JPH11124605A - Manufacture of alloy powder containing rare earth and transition metal - Google Patents

Manufacture of alloy powder containing rare earth and transition metal

Info

Publication number
JPH11124605A
JPH11124605A JP9289442A JP28944297A JPH11124605A JP H11124605 A JPH11124605 A JP H11124605A JP 9289442 A JP9289442 A JP 9289442A JP 28944297 A JP28944297 A JP 28944297A JP H11124605 A JPH11124605 A JP H11124605A
Authority
JP
Japan
Prior art keywords
rare earth
alloy powder
powder
transition metal
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9289442A
Other languages
Japanese (ja)
Inventor
Shinichi Yasuda
晋一 保田
Takashi Hashikawa
隆至 橋川
Nobumitsu Oshimura
伸満 押村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP9289442A priority Critical patent/JPH11124605A/en
Publication of JPH11124605A publication Critical patent/JPH11124605A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacture of an SmFe alloy powder, capable of obviating the necessity of a stage for crushing of a reducing reaction product, improving product yield, and giving high quality SmFeN alloy powder, by solving the problem of difficulty in the crushing of a reducing reaction product and improving the disintegrability of the reducing reaction product in water at the time of manufacture of an alloy powder by a reduction-diffusion process. SOLUTION: In this method, a rare earth oxide powder, a transition metal powder, powder of other raw materials, and a reducing agent in a sufficient quantity to reduce the above rare earth oxide are mixed. Heating treatment is applied to the resultant mixture under a practically oxygen-free atmosphere to initiate reducing reaction, and the resultant rare earth metal is diffused into the above transition metal powder to form the desired alloy. After cooling down to room temp., the resultant reduction product is put into water, washed by means of decantation, picked, and subjected to solid-liquid separation, by which the desired alloy powder is manufactured. In this case, hydrogen treatment is carried out after the heating treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、永久磁石材料とな
るSmFe合金粉の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an SmFe alloy powder used as a permanent magnet material.

【0002】[0002]

【従来の技術】SmFe合金粉は永久磁石材料であるS
mFeN合金粉の原料となる。この合金粉は、その組成
がSm2Fe17N3になったときに最大の特性を示す
ことが知られている。このため、SmFe合金中に窒素
を拡散させる際に上記組成になるように均一に窒化を行
わなければならない。このため、窒化前のSmFe合金
粉の粒子を、平均粒径を30〜100ミクロンの範囲と
し、シャープな粒度分布とすることが必要である。この
ため、窒化処理を行う前に粉砕、篩分けを行なってい
る。
2. Description of the Related Art SmFe alloy powder is a permanent magnet material S
It is a raw material for mFeN alloy powder. It is known that this alloy powder exhibits the maximum characteristics when its composition becomes Sm2Fe17N3. For this reason, when diffusing nitrogen into the SmFe alloy, it is necessary to perform uniform nitriding so as to have the above composition. Therefore, it is necessary that the particles of the SmFe alloy powder before nitriding have an average particle size in the range of 30 to 100 microns and have a sharp particle size distribution. Therefore, pulverization and sieving are performed before the nitriding treatment.

【0003】このようなSmFe合金粉を製造する方法
として還元拡散法によるものがある。
[0003] As a method for producing such an SmFe alloy powder, there is a method using a reduction diffusion method.

