JP2014044003A - Method of manufacturing heat exchanger composed of magnetic refrigerating material, and heat exchanger - Google Patents

Method of manufacturing heat exchanger composed of magnetic refrigerating material, and heat exchanger Download PDF

Info

Publication number
JP2014044003A
JP2014044003A JP2012186672A JP2012186672A JP2014044003A JP 2014044003 A JP2014044003 A JP 2014044003A JP 2012186672 A JP2012186672 A JP 2012186672A JP 2012186672 A JP2012186672 A JP 2012186672A JP 2014044003 A JP2014044003 A JP 2014044003A
Authority
JP
Japan
Prior art keywords
heat exchanger
ribbon
magnetic refrigeration
laminating
refrigeration material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012186672A
Other languages
Japanese (ja)
Other versions
JP5853907B2 (en
Inventor
Yasuo Kito
泰男 木藤
Tomonori Fujinaka
智徳 藤中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012186672A priority Critical patent/JP5853907B2/en
Publication of JP2014044003A publication Critical patent/JP2014044003A/en
Application granted granted Critical
Publication of JP5853907B2 publication Critical patent/JP5853907B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a heat exchanger composed of a magnetic refrigerating material capable of suppressing degradation of performance by suppressing deposition of α-Fe, and the heat exchanger composed of the magnetic refrigerating material.SOLUTION: A thin band body 13 is manufactured by a melt quenching method by using a power material 11. Then the thin band body 13 is heated in a heating chamber 21 filled with an inert gas. Four sheets of the thin band bodies 13 having undergone heat treatment, are stacked to prepare a plate-shaped stacked body 31. A material piece 33 as a plate-shaped member provided with a groove of 0.1 mm depth extending in the depth direction on its main face, is formed by cutting, grinding and polishing the stacked body 31. The material piece 33 is charged into a heat treatment furnace 35 to be heated, so that a material piece 41 is prepared by making the material piece 33 absorb hydrogen, and the material pieces 41 are stacked to manufacture a heat exchanger 43 in which the groove part is applied as a micro-channel.

Description

本発明は、空調、冷蔵、冷凍などに利用される冷凍サイクルに用いることのできる磁気冷凍材料からなる熱交換器に関する。   The present invention relates to a heat exchanger made of a magnetic refrigeration material that can be used in a refrigeration cycle used for air conditioning, refrigeration, refrigeration and the like.

環境配慮型の冷凍技術として、クリーンでエネルギー効率の高い磁気冷凍技術の研究が進められている。磁気冷凍は磁性体である磁気冷凍材料に外部から磁場を加えて磁気冷凍材料に磁気熱量効果を発現させるものであり、磁気冷凍材料としてLa(FeSi)13系材料が高い磁気熱量効果を発現することが知られている。また上記磁気冷凍材料は水素を吸蔵させることでキュリー温度が変化し、磁気熱量効果を室温で発現することが知られている。 As an environmentally-friendly refrigeration technology, research on clean and energy-efficient magnetic refrigeration technology is underway. Magnetic refrigeration is to apply a magnetic field from the outside to a magnetic refrigeration material, which is a magnetic material, to develop a magnetocaloric effect in the magnetic refrigeration material. As a magnetic refrigeration material, a La (FeSi) 13 -based material exhibits a high magnetocaloric effect. It is known. In addition, it is known that the magnetic refrigeration material changes its Curie temperature by storing hydrogen and exhibits the magnetocaloric effect at room temperature.

磁気冷凍材料の熱交換効率を向上させるために、磁気冷凍材料からなる熱交換器をマイクロチャネルに成形することが考えられる。マイクロチャネルを成形するために、粉砕して粉末状にした磁気冷凍材料を焼結する方法が提案されている(特許文献1参照)。   In order to improve the heat exchange efficiency of the magnetic refrigeration material, it is conceivable to form a heat exchanger made of the magnetic refrigeration material into a microchannel. In order to form a microchannel, a method of sintering a magnetic refrigeration material that has been pulverized into powder has been proposed (see Patent Document 1).

特開2007−291437号公報JP 2007-291437 A

上述したLa(FeSi)13材料にはα−Feが混在している。このα−Feの混在量が多いと、磁気熱量効果、即ちエントロピー変化(ΔS)が低下してしまう。α−Feの量を低減するためには熱処理を行うことが有効であるが、マイクロチャネルを製造する過程で粉末状の磁気冷凍材料を成形するために焼結を行うと、再びα−Feが析出してエントロピー変化量が低下してしまうおそれがある。 Α-Fe is mixed in the La (FeSi) 13 material described above. When the amount of α-Fe mixed is large, the magnetocaloric effect, that is, the entropy change (ΔS) is lowered. In order to reduce the amount of α-Fe, it is effective to perform a heat treatment. However, when sintering is performed to form a powdered magnetic refrigeration material in the process of manufacturing a microchannel, α-Fe is again formed. The amount of entropy change may be reduced due to precipitation.

本発明の目的は、α−Feの析出を抑制して性能劣化を抑制できる磁気冷凍材料熱交換器の製造方法および磁気冷凍材料熱交換器を提供することである。   The objective of this invention is providing the manufacturing method of a magnetic refrigeration material heat exchanger and a magnetic refrigeration material heat exchanger which can suppress precipitation of (alpha) -Fe and can suppress performance degradation.

上述した問題を解決するためになされた請求項1に記載の発明は、La、Fe、Siを含む磁気冷凍材料の溶湯を冷却ロールで急冷して薄帯状の合金(13)を作製する合金作製工程と、上記薄帯状の合金に溝を形成する溝形成工程と、溝形成工程により溝が形成された薄帯状の合金を積層し、上記溝を流路とする熱交換器(43)を形成する組立工程と、薄帯状の合金に熱処理を施し、La(FeSi)13相を増加させる熱処理工程と、を備えることを特徴とする磁気冷凍材料熱交換器の製造方法である。 The invention according to claim 1, which has been made to solve the above-mentioned problem, is an alloy production in which a molten alloy of a magnetic refrigeration material containing La, Fe, and Si is quenched with a cooling roll to produce a ribbon-like alloy (13). Forming a groove on the ribbon-like alloy, laminating a ribbon-like alloy having a groove formed by the groove-forming step, and forming a heat exchanger (43) having the groove as a flow path And a heat treatment step of increasing the La (FeSi) 13 phase by subjecting the ribbon-shaped alloy to a heat treatment, and a manufacturing method of a magnetic refrigeration material heat exchanger.

