The magnetic alloy powder according to claim 4, wherein the amount of oxygen in the magnetic alloy powder is 0.15 mass% or less. 室温(23℃)で常磁性であり、その飽和磁化が5Am/kg以下であることを特徴とする請求項4または5に記載の磁性合金粉末。 6. The magnetic alloy powder according to claim 4, wherein the magnetic alloy powder is paramagnetic at room temperature (23 ° C.) and has a saturation magnetization of 5 Am 2 / kg or less. 最大粒径は500μm以下であることを特徴とする請求項4から6のいずれかに記載の磁性合金粉末。 The magnetic alloy powder according to claim 4, wherein the maximum particle size is 500 μm or less.
JP2005094875A 2005-03-29 2005-03-29 Magnetic alloy powder and its production method Pending JP2006274345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005094875A JP2006274345A (en) 2005-03-29 2005-03-29 Magnetic alloy powder and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005094875A JP2006274345A (en) 2005-03-29 2005-03-29 Magnetic alloy powder and its production method

Publications (1)

Publication Number Publication Date
JP2006274345A true JP2006274345A (en) 2006-10-12

Family

ID=37209379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094875A Pending JP2006274345A (en) 2005-03-29 2005-03-29 Magnetic alloy powder and its production method

Country Status (1)

Country Link
JP (1) JP2006274345A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501088A (en) * 2008-10-01 2012-01-12 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Products used for magnetic heat exchange, intermediate products, and manufacturing methods for products used for magnetic heat exchange
CN102357659A (en) * 2011-07-27 2012-02-22 西安交通大学 Preparation method of Cu-Cu2O heterogenous junction
WO2012124721A1 (en) 2011-03-16 2012-09-20 株式会社三徳 Magnetic refrigeration material
WO2013005579A1 (en) 2011-07-05 2013-01-10 株式会社三徳 Magnetic refrigeration material and magnetic refrigeration device
CN109266951A (en) * 2018-09-25 2019-01-25 北京航空航天大学 A kind of LaFeSiCu magnetic refrigeration alloy and preparation method thereof
US11056254B2 (en) 2015-10-19 2021-07-06 National Institute Of Advanced Industrial Science And Technology Method of manufacturing magnetic material
WO2023120655A1 (en) * 2021-12-22 2023-06-29 ダイキン工業株式会社 Unit, temperature adjustment module, and temperature adjustment device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195025A (en) * 1992-01-16 1993-08-03 Sumitomo Metal Mining Co Ltd Production of rare earth metal-containing alloy powder
JPH1060505A (en) * 1996-08-22 1998-03-03 Sumitomo Metal Mining Co Ltd Production of rare-earth element-transition metal alloy powder for permanent magnet
JPH11124605A (en) * 1997-10-22 1999-05-11 Sumitomo Metal Mining Co Ltd Manufacture of alloy powder containing rare earth and transition metal
JP2003096547A (en) * 2001-09-21 2003-04-03 Toshiba Corp Magnetic refrigeration material and producing method thereof
JP2004100043A (en) * 2002-08-21 2004-04-02 Sumitomo Special Metals Co Ltd Magnetic alloy material and its production method
JP2005015911A (en) * 2003-03-28 2005-01-20 Toshiba Corp Magnetic composite material and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195025A (en) * 1992-01-16 1993-08-03 Sumitomo Metal Mining Co Ltd Production of rare earth metal-containing alloy powder
JPH1060505A (en) * 1996-08-22 1998-03-03 Sumitomo Metal Mining Co Ltd Production of rare-earth element-transition metal alloy powder for permanent magnet
JPH11124605A (en) * 1997-10-22 1999-05-11 Sumitomo Metal Mining Co Ltd Manufacture of alloy powder containing rare earth and transition metal
JP2003096547A (en) * 2001-09-21 2003-04-03 Toshiba Corp Magnetic refrigeration material and producing method thereof
JP2004100043A (en) * 2002-08-21 2004-04-02 Sumitomo Special Metals Co Ltd Magnetic alloy material and its production method
JP2005015911A (en) * 2003-03-28 2005-01-20 Toshiba Corp Magnetic composite material and method for producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501088A (en) * 2008-10-01 2012-01-12 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Products used for magnetic heat exchange, intermediate products, and manufacturing methods for products used for magnetic heat exchange
WO2012124721A1 (en) 2011-03-16 2012-09-20 株式会社三徳 Magnetic refrigeration material
EP2687618A1 (en) * 2011-03-16 2014-01-22 Santoku Corporation Magnetic refrigeration material
EP2687618A4 (en) * 2011-03-16 2014-11-05 Santoku Corp Magnetic refrigeration material
US9633769B2 (en) 2011-03-16 2017-04-25 Santoku Corporation Magnetic refrigeration material
WO2013005579A1 (en) 2011-07-05 2013-01-10 株式会社三徳 Magnetic refrigeration material and magnetic refrigeration device
US9732406B2 (en) 2011-07-05 2017-08-15 Santoku Corporation Magnetic refrigeration material and magnetic refrigeration device
CN102357659A (en) * 2011-07-27 2012-02-22 西安交通大学 Preparation method of Cu-Cu2O heterogenous junction
US11056254B2 (en) 2015-10-19 2021-07-06 National Institute Of Advanced Industrial Science And Technology Method of manufacturing magnetic material
CN109266951A (en) * 2018-09-25 2019-01-25 北京航空航天大学 A kind of LaFeSiCu magnetic refrigeration alloy and preparation method thereof
WO2023120655A1 (en) * 2021-12-22 2023-06-29 ダイキン工業株式会社 Unit, temperature adjustment module, and temperature adjustment device