【0004】この還元拡散法による合金の製造方法は、
希土類酸化物粉末、遷移金属粉末、その他の原料粉末と
還元剤、例えば金属カルシウム等を混合して混合物を得
る。そして、この混合物を実質的に酸素が存在しない雰
囲気中で加熱処理し、希土類金属酸化物を希土類金属に
還元し、この希土類金属を遷移金属粉に拡散させて所望
の合金とし、室温まで冷却し、得られた生成物を水中に
投入して残留還元剤や発生酸化物などを溶解させ、同時
に処理物を崩壊させて粉状とし、目的とする目開きの篩
を通した後にデカンテーションを繰り返して水洗し、次
いで酸洗して合金粉末を回収する。
[0004] The method of producing an alloy by this reduction diffusion method is as follows.
A mixture is obtained by mixing a rare earth oxide powder, a transition metal powder, and other raw material powders with a reducing agent such as metal calcium. Then, the mixture is heat-treated in an atmosphere substantially free of oxygen to reduce the rare earth metal oxide to a rare earth metal, diffuse the rare earth metal into a transition metal powder to form a desired alloy, and cool to room temperature. The obtained product is poured into water to dissolve the residual reducing agent and generated oxides, etc., and at the same time, the processed material is disintegrated into powder, and the decantation is repeated after passing through the target opening sieve. Rinsing with water and then pickling to collect the alloy powder.

【0005】[0005]

【発明が解決しようとする課題】上記還元拡散法におい
ては、上記の原料混合物をステンレス容器中で加熱して
還元拡散反応を行わせるが、生成物は収縮し、強固に固
まってしまう。そのため、生成物を水に投入して水砕す
る前に生成物を物理的、あるいは機械的手段により粉砕
するが、生成物が強固に固まっているため粉砕が困難と
いう問題がある。また、このようにして得られた粉砕物
は水との反応性が悪く、水砕後に篩を通しても1割前後
の篩上が発生し、これがロスとなり製品収率が低い原因
となっている。
In the above-mentioned reduction diffusion method, the above-mentioned raw material mixture is heated in a stainless steel container to cause a reduction diffusion reaction, but the product shrinks and solidifies firmly. Therefore, the product is pulverized by a physical or mechanical means before the product is poured into water and granulated, but there is a problem that the pulverization is difficult because the product is solidified. Further, the pulverized material thus obtained has poor reactivity with water, so that about 10% of the sieve is generated on the sieve even after passing through the sieve, resulting in a loss and a low product yield.

【0006】本発明は、この還元拡散法による合金粉末
の製造における上記問題を解消し、還元反応生成物の水
中での崩壊性を向上させることにより、還元反応生成物
の粉砕工程を無くし、かつ製品収率を向上させると共に
高品質のSmFeN合金粉を得ることのできるSmFe
合金粉末を製造しうる方法の提供を課題とする。
The present invention solves the above-mentioned problem in the production of alloy powder by the reduction diffusion method, and eliminates the pulverizing step of the reduction reaction product by improving the collapse property of the reduction reaction product in water. SmFe capable of improving product yield and obtaining high quality SmFeN alloy powder
It is an object to provide a method capable of producing an alloy powder.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明では、希土類酸化物粉末、遷移金属粉末、その
他の原料粉末と前記希土類酸化物を還元するのに足る量
の還元剤とを混合し、この混合物を酸素が実質的に存在
しない雰囲気下で加熱処理して還元反応を起こさせ、生
成した希土類金属を前記遷移金属粉末に拡散させて所望
の合金とし、室温まで冷却た後、還元生成物を水中に投
入し、デカンテーションにより洗浄し、次いで酸洗し、
固液分離して所望の合金粉末を製造する方法において前
記加熱処理後に水素処理することを特徴とするものであ
る。
According to the present invention, a rare earth oxide powder, a transition metal powder, and other raw material powders are mixed with a reducing agent in an amount sufficient to reduce the rare earth oxide. After mixing, the mixture is subjected to a heat treatment under an atmosphere substantially free of oxygen to cause a reduction reaction, and the resulting rare earth metal is diffused into the transition metal powder to form a desired alloy, and after cooling to room temperature, The reduction product is poured into water, washed by decantation, and then pickled,
In a method of producing a desired alloy powder by solid-liquid separation, hydrogen treatment is performed after the heat treatment.