このような磁気冷凍材料熱交換器の製造方法において、合金作製工程にていわゆるストリップキャスト法で作製された薄帯状の合金は、熱処理によりLa(FeSi)13相が増加しα−Fe相が低減されている。また、熱交換器を製造する段階において焼結などのα−Feが再析出しやすい高温の熱処理を行う必要が無い。そのため、エントロピー変化量の低下を抑制することができ、磁気冷凍材料の性能劣化を抑制して高い磁気熱量効果を奏する熱交換器を製造することができる。 In such a method for manufacturing a magnetic refrigeration material heat exchanger, a thin-band alloy produced by the so-called strip cast method in the alloy production process increases the La (FeSi) 13 phase and reduces the α-Fe phase by heat treatment. Has been. In addition, there is no need to perform a high-temperature heat treatment in which α-Fe is easily reprecipitated, such as sintering, at the stage of manufacturing the heat exchanger. Therefore, a decrease in entropy change amount can be suppressed, and a heat exchanger exhibiting a high magnetocaloric effect by suppressing performance deterioration of the magnetic refrigeration material can be manufactured.

また、磁気冷凍材料の粉末化、および焼結による再成形という工程を省くことができ、製造コストの低減を図ることができる。
なお、本発明の熱処理工程を行うタイミングは特に限定されないが、上記合金作製工程の後、組立工程の前に行うことで、加熱によって組立工程における接合が解除されてしまうおそれが無くなる。
Further, the steps of powdering the magnetic refrigeration material and re-forming by sintering can be omitted, and the manufacturing cost can be reduced.
In addition, although the timing which performs the heat processing process of this invention is not specifically limited, The possibility that the joining in an assembly process will be cancelled | released by heating will be lost by performing before the assembly process after the said alloy preparation process.

また、本発明では、熱処理により薄帯状の合金に水素を吸収させる水素吸収工程を設けてもよい。この水素吸収工程は、吸収した水素が離脱してしまうことを防止するため、熱処理工程の後とすることが好ましく、熱処理工程の後であればそのタイミングは特に限定されない。   Moreover, in this invention, you may provide the hydrogen absorption process which makes a thin strip | belt-shaped alloy absorb hydrogen by heat processing. This hydrogen absorption step is preferably performed after the heat treatment step in order to prevent the absorbed hydrogen from being detached, and the timing is not particularly limited as long as it is after the heat treatment step.

ところで、溝形成工程により形成される溝は、マイクロチャネルとなるサイズに形成してもよい。具体的には、流路の幅(開口における短手側の長さ)が数mm以下、特に0.5mm以下となるように形成するとよい。   By the way, the groove formed by the groove forming step may be formed in a size to be a microchannel. Specifically, it is preferable that the width of the channel (the length on the short side in the opening) is several mm or less, particularly 0.5 mm or less.

上記の製造方法においては、さらに、上記合金作製工程により作製された薄帯状の合金を積層してなる板状の部材(31)を作製する積層工程を備えることとしてもよい。その場合には、溝形成工程を、積層工程により作製された板状の部材に溝を形成する工程とし、組立工程を、溝が形成された板状の部材(41)を積層する工程とするとよい。   The manufacturing method may further include a stacking step for manufacturing a plate-like member (31) formed by stacking the ribbon-shaped alloys manufactured by the alloy manufacturing step. In that case, the groove forming step is a step of forming a groove in the plate-like member produced by the laminating step, and the assembling step is a step of laminating the plate-like member (41) in which the groove is formed. Good.

このような磁気冷凍材料熱交換器の製造方法では、薄帯状の合金を重ね合わせた板状の部材に対して溝を形成するため、薄帯状の合金それぞれを薄く形成することができる。薄帯状の合金を薄くすると、溶融急冷法(ストリップキャスト法)における温度の低下速度が早くなるため微細組織になり易い。その結果、La(Fex,Si1-x13粒子の粒径が小さくなり易く、上記熱処理工程における熱処理に必要な時間を短くすることができる。 In such a method for manufacturing a magnetic refrigeration material heat exchanger, since the grooves are formed in the plate-like member on which the ribbon-like alloys are stacked, each of the ribbon-like alloys can be thinly formed. If the ribbon-like alloy is thinned, the temperature decrease rate in the melt quenching method (strip casting method) is increased, so that a fine structure tends to be formed. As a result, La (Fe x, Si 1 -x) 13 likely size of the particles is reduced, it is possible to shorten the time needed for the heat treatment in the heat treatment step.

上記積層工程は、接着剤(51)により薄帯状の合金を接合して積層する工程としてもよい。またそのときの接着剤は、導電性接着剤としてもよい。接着剤を用いることで薄帯状の合金の隙間を良好に埋めることができ、破損を抑制することができる。また導電性接着剤を用いると通常の接着剤よりも熱伝導率を高めることができ、熱交換器の性能を向上させることができる。   The lamination step may be a step of joining and laminating the ribbon-like alloy with an adhesive (51). The adhesive at that time may be a conductive adhesive. By using an adhesive, it is possible to satisfactorily fill the gaps in the ribbon-like alloy and suppress breakage. Moreover, when a conductive adhesive is used, the thermal conductivity can be increased as compared with a normal adhesive, and the performance of the heat exchanger can be improved.

また上記積層工程は、圧着により前記薄帯状の合金を接合して積層する工程としてもよい。具体的には、薄帯状の合金の間に、金属粉末(53)および金属薄帯(55)のうち少なくともいずれか一方を含む接合材を配置して圧着することにより上記接合材を介して薄帯状の合金同士を接合して積層する工程としてもよいし、薄帯状の合金の表面に金属薄膜(71)を形成し、その金属薄膜を介して薄帯状の合金同士を接合して積層する工程としてもよい。金属薄膜は、蒸着法、スパッタ法、めっき法からなる群から選ばれるいずれか1つの方法により形成されたものとしてもよい。   Moreover, the said lamination process is good also as a process of joining and laminating | stacking the said strip-shaped alloy by pressure bonding. Specifically, a bonding material containing at least one of the metal powder (53) and the metal ribbon (55) is disposed between the ribbon-shaped alloys and pressed to form a thin film via the bonding material. It is good also as a process of joining and laminating strip-shaped alloys, and forming a metal thin film (71) on the surface of a thin strip-shaped alloy, and joining and laminating thin strip-like alloys through the metal thin film It is good. The metal thin film may be formed by any one method selected from the group consisting of vapor deposition, sputtering, and plating.