Similar Documents

Publication Publication Date Title
JP2006283074A (en) Magnetic alloy powder and production method therefor
JP4481949B2 (en) Magnetic material for magnetic refrigeration
JP5158485B2 (en) Magnetic alloy and method for producing the same
TWI423274B (en) Manufacture method of rare earth metal permanent magnet material
TWI431644B (en) Rare earth permanent magnet and manufacturing method thereof
JP5739270B2 (en) A method of producing working components for magnetic heat exchange and working components for magnetic cooling.
JP2009249702A (en) Magnetic alloy powder, and method for producing the same
US20120299675A1 (en) Anisotropic rare earth magnet and method for producing the same
JP2008263179A (en) Rare earth permanent magnet and method of manufacturing the same
JP2007287875A (en) Process for producing rare earth permanent magnet material
JP2006274345A (en) Magnetic alloy powder and its production method
JP2006283074A5 (en)
US9633769B2 (en) Magnetic refrigeration material
JP2005120391A (en) Method for manufacturing magnetic material
JP2008235343A (en) Rare earth permanent magnet and manufacturing method
JP2005036302A (en) Method of producing rare earth-containing alloy, rare earth-containing alloy, method of producing rare earth-containing alloy powder, rare earth-containing alloy powder, method of producing rare earth-containing alloy sintered compact, rare earth-containing alloy sintered compact, magnetostriction element, and magnetic refrigeration working substance
US20220238262A1 (en) Modified La-Fe-Si magnetocaloric alloys
JP7187920B2 (en) Polycrystalline rare earth transition metal alloy powder and method for producing the same
JP2005113209A (en) Magnetic particle, manufacturing method therefor and magnetic particle unit
JP2011162811A (en) Rare earth-iron based alloy powder for magnetic refrigeration
US9732406B2 (en) Magnetic refrigeration material and magnetic refrigeration device
JP4814856B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPS6077959A (en) Permanent magnet material and its manufacture
Hussain et al. Microstructural and magnetic properties of cobalt-substituted Nd32. 5Dy1. 0Fe64. 2-xCoxNb1. 0Al0. 2B1. 1 alloy prepared by ball milling technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101119