【0008】本発明によるときは、加熱処理後の還元生
成物は水中崩壊性が格段に向上するので、従来法での粉
砕工程を省略することができ、デカンテーションによる
洗浄前の篩分け時の篩上を減少させることができる。ま
た、デカンテーションの回数も減少させることが可能と
なる。この結果、生産性の向上ばかりでなく廃液処理量
の削減も可能となる。
According to the present invention, the reduced product after the heat treatment is significantly improved in disintegration in water, so that the pulverizing step in the conventional method can be omitted, and the reduced product can be used for sieving before washing by decantation. The sieve can be reduced. Further, the number of decantations can be reduced. As a result, not only can the productivity be improved, but also the amount of waste liquid treated can be reduced.

【0009】本発明において、前記した水素処理は、焼
成による還元拡散後の反応生成物の冷却工程中に加熱炉
に反応容器を取り付けたまま行うことが望ましい。こう
すると工程を簡略化でき、エネルギー消費量も削減でき
るからである。また、前記水素処理は100〜600℃
の温度範囲で行うことが好ましい。100℃未満では効
果が小さく、600℃を超えるとエネルギー消費量が大
きくなる。しかも、目的の合金が分解したり副反応生成
物が生じることがあるからである。
In the present invention, the above-mentioned hydrogen treatment is desirably performed with the reaction vessel attached to the heating furnace during the step of cooling the reaction product after reduction and diffusion by firing. This is because the process can be simplified and the energy consumption can be reduced. The hydrogen treatment is performed at 100 to 600 ° C.
It is preferable to carry out in the temperature range described above. Below 100 ° C., the effect is small, and above 600 ° C., the energy consumption increases. In addition, the target alloy may be decomposed or a by-product may be generated.

【0010】[0010]

【発明の実施の形態】本発明において行われる水素処理
は、従来の還元拡散法における焼成工程後の冷却期間中
にアルゴンガスなどの不活性ガスを流通して行っていた
のを、所定の温度に降下したときに、所望の時間不活性
ガスの一部、または全部を水素ガスに置換して流通すれ
ば良い。本発明者らの検討の結果、水素の還元生成物へ
の吸蔵速度は基本的には温度に依存し水素ガス分圧には
大きく影響されないようである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The hydrogen treatment carried out in the present invention has been carried out by flowing an inert gas such as argon gas during a cooling period after a calcination step in a conventional reduction diffusion method at a predetermined temperature. , The inert gas may be partly or entirely replaced with hydrogen gas for a desired time and then flow. As a result of the study by the present inventors, it seems that the rate of occlusion of hydrogen into the reduction product basically depends on the temperature and is not greatly affected by the hydrogen gas partial pressure.

【0011】このようにして、水素処理された還元生成
物は室温に冷却された後、大気中にさらされるだけで自
然崩壊が進行し、従来必要であった還元生成物を1cm
角大に破砕する必要がないばかりか、従来の破砕粉砕工
程後の粒度よりも細かく自然崩壊するので、その後の水
洗分離工程における時間短縮を図ることができる。すな
わち、篩分け、デカンテーション操作の回数などを大幅
に削液することができる。そして、これによって廃液処
理量の削減、合金粉末製品の回収率の向上を果たすこと
ができるのである。
The hydrogenated reduction product is cooled to room temperature, then spontaneously decomposes only by being exposed to the atmosphere, and the conventionally required reduction product is reduced by 1 cm.
Not only does it need not be crushed to the size of a square, but also it naturally disintegrates more finely than the particle size after the conventional crushing and crushing step, so that the time required for the subsequent washing and separation step can be reduced. That is, the number of sieving and decanting operations can be greatly reduced. As a result, it is possible to reduce the amount of waste liquid treatment and to improve the recovery rate of the alloy powder product.

【0012】更に、この方法で得られた合金粉の粒度は
平均粒径+ー数十ミクロンの範囲にほとんどの粒子が入
り、シャープな分布となっている。このため、この合金
粉を用いてSmFeN系磁石を製造する際に、前処理と
してのさらなる粉砕は必要とされない。
Furthermore, the particle size of the alloy powder obtained by this method has a sharp distribution, with most of the particles falling within the range of (average particle size + several tens of microns). For this reason, when manufacturing the SmFeN-based magnet using this alloy powder, further pulverization as a pretreatment is not required.