これらのように薄帯状の合金に金属材料を挟み込んで接合することで、熱伝導率を高くして熱交換器の性能を向上させることができる。
また上記積層工程は、熱処理工程における熱処理温度よりも低い温度を融点とする金属材料を薄帯状の合金の間に配置し、上記熱処理温度よりも低く上記融点よりも高い温度でホットプレスにより圧着して積層する工程としてもよい。このような積層工程では、薄帯状の合金を、一度金属を融解させることによって強固に接合することができる。
By sandwiching and joining the metal material in the ribbon-like alloy as described above, the thermal conductivity can be increased and the performance of the heat exchanger can be improved.
In the laminating step, a metal material having a melting point lower than the heat treatment temperature in the heat treatment step is disposed between the ribbon-like alloys, and is pressed by hot pressing at a temperature lower than the heat treatment temperature and higher than the melting point. It is good also as a process of laminating. In such a lamination process, the ribbon-like alloy can be firmly joined by once melting the metal.

請求項10に記載の発明は、磁気冷凍材料を用いたマイクロチャネルを有する熱交換器(43)であって、La、Fe、Siを含む薄帯状の合金(13)を積層してなる板状の磁気冷凍材料(41)であって、主たる面の一方に流路となる溝が形成されている板状の磁気冷凍材料を積層してなることを特徴とする磁気冷凍材料熱交換器である。   The invention described in claim 10 is a heat exchanger (43) having a microchannel using a magnetic refrigeration material, and is a plate formed by laminating a ribbon-like alloy (13) containing La, Fe, and Si. This is a magnetic refrigeration material heat exchanger comprising a plate-like magnetic refrigeration material laminated with a groove serving as a flow path formed on one of its main surfaces. .

このように構成された磁気冷凍材料熱交換器は、熱交換器を製造する段階において焼結などのα−Feが再析出しやすい高温の熱処理を行う必要が無いため、エントロピー変化量の低下を抑制することができ、高い磁気熱量効果を奏するものとなる。   The magnetic refrigeration material heat exchanger configured in this way does not require high-temperature heat treatment in which α-Fe is easily reprecipitated, such as sintering, at the stage of manufacturing the heat exchanger. It can be suppressed, and a high magnetocaloric effect is achieved.

なお、この欄及び特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。   In addition, the code | symbol in the parenthesis described in this column and a claim shows the correspondence with the specific means as described in embodiment mentioned later as one aspect, Comprising: The technical scope of this invention is shown. It is not limited.

マイクロチャネル熱交換器の製造工程を説明する図である。It is a figure explaining the manufacturing process of a microchannel heat exchanger. (A)が薄帯体の間に接着剤を配した斜視図であり、(B)が薄帯体の間に金属粉末を配した斜視図であり、(C)が薄帯体の間に金属薄帯を配した斜視図である。(A) is a perspective view in which an adhesive is disposed between the ribbons, (B) is a perspective view in which metal powder is disposed between the ribbons, and (C) is between the ribbons. It is the perspective view which arranged the metal ribbon. (A)が接着による組立工程を行う図であり、(B)がプレスによる積層工程を示す図である。(A) is a figure which performs the assembly process by adhesion | attachment, (B) is a figure which shows the lamination process by a press.

以下に本発明の実施形態を図面と共に説明する。
[実施例1]
<磁気冷凍材料を用いたマイクロチャネル熱交換器の製造>
本実施例では、磁気冷凍材料を用いてマイクロチャネル熱交換器を製造した。磁気冷凍材料として、NaZn13結晶構造であるLaFe13系材料を用いた。LaFe13系材料とは、La(Fex,Si1-x13(0≦x≦1)であり、xを所定の値とする。本実施例ではx=0.88とした。図1を用いて製造工程を説明する。なお図1は模式的な図であるため、各構成要素の大きさの比率は実際のものとは相違する場合がある。
Embodiments of the present invention will be described below with reference to the drawings.
[Example 1]
<Manufacture of microchannel heat exchangers using magnetic refrigeration materials>
In this example, a microchannel heat exchanger was manufactured using a magnetic refrigeration material. As the magnetic refrigeration material, a LaFe 13 -based material having a NaZn 13 crystal structure was used. The LaFe 13 material is a La (Fe x, Si 1- x) 13 (0 ≦ x ≦ 1), the x and predetermined value. In this embodiment, x = 0.88. The manufacturing process will be described with reference to FIG. Since FIG. 1 is a schematic diagram, the ratio of the size of each component may be different from the actual one.

(1)粉末調合
単体元素の粉末(またはバルク)を所定の割合で調合して混合し、磁気冷凍材料の粉末原料11を得た。以下に粉末原料11の組成例を示す。
La:17wt%
Fe:78wt%
Si:5wt%
(2)溶融急冷(合金作製工程)
調合した粉末原料11を用いて、溶融急冷法(ストリップキャスト法)により、NaZn13結晶構造である薄帯状の合金である薄帯体13を作製した。
(1) Powder preparation A single element powder (or bulk) was prepared and mixed at a predetermined ratio to obtain a powder raw material 11 of a magnetic refrigeration material. The composition example of the powder raw material 11 is shown below.
La: 17 wt%
Fe: 78 wt%
Si: 5 wt%
(2) Melting and quenching (alloy manufacturing process)
Using the prepared powder raw material 11, a ribbon 13 which is a ribbon-like alloy having a NaZn 13 crystal structure was produced by a melt quenching method (strip casting method).

ここではノズル15から粉末原料11の溶湯17を銅製の回転ロール19(冷却ロール)に吐出して急冷して薄帯状とした。このとき薄帯体13の幅が7mm、厚さが0.1mmとなるように調整した。   Here, the molten metal 17 of the powder raw material 11 was discharged from the nozzle 15 to a copper rotating roll 19 (cooling roll) and rapidly cooled to form a thin ribbon. At this time, the width of the ribbon 13 was adjusted to 7 mm and the thickness to 0.1 mm.

(3)熱処理工程
不活性ガスを充填させた加熱室21内において、ヒータ23により薄帯体13を1000℃で200時間加熱した。この熱処理により、α−Feの割合を低下させた。なお、加熱温度は900〜1100℃、加熱時間は10〜350時間程度とすると良好にα−Feの割合を低下できる。また、不活性ガスを充填する代わりに加熱室21内を真空として熱処理を行ってもよい。
(3) Heat treatment step In the heating chamber 21 filled with an inert gas, the ribbon 13 was heated by a heater 23 at 1000 ° C. for 200 hours. By this heat treatment, the proportion of α-Fe was reduced. In addition, when the heating temperature is 900 to 1100 ° C. and the heating time is about 10 to 350 hours, the ratio of α-Fe can be satisfactorily reduced. Further, instead of filling the inert gas, the heating chamber 21 may be vacuum-treated for heat treatment.

(4)積層体の成形(積層工程)
上記熱処理工程で熱処理を施した薄帯体13を4枚積層し、成形寸法を幅7mm、厚さ0.4mmとした板状の積層体31を作成した。
(4) Molding of laminated body (lamination process)
Four thin strips 13 subjected to the heat treatment in the heat treatment step were laminated to form a plate-like laminate 31 having a molding dimension of 7 mm in width and 0.4 mm in thickness.

この積層体31は、図2(A)に示すように、薄帯体13の間に導電性接着剤51を配して接合したものであって、磁気冷凍材料層と接着剤層とが積層されてなるものである。導電性接着剤51とは銀、銅、アルミニウムなどの金属粉末が有機溶剤や樹脂などと混合されたもので、接着後に金属粉末を介して導電性を示すものである。   As shown in FIG. 2 (A), this laminated body 31 is obtained by arranging and bonding a conductive adhesive 51 between the ribbons 13, and a magnetic refrigeration material layer and an adhesive layer are laminated. It has been made. The conductive adhesive 51 is a mixture of metal powder such as silver, copper, and aluminum with an organic solvent, resin, or the like, and exhibits conductivity through the metal powder after bonding.

(5)材料片の成形(溝形成工程)
長板状の積層体31に対して切断、研削、研磨などを行い、幅7mm×奥行き10mmの矩形で厚さ0.4mmの板状であって、主たる面に0.1mmの深さで奥行き方向に延びる溝が形成された板状の部材である材料片33を成形した。この溝が流路(マイクロチャネル)となる。
(5) Molding of material pieces (groove forming process)
The long plate-shaped laminate 31 is cut, ground, polished, etc., and is a rectangular plate having a width of 7 mm × a depth of 10 mm and a thickness of 0.4 mm. The main surface has a depth of 0.1 mm. A piece of material 33, which is a plate-like member having a groove extending in the direction, was formed. This groove becomes a flow path (microchannel).

(6)水素吸収工程
材料片33を熱処理炉35(フロー炉)に投入してヒータ37により270℃に加熱し、材料片33に水素を吸収させた磁気冷凍材料の材料片41を作製した。なお、熱処理温度を180〜300℃の範囲で調整することで水素吸収量を制御することができる。
(6) Hydrogen absorption process The material piece 33 was put into a heat treatment furnace 35 (flow furnace) and heated to 270 ° C. by a heater 37 to produce a material piece 41 of a magnetic refrigeration material in which the material piece 33 absorbed hydrogen. Note that the amount of hydrogen absorbed can be controlled by adjusting the heat treatment temperature in the range of 180 to 300 ° C.

(7)マイクロチャネルの積層形成(組立工程)
図3(A)に示すように、材料片41を積層して接着剤61により接合し、溝部分がマイクロチャネルとなるマイクロチャネル熱交換器43を製造した。最も上側に積層する材料片41aは、溝が形成されていないものである。
(7) Laminate formation of microchannel (assembly process)
As shown in FIG. 3 (A), the material pieces 41 were stacked and joined together with an adhesive 61 to manufacture a microchannel heat exchanger 43 in which the groove portion becomes a microchannel. The material piece 41a laminated on the uppermost side is one in which no groove is formed.

以上説明した(1)〜(7)の工程により、磁気冷凍材料を用いたマイクロチャネル熱交換器を製造した。
<発明の効果>
本実施例の製造方法にて製造されたマイクロチャネル熱交換器43は、熱交換器を製造する段階において焼結などのα−Feが再析出しやすい高温の熱処理を行っていないため、エントロピー変化量の低下を抑制することができ、磁気冷凍材料の性能劣化を抑制して高い磁気熱量効果を維持することができる。また、磁気冷凍材料を粉末化して焼結する工程が省かれているため、製造コストの低減を達成できる。
A microchannel heat exchanger using a magnetic refrigeration material was manufactured by the steps (1) to (7) described above.
<Effect of the invention>
Since the microchannel heat exchanger 43 manufactured by the manufacturing method of the present embodiment is not subjected to high-temperature heat treatment in which α-Fe such as sintering is likely to reprecipitate at the stage of manufacturing the heat exchanger, the entropy change A decrease in the amount can be suppressed, and the performance deterioration of the magnetic refrigeration material can be suppressed, and a high magnetocaloric effect can be maintained. Moreover, since the process of pulverizing and sintering the magnetic refrigeration material is omitted, the manufacturing cost can be reduced.

また上記製造方法では、薄帯体13を4枚積層して積層体31を形成しているため、溶融急冷の工程において薄帯体13は非常に薄く形成されている。薄帯状の合金を薄くすると、温度の低下速度が早くなるため微細組織になり、La(Fex,Si1-x13粒子の粒径が小さくなり易く、上記熱処理工程における熱処理に必要な時間を短くすることができる。 Further, in the above manufacturing method, since the four strips 13 are laminated to form the laminate 31, the strip 13 is formed very thin in the melting and quenching process. When thinning the thin-strip alloy, will microstructure for lowering the rate of temperature becomes faster, La (Fe x, Si 1 -x) 13 likely size of the particles is reduced, the time required for the heat treatment in the heat treatment step Can be shortened.

また、薄帯体13を導電性接着剤51で接合していることから、薄帯体13の隙間を良好に埋めることができ、積層体31の強度を高めて破損を抑制することができる。また導電性のあるものは熱伝導も大きいので、積層体31の熱伝導率は大きくなる。この積層体31で作製されたマイクロチャネル熱交換器43は熱伝導率が大きくなるので、磁場を印加、あるいは磁場を切ったときの発熱、吸熱時に効率よく冷媒と熱交換できる。   Moreover, since the thin strip 13 is joined by the conductive adhesive 51, the gap of the thin strip 13 can be filled well, and the strength of the laminated body 31 can be increased and the damage can be suppressed. In addition, since the conductive material has a large thermal conductivity, the thermal conductivity of the laminate 31 is increased. Since the microchannel heat exchanger 43 made of this laminate 31 has a high thermal conductivity, it can efficiently exchange heat with the refrigerant when generating or absorbing heat when a magnetic field is applied or when the magnetic field is turned off.

また、LaFe13系合金は水素を吸収すると格子が膨張して歪が生じ、また磁場の印加によっても磁気歪が生じるため、応力が発生し、クラック、割れが発生しやすくなるが、本実施例のように導電性接着剤51を介しての積層構造では上記応力を導電性接着剤領域で逃がすことができ、クラック、割れの発生を抑制することができる。 In addition, since the LaFe 13 alloy absorbs hydrogen, the lattice expands to cause distortion, and magnetostriction also occurs due to the application of a magnetic field. Therefore, stress is generated and cracks and cracks are likely to occur. Thus, in the laminated structure through the conductive adhesive 51, the stress can be released in the conductive adhesive region, and the occurrence of cracks and cracks can be suppressed.