【0013】[0013]

【実施例】次に実施例を用いて本発明をさらに説明す
る。
Next, the present invention will be further described with reference to examples.

【0014】(実施例1)Sm2O3粉末20Kg、F
e粉45Kg、金属カルシウム9Kgを混合し、得た混
合物をステンレス製の反応容器内に入れ、アルゴンガス
を封入し、これを加熱炉に装填し、2時間かけて115
0℃まで昇温し、この温度に約10時間維持して還元拡
散反応を行わせた。その後、室温まで反応容器を加熱炉
に装填したまま室温まで冷却し、反応生成物を反応容器
より取り出した。反応生成物は70Kgであり、硬く焼
結した状態になっていた。反応生成物をハンマーを用い
て破砕し、2分割した。
(Example 1) 20 kg of Sm2O3 powder, F
45 kg of e-powder and 9 kg of metallic calcium were mixed, and the resulting mixture was placed in a stainless steel reaction vessel, filled with argon gas, and charged into a heating furnace.
The temperature was raised to 0 ° C., and maintained at this temperature for about 10 hours to cause a reduction diffusion reaction. Thereafter, the reaction vessel was cooled to room temperature while the reaction vessel was loaded in the heating furnace, and the reaction product was taken out of the reaction vessel. The reaction product weighed 70 kg and was in a hard sintered state. The reaction product was crushed using a hammer and divided into two parts.

【0015】一方の焼成物35Kgをステンレス製反応
容器に戻し、アルゴンガスを封入して、これを加熱炉に
装填し、300℃まで加熱した。その後アルゴンガスを
水素ガスに置換し、水素ガスを流しつつ300℃で2時
間保持した。その後水素ガスを流しつつ室温まで冷却し
た。
One calcined product (35 kg) was returned to the stainless steel reactor, filled with argon gas, charged into a heating furnace, and heated to 300 ° C. Thereafter, the argon gas was replaced with hydrogen gas, and the mixture was maintained at 300 ° C. for 2 hours while flowing hydrogen gas. Thereafter, the mixture was cooled to room temperature while flowing hydrogen gas.

【0016】こうして得た反応生成物を大気中に約1時
間放置し、全量を100リットルの水中に投入した。そ
して、1時間攪拌し反応生成物を崩壊した。得たスラリ
ーをJIS#48の篩を通し実効容量1m3の水洗槽に
移入した。このときのスラリーのpHは12であり、篩
上に残ったロスは0.03Kgであった。
The reaction product thus obtained was allowed to stand in the air for about one hour, and the whole was put into 100 liters of water. Then, the mixture was stirred for 1 hour to disintegrate the reaction product. The obtained slurry was passed through a JIS # 48 sieve and transferred to a washing tank having an effective capacity of 1 m3. At this time, the pH of the slurry was 12, and the loss remaining on the sieve was 0.03 kg.

【0017】スラリーのpHが10以下になるまでデカ
ンテーションを繰り返した。デカンテーション条件は1
m3の水を注水し、攪拌1分、静置分離1分、排水とし
た。デカンテーション開始から終了までの時間を1回の
水洗時間とした。その結果、スラリーのpHが10にな
るまで水洗時間合計量は約80分となった。
The decantation was repeated until the pH of the slurry became 10 or less. Decantation condition is 1
m3 of water was injected, and the mixture was stirred for 1 minute, allowed to stand and separated for 1 minute, and drained. The time from the start to the end of the decantation was defined as one washing time. As a result, the total washing time was about 80 minutes until the slurry pH reached 10.