[実施例2]
本実施例では、上記(4)の積層体の成形工程以外は基本的に実施例1と同様の製造方法でマイクロチャネル熱交換器を製造したが、積層体の成形工程において、導電性接着剤51に替えて、図2(B)に示す金属粉末53を各薄帯体13の間に配置して薄帯体13を圧着接合した。
[Example 2]
In this example, a microchannel heat exchanger was manufactured by the same manufacturing method as in Example 1 except for the step of forming the laminate of the above (4). However, in the step of forming the laminate, a conductive adhesive was used. Instead of 51, the metal powder 53 shown in FIG. 2 (B) was disposed between the ribbons 13, and the ribbons 13 were bonded by pressure bonding.

金属粉末53として銅を用い、図3(B)に示すように、プレス63により温度20℃、圧力10MPaで圧着して接合し積層体31を成形した。用いた金属粉末53の平均粒径は1〜100μmとした。平均粒径が100μm以下であると接着層(金属層)が厚くなり過ぎることを抑制でき、積層体が大きくなってしまうことや、磁気冷凍材料層の占める割合が小さくなり性能が低下してしまうことを抑制できる。また平均粒径が1μm以上であると接着層の厚みを充分に確保でき、接着力が低下することを抑制できる。平均粒径は以下の方法により測定した。金属粉末を水などの溶媒に分散して写真を撮影する。この写真を画像解析して粉末の平均粒径を導出する。この積層体31は、磁気冷凍材料層と金属層とが積層されてなるものである。   Copper was used as the metal powder 53, and as shown in FIG. The average particle size of the metal powder 53 used was 1 to 100 μm. When the average particle size is 100 μm or less, the adhesive layer (metal layer) can be prevented from becoming too thick, and the laminated body becomes large, or the proportion of the magnetic refrigeration material layer becomes small and the performance deteriorates. This can be suppressed. Further, when the average particle size is 1 μm or more, it is possible to sufficiently secure the thickness of the adhesive layer, and it is possible to suppress a decrease in adhesive force. The average particle size was measured by the following method. A metal powder is dispersed in a solvent such as water and a photograph is taken. This photograph is image-analyzed to derive the average particle size of the powder. This laminated body 31 is formed by laminating a magnetic refrigeration material layer and a metal layer.

なお、プレス温度は、磁気冷凍材料の性能に影響がでないように(α−Feの量が増加しないように)、上記(3)の熱処理工程の熱処理温度よりも低いことが好ましく、例えば室温〜700℃の間とするとよい。またプレス圧力は適宜調整して設定するとよい。   The press temperature is preferably lower than the heat treatment temperature of the heat treatment step (3) so as not to affect the performance of the magnetic refrigeration material (so that the amount of α-Fe does not increase). It may be between 700 ° C. Moreover, it is good to adjust and set a press pressure suitably.

本実施例の製造方法にて製造されたマイクロチャネル熱交換器は、実施例1にて製造されたマイクロチャネル熱交換器と同様に、高い磁気熱量効果を発揮でき、また製造コストの低減を達成できる。   Similar to the microchannel heat exchanger manufactured in Example 1, the microchannel heat exchanger manufactured by the manufacturing method of this example can exhibit a high magnetocaloric effect and achieves reduction in manufacturing cost. it can.

また、薄帯体13の間に金属材料を挟み込んで積層体31を形成しているため、熱伝導率を高くして熱交換器の性能を向上させることができる。
なお、上述した金属粉末53に替えて、図2(C)に示す金属薄帯55を各薄帯体13の間に配置して薄帯体13を圧着接合してもよく、その場合にも本実施例と同様の効果を奏するマイクロチャネル熱交換器を製造できる。この場合、金属薄帯55の厚さは1〜100μmとした。厚さをこの範囲とした理由は、上述した金属粉末と同様の理由である。
Moreover, since the laminated body 31 is formed by sandwiching a metal material between the ribbons 13, the heat conductivity can be increased and the performance of the heat exchanger can be improved.
In addition, it replaces with the metal powder 53 mentioned above, the metal strip 55 shown in FIG.2 (C) may be arrange | positioned between each strip 13, and the strip 13 may be crimped | bonded together. A microchannel heat exchanger having the same effects as in the present embodiment can be manufactured. In this case, the thickness of the metal ribbon 55 was 1 to 100 μm. The reason why the thickness is in this range is the same reason as that of the metal powder described above.

[実施例3]
本実施例では、上記(4)の積層体の成形工程以外は基本的に実施例1と同様の製造方法でマイクロチャネル熱交換器を製造したが、積層体の成形工程において、導電性接着剤51に替えて、金属薄膜からなる接合層71を薄帯体13の表面に形成し、その状態で薄帯体13を圧着接合した。
[Example 3]
In this example, a microchannel heat exchanger was manufactured by the same manufacturing method as in Example 1 except for the step of forming the laminate of the above (4). However, in the step of forming the laminate, a conductive adhesive was used. In place of 51, a bonding layer 71 made of a metal thin film was formed on the surface of the ribbon 13, and the ribbon 13 was pressure bonded in that state.

接合層71は、蒸着法により金属薄膜を形成する蒸着装置により形成した。上記金属薄膜の材料としてはアルミニウムを用いた。アルミニウムの厚さは1μmとした。その後、図3(B)に示すように、プレス63により温度20℃、圧力10MPaで圧着して接合し積層体31を成形した。プレス温度および圧力は適宜調整することができる。   The bonding layer 71 was formed by a vapor deposition apparatus that forms a metal thin film by a vapor deposition method. Aluminum was used as the material for the metal thin film. The thickness of aluminum was 1 μm. Thereafter, as shown in FIG. 3 (B), the laminate 31 was formed by press bonding with a press 63 at a temperature of 20 ° C. and a pressure of 10 MPa. The pressing temperature and pressure can be adjusted as appropriate.

本実施例の製造方法にて製造されたマイクロチャネル熱交換器は、実施例1、2にて製造されたマイクロチャネル熱交換器と同様に、高い磁気熱量効果を発揮できる。また実施例2のように金属粉末や金属薄帯を用いる場合と比較して、金属薄膜の厚さを薄く制御しやすく、また金属薄膜は薄帯体13の表面に固定されるため薄帯体13の取り扱いが容易になるという利点がある。   The microchannel heat exchanger manufactured by the manufacturing method of the present embodiment can exhibit a high magnetocaloric effect similarly to the microchannel heat exchanger manufactured in the first and second embodiments. Further, compared to the case of using a metal powder or a metal ribbon as in Example 2, it is easy to control the thickness of the metal thin film, and since the metal thin film is fixed to the surface of the ribbon 13, the ribbon There is an advantage that handling of 13 becomes easy.

なお、アルミニウムの融点は660℃であるため、積層体31を形成する際に、融点以上の温度(一例として700℃)、圧力10MPaのホットプレスにより接合してもよい。この場合、アルミニウムが融解するため接合強度を高めることができる。   In addition, since melting | fusing point of aluminum is 660 degreeC, when forming the laminated body 31, you may join by the temperature more than melting | fusing point (for example, 700 degreeC) and the hot press of pressure 10MPa. In this case, since aluminum melts, the bonding strength can be increased.

[変形例]
以上、本発明の実施例について説明したが、本発明は上記実施例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の形態をとり得ることはいうまでもない。
[Modification]
As mentioned above, although the Example of this invention was described, this invention is not limited to the said Example at all, and as long as it belongs to the technical scope of this invention, it cannot be overemphasized that various forms can be taken.

例えば、上記各実施例においては、薄帯体13を4枚重ねて積層体31を形成する構成を例示したが、3枚以下または5枚以上の薄帯体13を積層してもよいし、1枚の薄帯体13を積層せずに用いて材料片33を成形してもよい。   For example, in each of the above-described embodiments, the configuration in which the four strips 13 are stacked to form the stacked body 31 is illustrated, but three or less or five or more strips 13 may be stacked, The piece of material 33 may be formed by using a single ribbon 13 without being laminated.

1枚の薄帯体13にて材料片33を成形する場合には、薄帯体13の厚さを材料片33の厚さと同一にすればよい。複数枚の薄帯体13を積層する場合には同一の厚さの薄帯体13を積層してもよいが、異なる厚さの薄帯体13を積層してもよい。   When the material piece 33 is formed by one piece of the ribbon 13, the thickness of the ribbon 13 may be the same as the thickness of the material piece 33. When laminating a plurality of ribbons 13, the ribbons 13 having the same thickness may be laminated, or the ribbons 13 having different thicknesses may be laminated.

なお、1つの積層体31を成形するために必要な積層枚数を増やすと、薄帯体13の厚さが薄くなり、α−Feの割合を低減させるための熱処理工程における熱処理に必要な時間を短くすることができる。一方、薄帯体13は厚さが厚いほど、積層枚数を減らして積層工程を簡略化することができる。   When the number of laminated layers required for forming one laminated body 31 is increased, the thickness of the ribbon 13 is reduced, and the time required for the heat treatment in the heat treatment step for reducing the ratio of α-Fe is increased. Can be shortened. On the other hand, as the strip 13 is thicker, the number of stacks can be reduced and the stacking process can be simplified.

また、上記実施例1においては導電性接着剤51を用いて薄帯体13を接合する構成を例示したが、積層体31の熱伝導率は低下する可能性が有るものの、導電性を有さない接着剤を用いて接合してもよい。例えば、エポキシ系接着剤、ゴム系接着剤、シアノアクリレート系接着剤などを用いることができる。熱伝導率の低下を抑制するためには、接着剤層を薄くすればよい。   Moreover, in the said Example 1, although the structure which joins the ribbon 13 using the conductive adhesive 51 was illustrated, although the heat conductivity of the laminated body 31 may fall, it has electroconductivity. You may join using the adhesive which is not. For example, an epoxy adhesive, a rubber adhesive, a cyanoacrylate adhesive, or the like can be used. In order to suppress a decrease in thermal conductivity, the adhesive layer may be thinned.

また、材料片41を積層するために用いた接着剤61としては、導電性接着剤を用いてもよいし、導電性を有さない接着剤を用いてもよい。
また、上記実施例2においては金属粉末53または金属薄帯55として銅を用いる構成を例示したが、銅以外の金属を用いてもよい。但し、融点の低いものを用いることが好ましい。
Moreover, as the adhesive 61 used for laminating the material pieces 41, a conductive adhesive may be used, or an adhesive having no conductivity may be used.
Moreover, in the said Example 2, although the structure which uses copper as the metal powder 53 or the metal thin strip 55 was illustrated, metals other than copper may be used. However, it is preferable to use one having a low melting point.

また、上記実施例3において蒸着装置にて形成される接合層71は、アルミニウム以外の金属で形成されていてもよい。また蒸着装置に替えてスパッタ装置またはめっき装置を用いて、スパッタ法またはめっき法により金属薄膜を形成してもよい。めっき装置を用いる場合には、アルミニウムに替えて銅を用いることが考えられる。   In addition, the bonding layer 71 formed by the vapor deposition apparatus in Example 3 may be formed of a metal other than aluminum. Further, a metal thin film may be formed by a sputtering method or a plating method using a sputtering device or a plating device instead of the vapor deposition device. When using a plating apparatus, it is conceivable to use copper instead of aluminum.

また上記各実施例においては薄帯体13と材料片33の幅とが同一である構成を例示したが、薄帯体13の幅を広く形成し、切断して目的の材料片33の幅とするように構成してもよい。この場合、切断する工程が増えるものの、幅の精度を高くすることができる。   Further, in each of the above embodiments, the configuration in which the strip 13 and the material piece 33 have the same width is illustrated, but the width of the strip 13 is formed wide and cut to obtain the width of the target piece 33. You may comprise. In this case, although the number of steps for cutting increases, the accuracy of the width can be increased.

また上記各実施例においては溶融急冷によって薄帯体13を作製した次に熱処理工程を行う構成を例示したが、熱処理工程を行うタイミングは特に限定されない。しかしながら、積層工程や組立工程における接合を解除してしまうことが無いよう、これらの工程の前に行うことが好ましい。また、水素吸収工程で吸収した水素が離脱してしまうことが無いよう、水素吸収工程の前に行うことが好ましい。   Moreover, in each said Example, although the structure which performs the heat treatment process after producing the strip 13 by melt | dissolution quenching was illustrated, the timing which performs a heat treatment process is not specifically limited. However, it is preferable to carry out before these steps so as not to release the bonding in the laminating step or the assembling step. Moreover, it is preferable to carry out before the hydrogen absorption step so that hydrogen absorbed in the hydrogen absorption step is not separated.