【0018】その後、スラリーのpHが5になるように
酢酸を添加し、酸洗を行い固液分離し、乾燥してSmF
e合金粉末33Kgを得た。このSmFe合金粉末をよ
く混合し、均一の厚さになるように広げ、任意の4カ所
から10gづつサンプリングして粒度測定用試料を得
た。この試料を振動フルイ型粒度分布計にかけて粒度分
布を求めた。その結果、このSmFe合金粉は平均粒径
が43μmであり、106μm以下の粒子が99%とな
っていた。
Thereafter, acetic acid is added so that the pH of the slurry becomes 5, acid-washed, solid-liquid separated, dried and dried with SmF
33 kg of e-alloy powder was obtained. The SmFe alloy powder was mixed well, spread so as to have a uniform thickness, and sampled at 10 g each from four arbitrary positions to obtain a sample for particle size measurement. This sample was subjected to a vibration screen type particle size distribution meter to determine the particle size distribution. As a result, this SmFe alloy powder had an average particle diameter of 43 μm, and 99% of particles having a particle diameter of 106 μm or less.

【0019】(従来例)実施例で得られた反応生成物の
残り35Kgをジョークラッシャーにより約3cm角の
大きさに粗砕し、その後1時間放置した。その後、これ
を100リットルの水の中に投入し、以後実施例と同様
にスラリーのpHが10になるまでデカンテーションを
行い。酸洗して32KgのSmFe合金粉を得た。水砕
時のスラリーのpHは12であり、JIS#48の篩上
は1.2Kgと多かった。また、水洗時間合計量は約1
50分となった。
(Conventional example) The remaining 35 kg of the reaction product obtained in the example was crushed to a size of about 3 cm square by a jaw crusher, and then left for 1 hour. Thereafter, this was poured into 100 liters of water, and thereafter decantation was performed until the pH of the slurry became 10 as in the example. After pickling, 32 kg of an SmFe alloy powder was obtained. The pH of the slurry at the time of water granulation was 12, and the value on the JIS # 48 sieve was as large as 1.2 kg. The total washing time is about 1 hour.
It was 50 minutes.

【0020】得られた合金粉の粒度分布を実施例と同様
にして求めた。その結果、平均粒度が65μmであり、
106μm以下の粒子が70%しかなかった。
The particle size distribution of the obtained alloy powder was determined in the same manner as in the example. As a result, the average particle size was 65 μm,
Only 70% of the particles were 106 μm or less.

【0021】このようにして得られたSmFe合金粉は
窒化して磁石粉にするが、この際に窒化率を良好にする
ために106μm以下の粒子を用いることになる。よっ
て、従来例で得られたSmFe合金粉の30%は更に粉
砕しなければ磁石用としては使用できないことになる。
The SmFe alloy powder thus obtained is nitrided into a magnet powder. In this case, particles having a size of 106 μm or less are used in order to improve the nitriding ratio. Therefore, 30% of the SmFe alloy powder obtained in the conventional example cannot be used for magnets unless further pulverized.

【0022】(実施例2)実施例1の水素化処理温度3
00℃を100℃にした以外は実施例1と同様にしてS
mFe合金粉末を得た。このときのJIS#48の篩上
は0.1Kgとなっていた。また、水洗時間合計量は約
100分となった。また、得られたSmFe合金粉の、
平均粒度が50μmであり、106μm以下の粒子が9
5%であった。
(Example 2) Hydrotreating temperature 3 in Example 1
S in the same manner as in Example 1 except that the temperature was changed from 100 ° C. to 100 ° C.
An mFe alloy powder was obtained. The weight on the sieve of JIS # 48 at this time was 0.1 kg. The total amount of washing time was about 100 minutes. Further, of the obtained SmFe alloy powder,
The average particle size is 50 μm, and 9
5%.

【0023】(実施例3)実施例1の水素化処理温度3
00℃を600℃にした以外は実施例1と同様にしてS
mFe合金粉末を得た。このときのJIS#48の篩上
は0.03Kgとなっていた。また、水洗時間合計量は
約80分となった。また、得られたSmFe合金粉の、
平均粒度が50μmであり、106μm以下の粒子が9
9%であった。
Example 3 Hydrotreating temperature 3 of Example 1
Except that 00 ° C was changed to 600 ° C, S
An mFe alloy powder was obtained. At this time, the size on the sieve according to JIS # 48 was 0.03 kg. Further, the total amount of washing time was about 80 minutes. Further, of the obtained SmFe alloy powder,
The average particle size is 50 μm, and 9
9%.