11…粉末原料、13…薄帯体、15…ノズル、17…溶湯、19…回転ロール、23…ヒータ、31…積層体、33…材料片、37…ヒータ、41…材料片、43…マイクロチャネル熱交換器、51…導電性接着剤、53…金属粉末、55…金属薄帯、61…接着剤、63…プレス、71…接合層 DESCRIPTION OF SYMBOLS 11 ... Powder raw material, 13 ... Thin strip, 15 ... Nozzle, 17 ... Molten metal, 19 ... Rotary roll, 23 ... Heater, 31 ... Laminated body, 33 ... Material piece, 37 ... Heater, 41 ... Material piece, 43 ... Micro Channel heat exchanger, 51 ... conductive adhesive, 53 ... metal powder, 55 ... metal ribbon, 61 ... adhesive, 63 ... press, 71 ... bonding layer

Claims (11)

La、Fe、Siを含む磁気冷凍材料の溶湯を冷却ロールで急冷して薄帯状の合金(13)を作製する合金作製工程と、
前記合金作製工程により作製された前記薄帯状の合金に溝を形成する溝形成工程と、
前記溝形成工程により溝が形成された前記薄帯状の合金を積層し、前記溝を流路とする熱交換器(43)を形成する組立工程と、
前記薄帯状の合金に熱処理を施し、La(FeSi)13相を増加させる熱処理工程と、を備える
ことを特徴とする磁気冷凍材料熱交換器の製造方法。
An alloy production process for producing a ribbon-shaped alloy (13) by quenching a molten metal of a magnetic refrigeration material containing La, Fe, and Si with a cooling roll;
A groove forming step of forming a groove in the ribbon-shaped alloy produced by the alloy production step;
An assembly step of laminating the ribbon-shaped alloy having grooves formed by the groove forming step, and forming a heat exchanger (43) having the grooves as flow paths;
And a heat treatment step of increasing the La (FeSi) 13 phase by heat-treating the ribbon-like alloy. A method for manufacturing a magnetic refrigeration material heat exchanger.
前記合金作製工程により作製された前記薄帯状の合金を積層してなる板状の部材(31)を作製する積層工程を備え、
前記溝形成工程は、前記積層工程により作製された前記板状の部材に溝を形成する工程であり、
前記組立工程は、前記溝形成工程により溝が形成された前記板状の部材(41)を積層する工程である
ことを特徴とする請求項1に記載の磁気冷凍材料熱交換器の製造方法。
A lamination step of producing a plate-like member (31) formed by laminating the ribbon-like alloy produced by the alloy production step;
The groove forming step is a step of forming a groove in the plate-like member produced by the laminating step,
The method for manufacturing a magnetic refrigeration material heat exchanger according to claim 1, wherein the assembling step is a step of laminating the plate-like member (41) having grooves formed by the groove forming step.
前記積層工程は、接着剤(51)により前記薄帯状の合金を接合して積層する工程である
ことを特徴とする請求項2に記載の磁気冷凍材料熱交換器の製造方法。
The method of manufacturing a magnetic refrigeration material heat exchanger according to claim 2, wherein the laminating step is a step of joining and laminating the ribbon-shaped alloy with an adhesive (51).
前記接着剤は、導電性接着剤である
ことを特徴とする請求項3に記載の磁気冷凍材料熱交換器の製造方法。
The method for manufacturing a magnetic refrigeration material heat exchanger according to claim 3, wherein the adhesive is a conductive adhesive.
前記積層工程は、圧着により前記薄帯状の合金を接合して積層する工程である
ことを特徴とする請求項2に記載の磁気冷凍材料熱交換器の製造方法。
The method of manufacturing a magnetic refrigeration material heat exchanger according to claim 2, wherein the laminating step is a step of joining and laminating the ribbon-shaped alloy by pressure bonding.
前記積層工程は、前記薄帯状の合金の間に、金属粉末(53)および金属薄帯(55)のうち少なくともいずれか一方を含む接合材を配置して圧着することにより前記接合材を介して前記薄帯状の合金同士を接合して積層する工程である
ことを特徴とする請求項5に記載の磁気冷凍材料熱交換器の製造方法。
In the laminating step, a bonding material containing at least one of the metal powder (53) and the metal ribbon (55) is disposed between the ribbon-like alloys and is bonded via the bonding material. The method for producing a magnetic refrigeration material heat exchanger according to claim 5, wherein the step is a step of joining and laminating the ribbon-like alloys.
前記積層工程は、前記薄帯状の合金の表面に金属薄膜(71)を形成し、前記金属薄膜を介して前記薄帯状の合金同士を接合して積層する工程である
ことを特徴とする請求項5に記載の磁気冷凍材料熱交換器の製造方法。
The said lamination process is a process of forming a metal thin film (71) on the surface of the said strip-shaped alloy, and joining and laminating the said strip-shaped alloys through the said metal thin film. 6. A method for producing a magnetic refrigeration material heat exchanger according to 5.
前記金属薄膜は、蒸着法、スパッタ法、めっき法からなる群から選ばれるいずれか1つの方法により形成されたものである
ことを特徴とする請求項7に記載の磁気冷凍材料熱交換器の製造方法。
The manufacturing method of the magnetic refrigeration material heat exchanger according to claim 7, wherein the metal thin film is formed by any one method selected from the group consisting of a vapor deposition method, a sputtering method, and a plating method. Method.
前記積層工程は、前記熱処理工程における熱処理温度よりも低い温度を融点とする金属材料を前記薄帯状の合金の間に配置し、前記熱処理温度よりも低く前記融点よりも高い温度でホットプレスにより圧着して積層する工程である
ことを特徴とする請求項5に記載の磁気冷凍材料熱交換器の製造方法。
In the laminating step, a metal material having a melting point that is lower than the heat treatment temperature in the heat treatment step is disposed between the ribbon-like alloys, and is crimped by hot pressing at a temperature lower than the heat treatment temperature and higher than the melting point. The method for producing a magnetic refrigeration material heat exchanger according to claim 5, wherein the method is a step of laminating.
磁気冷凍材料を用いたマイクロチャネルを有する熱交換器(43)であって、
La、Fe、Siを含む薄帯状の合金(13)を積層してなる板状の磁気冷凍材料(41)であって、主たる面の一方に流路となる溝が形成されている前記板状の磁気冷凍材料を積層してなる
ことを特徴とする磁気冷凍材料熱交換器。
A heat exchanger (43) having microchannels using magnetic refrigeration material, comprising:
A plate-like magnetic refrigeration material (41) formed by laminating a ribbon-like alloy (13) containing La, Fe, and Si, wherein the plate-like groove is formed with a groove serving as a flow path on one of its main surfaces. A magnetic refrigeration material heat exchanger characterized by being laminated with a magnetic refrigeration material.
前記板状の磁気冷凍材料は、前記薄帯状の合金と、接着剤(51)層又は金属(53,55,71)層と、が積層してなるものである
ことを特徴とする請求項10に記載の磁気冷凍材料熱交換器。
The plate-like magnetic refrigeration material is formed by laminating the ribbon-shaped alloy and an adhesive (51) layer or a metal (53, 55, 71) layer. A magnetic refrigeration material heat exchanger according to claim 1.
JP2012186672A 2012-08-27 2012-08-27 Magnetic refrigeration material heat exchanger manufacturing method Expired - Fee Related JP5853907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012186672A JP5853907B2 (en) 2012-08-27 2012-08-27 Magnetic refrigeration material heat exchanger manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012186672A JP5853907B2 (en) 2012-08-27 2012-08-27 Magnetic refrigeration material heat exchanger manufacturing method