【0024】(実施例4)実施例1の水素ガスの代わり
に水素ガスとアルゴンガスとの混合ガスを用いた以外は
実施例1と同様にしてSmFe合金粉末を得た。水洗時
間合計量や粒度分布は実施例1と大差なかった。
(Example 4) An SmFe alloy powder was obtained in the same manner as in Example 1 except that a mixed gas of hydrogen gas and argon gas was used instead of the hydrogen gas of Example 1. The total washing time and the particle size distribution were not significantly different from those in Example 1.

【0025】(比較例)実施例1の水素化処理温度30
0℃を80℃にした以外は実施例1と同様にしてSmF
e合金粉末を得ようとした。しかし、自然崩壊分が少な
く未粉砕では比較例1より悪い結果となることが明らか
であったため、以後の操作を中止した。
(Comparative Example) Hydrotreating temperature of Example 1 30
SmF was obtained in the same manner as in Example 1 except that 0 ° C. was changed to 80 ° C.
An attempt was made to obtain an e-alloy powder. However, it was clear that the result was worse than that of Comparative Example 1 when the amount of spontaneous decay was small and the material was not pulverized. Therefore, the subsequent operation was stopped.

【0026】[0026]

【発明の効果】以上述べたように、本発明では還元反応
生成物に水素処理を施すことにより、還元生成物の崩壊
性を向上させることができる。この結果、合金粉末の回
収率を向上させることができるばかりでなく、粉砕工程
の省略、洗浄時間の短縮が可能となる。よって、本発明
の工業的価値は極めて高い、
As described above, in the present invention, by subjecting the reduction reaction product to hydrogen treatment, the degradability of the reduction product can be improved. As a result, not only the recovery rate of the alloy powder can be improved, but also the crushing step can be omitted and the cleaning time can be shortened. Therefore, the industrial value of the present invention is extremely high,

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 希土類酸化物粉末、遷移金属粉末、そ
の他の原料粉末と前記希土類酸化物を還元するのに足る
量の還元剤とを混合し、この混合物を酸素が実質的に存
在しない雰囲気下で加熱処理して還元反応を起こさせ、
生成した希土類金属を前記遷移金属粉末に拡散させて所
望の合金とし、室温まで冷却た後、還元生成物を水中に
投入し、デカンテーションにより洗浄し、次いで酸洗
し、固液分離して所望の合金粉末を製造する方法におい
て前記加熱処理後に水素処理することを特徴とする希土
類、遷移金属を含む合金粉末の製造方法。
1. A rare earth oxide powder, a transition metal powder, and other raw material powders are mixed with a reducing agent in an amount sufficient to reduce the rare earth oxide, and the mixture is mixed under an atmosphere substantially free of oxygen. To cause a reduction reaction,
The resulting rare earth metal is diffused into the transition metal powder to form a desired alloy, and after cooling to room temperature, the reduced product is poured into water, washed by decantation, then pickled, and solid-liquid separated to obtain a desired alloy. A method for producing an alloy powder containing a rare earth element and a transition metal, wherein the heat treatment is followed by a hydrogen treatment.
【請求項2】 水素処理が、焼成による還元拡散後の
反応生成物の冷却工程中に加熱炉に反応容器を取り付け
たまま行うことを特徴とする請求項1記載の製造方法。
2. The production method according to claim 1, wherein the hydrogen treatment is performed while the reaction vessel is attached to the heating furnace during the step of cooling the reaction product after reduction diffusion by calcination.
【請求項3】 水素処理が100〜600℃の温度範囲で行
う請求項1または2記載の製造方法。
3. The method according to claim 1, wherein the hydrogen treatment is performed in a temperature range of 100 to 600 ° C.
【請求項4】 希土類、遷移金属を含む合金粉末がS
mFe系合金である請求項1〜3記載のいずれかの製造
方法。
4. An alloy powder containing rare earth and transition metal is S
The method according to any one of claims 1 to 3, wherein the method is an mFe-based alloy.
JP9289442A 1997-10-22 1997-10-22 Manufacture of alloy powder containing rare earth and transition metal Pending JPH11124605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9289442A JPH11124605A (en) 1997-10-22 1997-10-22 Manufacture of alloy powder containing rare earth and transition metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9289442A JPH11124605A (en) 1997-10-22 1997-10-22 Manufacture of alloy powder containing rare earth and transition metal

Publications (1)

Publication Number Publication Date
JPH11124605A true JPH11124605A (en) 1999-05-11

Family

ID=17743320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9289442A Pending JPH11124605A (en) 1997-10-22 1997-10-22 Manufacture of alloy powder containing rare earth and transition metal

Country Status (1)

Country Link
JP (1) JPH11124605A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274345A (en) * 2005-03-29 2006-10-12 Hitachi Metals Ltd Magnetic alloy powder and its production method
JP2006283074A (en) * 2005-03-31 2006-10-19 Hitachi Metals Ltd Magnetic alloy powder and production method therefor
CN106041112A (en) * 2016-07-04 2016-10-26 北京科技大学 Freeze drying preparing method for dispersion strengthening tungsten powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274345A (en) * 2005-03-29 2006-10-12 Hitachi Metals Ltd Magnetic alloy powder and its production method
JP2006283074A (en) * 2005-03-31 2006-10-19 Hitachi Metals Ltd Magnetic alloy powder and production method therefor
CN106041112A (en) * 2016-07-04 2016-10-26 北京科技大学 Freeze drying preparing method for dispersion strengthening tungsten powder

Similar Documents

Publication Publication Date Title
JPH0362764B2 (en)
US2834667A (en) Method of thermally reducing titanium oxide
CA1333531C (en) Method for producing dysprosium-iron-boron alloy powder
US2888325A (en) Method of making boron nitride material and bodies
JPH11124605A (en) Manufacture of alloy powder containing rare earth and transition metal
US2905528A (en) Method for preparation of uo2 particles
US6352597B1 (en) Method for producing a magnetic alloy powder
JPH05148517A (en) Production of rare earth-transition metal-nitrogen alloy powder
JP2001181713A (en) Pare earth metal-transition metal alloy powder and producing method therefor
JP2002038206A (en) Method for producing rare earth-transition metal- nitrogen-based alloy powder
JPS59179703A (en) Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism
JPH06124815A (en) Manufacture of material powder of r-tm-b group permanent magnet
CN111370197B (en) Preparation method of iron-silicon soft magnetic powder
JPH0681011A (en) Production of alloy powder
JPH04247813A (en) Production of alloy powder for magnet containing rare-earth metal by reduction/diffusion method
JP2000104104A (en) Manufacture of samarium-iron-nitrogen alloy powder
JPH10332861A (en) Method for preparing uranium mononitride
JP2001140005A (en) Method for producing alloy powder for rare earth magnet and alloy powder produced by the method
JP3111382B2 (en) Scrap treatment method for mixed oxide fuel
JP3508419B2 (en) Method for producing alloy powder containing rare earth and transition metal by reduction diffusion method
JPH0681010A (en) Production of alloy powder
JPH04202612A (en) Manufacture of alloy powder containing rare earth metal and boron
JP2000063914A (en) Production of rare earth alloy powder by reduction diffusing method
JP2004204285A (en) Method of producing rare earth-transition metal-based alloy powder, rare earth-transition metal-nitrogen-based alloy powder, and production method therefor
JPH06120015A (en) Method for manufacture of pulverized rare- earth/transistion metal/boron-type msgnetic material for corrosion-resistant magnet