Publications (2)

Publication Number Publication Date
JP2014044003A true JP2014044003A (en) 2014-03-13
JP5853907B2 JP5853907B2 (en) 2016-02-09

Family

ID=50395390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012186672A Expired - Fee Related JP5853907B2 (en) 2012-08-27 2012-08-27 Magnetic refrigeration material heat exchanger manufacturing method

Country Status (1)

Country Link
JP (1) JP5853907B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018151120A (en) * 2017-03-13 2018-09-27 サンデンホールディングス株式会社 Tabular magnetic work body and magnetic heat pump device using the same
DE112018001311T5 (en) 2017-03-13 2019-12-19 Sanden Holdings Corporation MAGNETIC WORK UNIT AND A MAGNETIC HEAT PUMP DEVICE USING THIS
CN111656462A (en) * 2017-12-04 2020-09-11 马格诺瑟姆解决方案有限公司 Method for producing a magnetocaloric composite material and corresponding heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004100043A (en) * 2002-08-21 2004-04-02 Sumitomo Special Metals Co Ltd Magnetic alloy material and its production method
JP2010516042A (en) * 2007-02-12 2010-05-13 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Magnetic heat exchange structure and manufacturing method thereof
US20110139404A1 (en) * 2009-12-16 2011-06-16 General Electric Company Heat exchanger and method for making the same
JP2012057823A (en) * 2010-09-06 2012-03-22 Denso Corp Method for manufacturing microchannel heat exchanger using magnetic refrigerant material
WO2012056577A1 (en) * 2010-10-29 2012-05-03 株式会社 東芝 Heat exchanger and magnetic refrigeration system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004100043A (en) * 2002-08-21 2004-04-02 Sumitomo Special Metals Co Ltd Magnetic alloy material and its production method
JP2010516042A (en) * 2007-02-12 2010-05-13 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Magnetic heat exchange structure and manufacturing method thereof
US20110139404A1 (en) * 2009-12-16 2011-06-16 General Electric Company Heat exchanger and method for making the same
JP2012057823A (en) * 2010-09-06 2012-03-22 Denso Corp Method for manufacturing microchannel heat exchanger using magnetic refrigerant material
WO2012056577A1 (en) * 2010-10-29 2012-05-03 株式会社 東芝 Heat exchanger and magnetic refrigeration system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018151120A (en) * 2017-03-13 2018-09-27 サンデンホールディングス株式会社 Tabular magnetic work body and magnetic heat pump device using the same
DE112018001311T5 (en) 2017-03-13 2019-12-19 Sanden Holdings Corporation MAGNETIC WORK UNIT AND A MAGNETIC HEAT PUMP DEVICE USING THIS
DE112018001297T5 (en) 2017-03-13 2020-01-02 Sanden Holdings Corporation DISK-SHAPED MAGNETIC WORK BODY AND A MAGNETIC HEAT PUMP DEVICE USING THIS
CN111656462A (en) * 2017-12-04 2020-09-11 马格诺瑟姆解决方案有限公司 Method for producing a magnetocaloric composite material and corresponding heat exchanger
CN111656462B (en) * 2017-12-04 2023-12-26 马格诺瑟姆解决方案有限公司 Method for producing a magnetocaloric composite material and corresponding heat exchanger

Also Published As

Publication number Publication date
JP5853907B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
US20110140031A1 (en) Article for Use in Magnetic Heat Exchange, Intermediate Article and Method for Producing an Article for Use in Magnetic Heat Exchange
JP5582784B2 (en) Magnetic heat exchange structure and manufacturing method thereof
US9175885B2 (en) Article made of a granular magnetocalorically active material for heat exchange
US7919200B2 (en) Rare earth magnet having high strength and high electrical resistance
US10392687B2 (en) Method for manufacturing a metal assembly having a sheet of thermally treated aluminum to obtain alpha alumina and another sheet having surface irregularities that become embedded in said surface during roll bonding
KR101233462B1 (en) Article comprising at least one magnetocalorically active phase and method of working an article comprising at least one magnetocalorically active phase
JP2016173228A (en) Heat exchanger bed composed of thermomagnetic material
JP5853907B2 (en) Magnetic refrigeration material heat exchanger manufacturing method
US20140127071A1 (en) Manufacturing method of magnetic refrigeration material
US9824803B2 (en) Magnetic refrigeration material and manufacturing method of magnetic refrigeration material
CN102764887A (en) Method for preparing polymer-bonded magnetic refrigerating composite material
CN105957672B (en) Lanthanum iron silicon substrate hydride magnetic working medium and preparation method thereof, magnetic refrigerator
JP5521919B2 (en) Manufacturing method of microchannel heat exchanger using magnetic refrigeration material
JP2011198778A (en) Method for manufacturing thermoelectric device
CN103057202A (en) Lamination-structured heat sink material and preparation method
US20160167134A1 (en) Article for magnetic heat exchange and method of manufacturing the same
CN109763049B (en) Composite magnetic refrigeration material, preparation method thereof and magnetic refrigeration equipment
CN101994055A (en) Composite magnetostrictive material and preparation method thereof
JP2004221522A (en) Radio wave absorber and manufacturing method therefor
JP2008174814A (en) Amorphous metal molding and its production method
WO2023228822A1 (en) Magnetic refrigeration composite material and production method thereof, and magnetic refrigeration device
JP2015075261A (en) Heat exchanger using magnetic working substance
JPH0294603A (en) Rolled anisotropic rare earth magnet and manufacture thereof
KR102617203B1 (en) Multilayer Bi-Sb-Te alloy and its manufacturing method
CN108085547B (en) Magnetic material with abnormal coercive force temperature coefficient and magnetic refrigeration capability and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151123

R151 Written notification of patent or utility model registration

Ref document number: 5853907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees