JP2002069596A - Ultra-magnetostrictive material - Google Patents

Ultra-magnetostrictive material

Info

Publication number
JP2002069596A
JP2002069596A JP2000268192A JP2000268192A JP2002069596A JP 2002069596 A JP2002069596 A JP 2002069596A JP 2000268192 A JP2000268192 A JP 2000268192A JP 2000268192 A JP2000268192 A JP 2000268192A JP 2002069596 A JP2002069596 A JP 2002069596A
Authority
JP
Japan
Prior art keywords
magnetostrictive material
giant magnetostrictive
magnetostriction
hydrogen
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000268192A
Other languages
Japanese (ja)
Other versions
JP2002069596A5 (en
JP4471249B2 (en
Inventor
Kazuaki Fukamichi
和明 深道
Maya Fujita
麻哉 藤田
Takashi Fujieda
俊 藤枝
Yoshiaki Iijima
嘉明 飯島
Kimitake Yamazaki
仁丈 山崎
Hideki Takeda
英樹 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP2000268192A priority Critical patent/JP4471249B2/en
Publication of JP2002069596A publication Critical patent/JP2002069596A/en
Publication of JP2002069596A5 publication Critical patent/JP2002069596A5/ja
Application granted granted Critical
Publication of JP4471249B2 publication Critical patent/JP4471249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ultra-magnetostrictive material having isotropic magnetostriction as well as large magnetostriction exceeding the conventional magnetostrictive effect in the temperature range from the vicinity of room temperature to 100 deg.C. SOLUTION: The ultra-magnetostrictive material has a chemical composition represented by the following general formulae: (1) La(Fed1-xAx)13-δ Dq; (2) La(Fe1-xAx-yTMy)13-δ Dq; (3) La1-zREz(Fe1-xAx)13-δDq; (4) La1-zREz(Fe1-xAx-yTMy)13-δDq; and (5) La(Fe1-a-bSiaCob)13Dq (A is at least one element among Al, Si, Ga, Ge and Sn; D is at least either of hydrogen and nitrogen; TM is at least one element among transition elements other than Fe; RE is at least one element among rare earth elements other than La; and 0.05<=x<=0.2, -1<=δ<=1, 0<q<2, 0<y<0.1, 0<Z<=0.1, 0.10<=a<=0.16 and 0<b<=0.08 are satisfied).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁歪が大きく、磁
気−機械変位変換デバイス等に用いられる磁歪素子用と
して好適な超磁歪材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a giant magnetostrictive material having a large magnetostriction and suitable for a magnetostrictive element used in a magneto-mechanical displacement conversion device or the like.

【0002】[0002]

【従来の技術】磁性体に外部磁界を印加した際生じる歪
である磁歪の応用として、磁歪フィルタ、磁歪センサ、
超音波遅延線、磁歪振動子等がある。従来はNi基合
金、Fe−Co合金、フェライト、ラーベス型金属間化
合物(Tb,Dy,Sm)Fe2等が用いられている。
2. Description of the Related Art As an application of magnetostriction, which is distortion generated when an external magnetic field is applied to a magnetic material, a magnetostrictive filter, a magnetostrictive sensor,
There are ultrasonic delay lines, magnetostrictive vibrators, and the like. Conventional Ni-based alloys, Fe-Co alloy, ferrite, Laves-type intermetallic compound (Tb, Dy, Sm) Fe 2 or the like is used.

【0003】近年、計測工学の進歩及び精密機械分野の
発展に伴い、ミクロンオーダーの微小変位制御に不可欠
の変位駆動部の開発が必要とされている。この変位駆動
部の駆動機構の一つとして、磁歪物質を用いた磁気−機
械変換デバイスが有力である。しかしながら、従来の磁
歪材料では変位の絶対量が十分でなく、ミクロンオーダ
ーの精密変位制御駆動部材料としては絶対駆動変位量の
みならず、精密制御の点からも満足し得るものではなか
った。
[0003] In recent years, with the advance of measurement engineering and the development of the field of precision machinery, the development of a displacement drive unit indispensable for micro displacement control on the order of microns has been required. As one of the driving mechanisms of the displacement driving unit, a magneto-mechanical conversion device using a magnetostrictive material is effective. However, the conventional magnetostrictive material does not have a sufficient absolute amount of displacement, and as a material for a precision displacement control drive unit on the order of microns, it cannot be satisfied not only in terms of absolute drive displacement but also in terms of precision control.

【0004】通常、超磁歪材料と呼ばれているものは、
ReFe2であらわされるラーベス型金属間化合物のう
ち、TbFe2(λs=1753×10-6)やSmFe2
(λs=−1560×10-6)〔Clark(197
4):超磁歪材料、日刊工業新聞社刊〕があり、最も大
きな飽和磁歪値を持っている。また、磁性の大きさだけ
をみれば、200K以下の低温においてDyやTbの単
結晶で大きな磁歪(λs〜±4000×10-6)が得ら
れている。これらのものを例示すれば表1のとおりであ
る。
[0004] What is usually called giant magnetostrictive material is:
Among Laves-type intermetallic compounds represented by ReFe 2 , TbFe 2 (λs = 1753 × 10 −6 ) and SmFe 2
(Λs = −1560 × 10 −6 ) [Clark (197
4): Giant magnetostrictive material, published by Nikkan Kogyo Shimbun] and has the largest saturation magnetostriction value. If only the magnitude of the magnetism is considered, a large magnetostriction (λs to ± 4000 × 10 −6 ) is obtained in a single crystal of Dy or Tb at a low temperature of 200 K or less. Table 1 shows these examples.

【0005】[0005]

【表1】 [Table 1]

【0006】[0006]

【発明が解決しようとする課題】従来の磁歪材料は、磁
歪が大きくても液体窒素温度以下であったり、実際の磁
歪が小さい問題や、磁歪が異方性であるために、印加磁
界をかける方向が限定され、デバイスの構造に制約を受
ける問題があり、これらを解決する高性能の磁歪材料が
期待されている。
In the conventional magnetostrictive material, even if the magnetostriction is large, the temperature is lower than the temperature of liquid nitrogen, the actual magnetostriction is small, and the magnetostriction is anisotropic. There is a problem that the direction is limited and the structure of the device is restricted, and a high-performance magnetostrictive material that solves these problems is expected.

【0007】本発明はこのような問題点を考慮してなさ
れたもので、室温近傍で従来までの磁歪効果を越えるよ
うな大きな磁歪を有し、かつ等方的な磁歪を有する超磁
歪材料を提供することを目的とする。
The present invention has been made in view of such problems, and a super magnetostrictive material having a large magnetostriction exceeding the conventional magnetostriction effect at room temperature and having an isotropic magnetostriction has been developed. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明は、下記各項より
なる。 (1)一般式:La(Fe1-xx13-δq (ただし、AはAl,Si,Ga,Ge,Snのうち少
なくとも1種の元素、Dは水素、窒素のうち少なくとも
1種の元素、x,δ,qは原子比で0.05≦x≦0.
2、−1≦δ≦1、0<q<2)で示される組成からな
ることを特徴とする超磁歪材料。
SUMMARY OF THE INVENTION The present invention comprises the following items. (1) General formula: La (Fe 1-x A x ) 13-δ D q (where A is at least one element among Al, Si, Ga, Ge and Sn, and D is at least one of hydrogen and nitrogen One kind of element, x, δ, q, is 0.05 ≦ x ≦ 0 in atomic ratio.
2. A giant magnetostrictive material comprising a composition represented by the following formula: 2, -1≤δ≤1, 0 <q <2).

【0009】 (2)一般式:La(Fe1-xx-yTMy13-δq (ただし、AはAl,Si,Ga,Ge,Snのうち少
なくとも1種の元素、TMはFeを除く遷移金属元素の
うち少なくとも1種の元素、Dは水素、窒素のうち少な
くとも1種の元素、x,y,δ,qは原子比で0.05
≦x≦0.2、0<y<0.1、−1≦δ≦1、0<q
<2)で示される組成からなることを特徴とする超磁歪
材料。
(2) General formula: La (Fe 1-x A xy TM y ) 13-δ D q (where A is at least one element of Al, Si, Ga, Ge, Sn, and TM is Fe , At least one element among transition metal elements except D, hydrogen is at least one element among nitrogen, and x, y, δ, and q are 0.05 by atomic ratio.
≦ x ≦ 0.2, 0 <y <0.1, −1 ≦ δ ≦ 1, 0 <q
A giant magnetostrictive material comprising a composition represented by <2>.

【0010】 (3)一般式:La1-zREz(Fe1-xx13-δq (ただし、AはAl,Si,Ga,Ge,Snのうち少
なくとも1種の元素、REはLaを除く希土類元素のう
ち少なくとも1種の元素、Dは水素、窒素のうち少なく
とも1種の元素、x,z,δ,qは原子比で0.05≦
x≦0.2、0<z≦0.1、−1≦δ≦1、0<q<
2)で示される組成からなることを特徴とする超磁歪材
料。
(3) General formula: La 1-z RE z (Fe 1-x A x ) 13-δ D q (where A is at least one element of Al, Si, Ga, Ge and Sn; RE is at least one element among rare earth elements other than La, D is at least one element among hydrogen and nitrogen, and x, z, δ, and q are 0.05 ≦ by atomic ratio.
x ≦ 0.2, 0 <z ≦ 0.1, −1 ≦ δ ≦ 1, 0 <q <
A giant magnetostrictive material having a composition represented by 2).

【0011】 (4)一般式:La1-zREz(Fe1-xx-yTMy13-δq (ただし、AはAl,Si,Ga,Ge,Snのうち少
なくとも1種の元素、TMはFeを除く遷移金属元素の
うち少なくとも1種の元素、REはLaを除く希土類元
素のうち少なくとも1種の元素、Dは水素、窒素のうち
少なくとも1種の元素、x,y,z,δ,qは原子比で
0.05≦x≦0.2、0<y<0.1、x>y、0<
z≦0.1、−1≦δ≦1、0<q<2)で示される組
成からなることを特徴とする超磁歪材料。
[0011] (4) General formula: La 1-z RE z ( Fe 1-x A xy TM y) 13-δ D q ( although, A is Al, Si, Ga, Ge, at least one of Sn Element, TM is at least one element among transition metal elements other than Fe, RE is at least one element among rare earth elements except La, D is at least one element among hydrogen and nitrogen, x, y, and z, δ, and q are 0.05 ≦ x ≦ 0.2, 0 <y <0.1, x> y, 0 <
A giant magnetostrictive material comprising a composition represented by z ≦ 0.1, −1 ≦ δ ≦ 1, 0 <q <2).

【0012】 (5)一般式:La(Fe1-a-bSiaCOb13q (ただし、Dは水素、窒素のうち少なくとも1種の元
素、0.10≦a≦0.16、0<b≦0.08、0<
q<2)で示される組成からなることを特徴とする超磁
歪材料。
[0012] (5) the general formula: La (Fe 1-ab Si a CO b) 13 D q ( although, D is hydrogen, at least one element of nitrogen, 0.10 ≦ a ≦ 0.16,0 <B ≦ 0.08, 0 <
A giant magnetostrictive material having a composition represented by q <2).

【0013】(6)TMがCo,Ni,Cuのうちの少
なくとも1種の元素である前記(2)又は(4)記載の
超磁歪材料。
(6) The giant magnetostrictive material according to (2) or (4), wherein TM is at least one element of Co, Ni and Cu.

【0014】(7)REがY,Ce,Pr,Nd,P
m,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Yb,Luのうちの少なくとも1種の元素である前
記(3)又は(4)記載の超磁歪材料。
(7) RE is Y, Ce, Pr, Nd, P
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
The giant magnetostrictive material according to the above (3) or (4), which is at least one element of m, Yb, and Lu.

【0015】(8)10原子%以下で不可避的不純物を
含む前記(1)ないし(7)のいずれかに記載の超磁歪
材料。
(8) The giant magnetostrictive material according to any one of the above (1) to (7), which contains unavoidable impurities at 10 atomic% or less.

【0016】(9)体積率で90%以上が立方晶系のN
aZn13型金属間化合物である前記(1)ないし(8)
のいずれかに記載の超磁歪材料。
(9) 90% or more by volume of cubic N
(1) to (8), which are aZn 13 type intermetallic compounds
The giant magnetostrictive material according to any one of the above.

【0017】本発明材料の基となるLa(Fe1-xx
13に関して、Laは20面体を構成するFe1-xxによ
りBCC的に取り込まれており、A=Siとした場合、
Si量(x)を変えることで磁気転移温度Tc(キュリ
ー温度)、T(ネール温度)及び磁化Msが変化する
ことは知られている〔K.H.J.Buschow等、
Journal of Magnetism and
Magnetic Materials 36(198
3)190−296〕。
La (Fe 1-x A x ) which is the basis of the material of the present invention
Regarding 13 , La is taken in as BCC by Fe 1-x A x constituting the icosahedron, and when A = Si,
It is known that changing the Si amount (x) changes the magnetic transition temperature Tc (Curie temperature), TN (Neel temperature), and magnetization Ms [K. H. J. Bushow etc.
Journal of Magnetism and
Magnetic Materials 36 (198
3) 190-296].

【0018】本発明者らはこの材料について詳細な検討
を進めた結果、Feの置換元素であるAの元素をSi,
Al,Ga,Ge,Znの少なくとも1種とし、そのx
の量を変化させることで、xが小さい組成で、低温では
あるが、反強磁性から強磁性へのメタ磁性転移を起こす
ことを見出し、さらにはメタ磁性転移により飽和磁歪
(λs)が5000×10-6を越えるものが得られるこ
とが判った。ここでメタ磁性転移とは、反強磁性もしく
は常磁性状態に磁界を印加することで、強磁性体に変化
する現象である。
The present inventors have conducted detailed studies on this material, and as a result, the element of A, which is a substitution element of Fe, is changed to Si,
At least one of Al, Ga, Ge, and Zn;
It was found that by changing the amount of x, a composition having a small x and a low temperature, but at a low temperature, caused a metamagnetic transition from antiferromagnetic to ferromagnetic, and further a saturation magnetostriction (λs) of 5000 × It was found that more than 10 -6 could be obtained. Here, the metamagnetic transition is a phenomenon in which a magnetic field is applied to an antiferromagnetic or paramagnetic state to change into a ferromagnetic substance.

【0019】この材料は、従来のTbFe2などラーベ
ス型磁歪材料が磁界方向に対し磁歪の大きさが平行と直
角では伸縮が逆(符号が逆)と異方的であるのに対し、
La(Fe1-xx13は磁界を印加することで全ての方
向に対して伸びる。言い換えれば磁界をかけることで体
積が増えることとなり、従来の巨大磁歪材料とは全く異
なる磁歪効果を示す。この材料の組成、Feの置換元素
であるAの元素およびCoの置換量、Laの置換元素で
ある希土類元素の置換量を検討した結果、室温近傍で大
きな磁歪を示す材料を得ることが可能となった[特開2
000−54086]。しかしながら、磁歪を室温近傍
で発現させるためには、組成を厳密に制御し、また材料
作製方法、調製方法にも細心の注意を要する。
This material is anisotropic in that a conventional Laves-type magnetostrictive material such as TbFe 2 expands and contracts in reverse (sign is opposite) when the magnitude of magnetostriction is parallel and perpendicular to the direction of the magnetic field.
La (Fe 1-x A x ) 13 extends in all directions by applying a magnetic field. In other words, applying a magnetic field increases the volume, and exhibits a magnetostrictive effect completely different from that of the conventional giant magnetostrictive material. As a result of examining the composition of this material, the amount of substitution of the element A and Co as a substitution element of Fe, and the amount of substitution of a rare earth element as a substitution element of La, a material exhibiting large magnetostriction near room temperature can be obtained. [JP 2
000-54086]. However, in order to develop magnetostriction near room temperature, the composition must be strictly controlled, and careful attention must be paid to the method of preparing and preparing the material.

【0020】本発明者等は室温以上で超磁歪効果を容易
に発現させるために、材料の結晶構造に着目し、構造制
御することを試みた。La(Fe1-xSix13に圧力を
加えることでTcは低下する。また、La(Fe1-x
x13ではSi量が増加するに従い磁気転移温度は上
昇する[特開2000−54086]。
The present inventors have focused on the crystal structure of the material and tried to control the structure in order to easily exhibit the giant magnetostriction effect at room temperature or higher. La (Fe 1-x Si x ) Tc by applying pressure to 13 is reduced. In addition, La (Fe 1-x S
magnetic transition temperature in accordance with i x) Si amount in 13 is increased to increase [JP 2000-54086.

【0021】これは、図1で示すような20面体を構成
するFe1-xx中のFeがSiに置き換わることで平均
的なFe−Fe間距離が広がりTcが上昇する。また逆
に、La(Fe1-xSix13に圧力を加えることでTc
が低下することも分かっている。
This is because the average Fe-Fe distance is increased and the Tc is increased by replacing Fe in Fe 1-x A x constituting the icosahedron as shown in FIG. 1 with Si. Conversely, Tc by applying pressure to the La (Fe 1-x Si x ) 13
Is also known to decrease.

【0022】このような背景から、本発明者等は本材料
に対し侵入型の元素を添加し、結晶構造を変えることな
くLa(Fe1-xSix13のFe−Fe間相互作用の制
御、言い換えれば磁気転移温度の制御を行った。
[0022] Against this background, the present inventors have added interstitial elements to the materials, La without changing the crystalline structure (Fe 1-x Si x) 13 Fe-Fe interactions of Control, in other words, control of the magnetic transition temperature.

【0023】図2は、La(Fe0.88Si0.1213の磁
化Mおよび歪み△L/Lの温度依存性および磁界依存性
を示した図である。La(Fe0.88Si0.1213は温度
を上げていくと、Tc=195Kで磁化が減少し、強磁
性体から常磁性体に変化し、同時に歪み△L/LもTc
=195Kで減少する。また、Tc=195K近傍の2
00Kでの磁化は常磁性体であるが磁界を印加すること
で強磁性体に変化するメタ磁性転移を示し、それに伴い
歪み△L/Lは増加する。このように、La(Fe0.88
Si0.1213の歪み△L/Lは磁化Mとよい相関を示
す。Tc直下の常磁性のLa(Fe0.88Si0.1213
磁界をかけることで、常磁性体から強磁性体に相変化
(メタ磁性転移)し、格子定数の増加、体積増加が生じ
ることが本材料の磁歪効果である。このように本材料は
磁界を印加させることで大きな体積変化を生じさせるだ
けでなく、Tc近傍での温度変化によっても大きな体積
変化を生じることが特徴である。
FIG. 2 is a diagram showing the temperature dependence and the magnetic field dependence of the magnetization M and strain ΔL / L of La (Fe 0.88 Si 0.12 ) 13 . As the temperature increases, the magnetization of La (Fe 0.88 Si 0.12 ) 13 decreases at Tc = 195K, changes from a ferromagnetic material to a paramagnetic material, and at the same time, the strain ΔL / L also becomes Tc.
= 195K. In addition, 2 near Tc = 195K
The magnetization at 00K is a paramagnetic material, but shows a metamagnetic transition that changes to a ferromagnetic material when a magnetic field is applied, and the strain ΔL / L increases accordingly. Thus, La (Fe 0.88
The strain ΔL / L of Si 0.12 ) 13 shows a good correlation with the magnetization M. Applying a magnetic field to paramagnetic La (Fe 0.88 Si 0.12 ) 13 just below Tc causes a phase change from a paramagnetic material to a ferromagnetic material (metamagnetic transition), which increases the lattice constant and volume. This is the magnetostrictive effect of the material. As described above, the present material is characterized in that not only a large volume change is caused by applying a magnetic field but also a large volume change is caused by a temperature change near Tc.

【0024】La(Fe0.88Si0.1213に水素を吸蔵
させた場合の、X線回折図を図3に示す。一番下に示す
のはNaZn13型のX線回折線であるが、La(Fe
0.88Si0.1213およびLa(Fe0.88Si0.1213
1.6はいずれもNaZn13型を示し、水素を吸蔵するこ
とで各回折線は低角側にずれており、全体的に格子定数
が大きくなっていることが分かる。この材料の熱膨張測
定を行った結果を図4に示す。熱膨張△L/Lは温度を
上昇させるとTcで大きな低下を示し、La(Fe0.88
Si0.1213のTcが190Kであるのに対し、La
(Fe0.88Si0.12131.6はTc=333Kと室温
(300K)を大きく越える。従って、図4で示したよ
うなTc近傍での大きな磁歪効果は、La(Fe0.88
0.1213 1.6の場合、50℃(333K)で大きな
磁歪効果を示すことがいえる。さらに図5に示すように
Tcは水素吸蔵量を少なくすることで低下することがで
きるためTc以下の任意の温度で大きな磁歪効果を示す
ことができる。このとき水素は図1のNaZn13単位胞
中のFeI−FeIの中間に配位している。
La (Fe0.88Si0.12)13Occludes hydrogen
FIG. 3 shows an X-ray diffraction diagram in the case of the above. Shown at the bottom
Is NaZn13Type X-ray diffraction line, La (Fe
0.88Si0.12)13And La (Fe0.88Si0.12)13H
1.6Are all NaZn13Indicating the mold and storing hydrogen
And each diffraction line is shifted to the low angle side, and the overall lattice constant
It can be seen that is larger. Thermal expansion measurement of this material
FIG. 4 shows the results of the measurement. Thermal expansion △ L / L is temperature
When increased, Tc shows a large decrease, and La (Fe0.88
Si0.12)13Has a Tc of 190K, whereas La
(Fe0.88Si0.12)13H1.6Is Tc = 333K and room temperature
(300K). Therefore, as shown in FIG.
The large magnetostriction effect near Tc is caused by La (Fe0.88S
i0.12)13H 1.6In case of 50 ℃ (333K)
It can be said that the magnetostrictive effect is exhibited. Further, as shown in FIG.
Tc can be reduced by reducing the amount of hydrogen storage.
Large magnetostriction effect at any temperature below Tc
be able to. At this time, the hydrogen is NaZn in FIG.13Unit cell
Fe insideI-FeIIs coordinated in the middle.

【0025】図6はLa(Fe0.88Si0.1213q
水素吸蔵量を変えた時の、磁気転移温度(キュリー温
度)と室温での格子定数 を示す。水素量を変えること
で、Tcは190K(−83℃)から340K(67
℃)まで大きく変化させることが可能である。このとき
の水素吸蔵量の増加によって室温の格子定数は増加し、
それに伴ってキュリー温度Tcが上昇する。Tcが室温
を超えるとLa(Fe0.88Si0.1213qは室温で強
磁性体から常磁性体に変わるため、格子定数は不連続に
増加する。
FIG. 6 shows the magnetic transition temperature (Curie temperature) and the lattice constant at room temperature when the hydrogen storage amount of La (Fe 0.88 Si 0.12 ) 13 H q is changed. By changing the amount of hydrogen, Tc changes from 190K (-83 ° C) to 340K (67 ° C).
° C). At this time, the lattice constant at room temperature increases due to the increase in the hydrogen storage amount,
Accordingly, the Curie temperature Tc increases. When Tc exceeds room temperature, La (Fe 0.88 Si 0.12 ) 13 H q changes from a ferromagnetic material to a paramagnetic material at room temperature, so that the lattice constant increases discontinuously.

【0026】図7は、La(Fe0.88Si0.1213
1.6(Tc=333K)の各温度(330、336、
338、342K)における磁化曲線で、Tc直上以上
では常磁性で磁化はないが、磁界を印加すると磁化があ
らわれ、大きな磁歪が生じる。Tcから高くなるに従
い、磁歪効果を生じさせるためには高磁界が必要にな
り、大きな磁歪を高感度に生じさせるには本材料を(T
c−5)Kから(Tc+10)Kの範囲で使用するのが
望ましい。好ましくはTc±5Kで使用するのがよい。
FIG. 7 shows La (Fe 0.88 Si 0.12 ) 13 H
Each temperature of 1.6 (Tc = 333K) (330, 336,
338, 342K), it is paramagnetic and has no magnetization immediately above Tc, but when a magnetic field is applied, the magnetization appears and large magnetostriction occurs. As the temperature increases from Tc, a high magnetic field is required to generate the magnetostrictive effect.
It is desirable to use in the range of c-5) K to (Tc + 10) K. Preferably, it is used at Tc ± 5K.

【0027】本発明では、Feの置換元素であるAの元
素はSi,Al,Ga,Ge,Znの少なくとも1種で
あり、FeとAの比は、Aの比が増加するに従い、磁気
転移温度は上昇し、飽和磁化は小さくなる。La(Fe
1-xx13では、総じてxが0.05未満であるとNa
Zn13型の結晶構造を維持することができず、磁歪を発
現するメタ磁性転移がなくなる。一方、xが0.3を越
えると強磁性状態が安定となり、同様に磁歪を発現する
メタ磁性転移は認められなくなる。そこで、本発明では
好適な範囲として0.05≦x≦0.2とした。請求項
2などにおけるTM(Co,Ni,Cu)の量が変わる
ことで磁性を担うFeの3d電子の数が変わり、磁気転
移温度Tcおよび磁化(Ms)の強さを変える効果があ
る。このときのyの組成は0≦y<0.1の範囲で変え
ることが好適で、yが0.1以上となるとFeの磁性そ
のものに影響を及ぼすために磁歪を発現するメタ磁性転
移が生じなくなり不適である。特にTMがCoの場合、
置換元素Coの組成が変わることで磁性を担うFeの3
d電子の数が変わり、磁気転移温度Tc、Tおよび磁
化の強さを変える効果がある。このときCoの組成
(y)は、0<y≦0.08の範囲で変えることが好適
で、yが0.08を越えると、Feの磁性そのものに影
響を及ぼすために磁歪を発現するメタ磁性転移が生じな
くなり不適である。好ましくはCoの組成は0.04≦
y≦0.06が磁気転移温度Tcを上昇させ、室温近傍
での磁歪効果を得ることで効果的である。
In the present invention, the element A, which is a substitution element for Fe, is at least one of Si, Al, Ga, Ge, and Zn, and the ratio of Fe to A increases as the ratio of A increases. The temperature rises and the saturation magnetization decreases. La (Fe
1-x A x ) 13 , if x is less than 0.05 as a whole,
The crystal structure of Zn 13 type cannot be maintained, and the metamagnetic transition that develops magnetostriction disappears. On the other hand, when x exceeds 0.3, the ferromagnetic state becomes stable, and no metamagnetic transition that similarly expresses magnetostriction is observed. Therefore, in the present invention, a preferable range is 0.05 ≦ x ≦ 0.2. By changing the amount of TM (Co, Ni, Cu) in claim 2 or the like, the number of 3d electrons of Fe that changes the magnetic property changes, and has an effect of changing the magnetic transition temperature Tc and the strength of the magnetization (Ms). At this time, the composition of y is preferably changed within the range of 0 ≦ y <0.1. When y is 0.1 or more, the magnetic property of Fe itself is affected, so that a metamagnetic transition that develops magnetostriction occurs. It is unsuitable. Especially when TM is Co,
3 of Fe that plays a role in magnetism by changing the composition of the substitution element Co
The number of d-electrons changes, which has the effect of changing the magnetic transition temperatures Tc, TN and the strength of magnetization. At this time, the composition (y) of Co is preferably changed within a range of 0 <y ≦ 0.08. If y exceeds 0.08, the metamagnetism that develops magnetostriction to affect the magnetism of Fe itself is obtained. Magnetic transition does not occur and is not suitable. Preferably, the composition of Co is 0.04 ≦
It is effective that y ≦ 0.06 increases the magnetic transition temperature Tc and obtains a magnetostrictive effect near room temperature.

【0028】また請求項3、4においてLaの一部を他
の希土類元素(Nd,Gdなど)で置換することで飽和
磁界を小さくする効果がある。置換量(z)の上限は
0.1である。zが0.1を越えるとNaZn13型の化
合物構造をとるよりもRE2Fe17が安定となり、Na
Zn13構造によるメタ磁性転移が生じなくなり、結果と
して巨大磁歪が得られない。
In the third and fourth aspects, replacing a part of La with another rare earth element (Nd, Gd, etc.) has an effect of reducing the saturation magnetic field. The upper limit of the substitution amount (z) is 0.1. When z exceeds 0.1, RE 2 Fe 17 becomes more stable than having a NaZn 13 type compound structure, and Na
Metamagnetic transition due to the Zn 13 structure does not occur, and as a result, giant magnetostriction cannot be obtained.

【0029】また請求項1、2、3、4、5において、
(H,N)をNaZn13型の化合物構造中に侵入させる
ことでFe−Fe合金の相互作用を変化させ、磁気転移
温度を上昇させる効果がある。このとき水素量がq≧2
となるとNaZn13型の結晶構造を維持することができ
ず、磁歪を発現するメタ磁性転移がなくなる。一方、窒
素量はq>1.6以上でNaZn13型の結晶構造を維持
することができず、磁歪を発現するメタ磁性転移がなく
なる。結果として巨大磁歪が得られない。また、本発明
では10原子%の不可避的不純物を含んでも差し支えな
い。
In the first, second, third, fourth and fifth aspects,
By causing (H, N) to penetrate into the NaZn 13 type compound structure, there is an effect that the interaction of the Fe—Fe alloy is changed and the magnetic transition temperature is raised. At this time, the amount of hydrogen is q ≧ 2.
In this case, the crystal structure of the NaZn 13 type cannot be maintained, and the metamagnetic transition that develops magnetostriction disappears. On the other hand, when the amount of nitrogen is q> 1.6 or more, the NaZn 13 type crystal structure cannot be maintained, and the metamagnetic transition that develops magnetostriction disappears. As a result, giant magnetostriction cannot be obtained. Further, in the present invention, unavoidable impurities of 10 atomic% may be included.

【0030】[0030]

【発明の実施の形態】以下、本発明の実施例について述
べる。表2に示した組成の材料をアーク溶解にて作製し
た後、真空中、1050℃で168時間熱処理した試料
をダイヤモンドカッターで切り出した。磁化特性、熱磁
特性はSQUID(カンタムデザイン社製)を用い、磁
歪は超電導磁石中、4.2Kから373Kまで静電容量
法を用いて測定した。磁化、熱磁測定用試料及び磁歪測
定用試料の形状は2mm×2mm×2mmに切り出して
用いた。
Embodiments of the present invention will be described below. After a material having the composition shown in Table 2 was produced by arc melting, a sample heat-treated at 1050 ° C. in vacuum for 168 hours was cut out with a diamond cutter. Magnetization characteristics and thermomagnetic characteristics were measured using SQUID (manufactured by Quantum Design), and magnetostriction was measured in a superconducting magnet from 4.2K to 373K using a capacitance method. The shape of the sample for measuring magnetization and thermomagnetism and the sample for measuring magnetostriction were cut out to 2 mm × 2 mm × 2 mm for use.

【0031】その結果、表2に示すような組成において
室温近傍から100℃の温度範囲で、この場合(250
K−400K)でメタ磁性転移温度を持つ、言い換えれ
ば非常に大きな磁歪特性を示す。
As a result, in the composition shown in Table 2, in the temperature range from around room temperature to 100 ° C., in this case (250
K-400K), and has a metamagnetic transition temperature, in other words, exhibits a very large magnetostriction characteristic.

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】以上説明したとおり本発明の超磁歪材料
は従来の磁歪材料の特性に比べて、等方的できわめて大
きな磁歪特性を室温以上で有する。これによりμmオー
ダーの微小変位制御駆動部、強力音波発生用振動子、セ
ンサ等の構成材料として極めて優れた特性を有するもの
である。
As described above, the giant magnetostrictive material of the present invention has an isotropic and extremely large magnetostrictive characteristic at room temperature or higher as compared with the characteristics of the conventional magnetostrictive material. Thereby, it has extremely excellent characteristics as a constituent material of a micro-displacement control drive unit on the order of μm, a vibrator for generating a strong sound wave, a sensor, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】NaZn13型結晶構造La(FeAl,Si)
13を示す。
FIG. 1 shows a NaZn 13 type crystal structure La (FeAl, Si)
13 is shown.

【図2】La(Fe0.88Si0.1213の磁化Mと歪み量
△L/Lの温度依存性および磁界依存性を示すグラフで
ある。
FIG. 2 is a graph showing temperature dependence and magnetic field dependence of magnetization M and strain ΔL / L of La (Fe 0.88 Si 0.12 ) 13 .

【図3】La(Fe0.88Si0.1213q(q=0.
0,1.6)のX線回折図を示す。
FIG. 3 La (Fe 0.88 Si 0.12 ) 13 H q (q = 0.
0, 1.6).

【図4】La(Fe0.88Si0.1213q(q=0.
0,1.6)の歪み△L/Lの温度依存性を示すグラフ
である。
FIG. 4: La (Fe 0.88 Si 0.12 ) 13 H q (q = 0.
6 is a graph showing the temperature dependence of strain ΔL / L of (0, 1.6).

【図5】La(Fe0.88Si0.12131.6の水素を放
出した場合のTcの変化を示すグラフである。
FIG. 5 is a graph showing a change in Tc when hydrogen of La (Fe 0.88 Si 0.12 ) 13 H 1.6 is released.

【図6】La(Fe0.88Si0.1213qのキュリー温
度(Tc)と室温での格子定数を示す。
FIG. 6 shows the Curie temperature (Tc) of La (Fe 0.88 Si 0.12 ) 13 H q and the lattice constant at room temperature.

【図7】La(Fe0.88Si0.12131.6(Tc=3
33K)の各温度(330、336、338、342
K)における磁化曲線を示す。
FIG. 7: La (Fe 0.88 Si 0.12 ) 13 H 1.6 (Tc = 3
33K) (330, 336, 338, 342)
17 shows a magnetization curve in K).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤枝 俊 宮城県仙台市太白区青山二丁目4−2 (72)発明者 飯島 嘉明 宮城県仙台市泉区加茂一丁目37−2 (72)発明者 山崎 仁丈 宮城県仙台市太白区八木山本町1−5−15 (72)発明者 竹田 英樹 宮城県仙台市泉区泉中央3−38−5 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shun Fujieda 2-4-2, Aoyama, Taishiro-ku, Sendai, Miyagi Prefecture (72) Inventor Yoshiaki Iijima 1-37-2, Kamo, Izumi-ku, Sendai City, Miyagi Prefecture (72) Inventor Jinjo Yamazaki 1-5-15 Yagiyamahonmachi, Taihaku-ku, Sendai City, Miyagi Prefecture (72) Inventor Hideki Takeda 3-38-5 Izumichuo, Izumi-ku, Sendai City, Miyagi Prefecture

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 一般式:La(Fe1-xx13-δ
q(ただし、AはAl,Si,Ga,Ge,Snのうち
少なくとも1種の元素、Dは水素、窒素のうち少なくと
も1種の元素、x,δ,qは原子比で0.05≦x≦
0.2、−1≦δ≦1、0<q<2)で示される組成か
らなることを特徴とする超磁歪材料。
1. General formula: La (Fe 1-x A x ) 13-δ D
q (where A is at least one element of Al, Si, Ga, Ge and Sn, D is hydrogen and at least one element of nitrogen, and x, δ, and q are atomic ratios of 0.05 ≦ x ≤
0.2, −1 ≦ δ ≦ 1, 0 <q <2) A giant magnetostrictive material comprising a composition represented by the following formula:
【請求項2】 一般式:La(Fe1-xx-yTMy
13-δq(ただし、AはAl,Si,Ga,Ge,Sn
のうち少なくとも1種の元素、TMはFeを除く遷移金
属元素のうち少なくとも1種の元素、Dは水素、窒素の
うち少なくとも1種の元素、x,y,δ,qは原子比で
0.05≦x≦0.2、0<y<0.1、−1≦δ≦
1、0<q<2)で示される組成からなることを特徴と
する超磁歪材料。
2. General formula: La (Fe 1-x A xy TM y )
13-δ D q (where A is Al, Si, Ga, Ge, Sn
, TM is at least one element of transition metal elements other than Fe, D is hydrogen and at least one element of nitrogen, and x, y, δ, and q are atomic ratios of 0.1. 05 ≦ x ≦ 0.2, 0 <y <0.1, −1 ≦ δ ≦
1. A giant magnetostrictive material having a composition represented by the following formula: 1, 0 <q <2).
【請求項3】 一般式:La1-zREz(Fe1-xx
13-δq(ただし、AはAl,Si,Ga,Ge,Sn
のうち少なくとも1種の元素、REはLaを除く希土類
元素のうち少なくとも1種の元素、Dは水素、窒素のう
ち少なくとも1種の元素、x,z,δ,qは原子比で
0.05≦x≦0.2、0<z≦0.1、−1≦δ≦
1、0<q<2)で示される組成からなることを特徴と
する超磁歪材料。
3. General formula: La 1-z RE z (Fe 1-x A x )
13-δ D q (where A is Al, Si, Ga, Ge, Sn
, RE is at least one element among rare earth elements other than La, D is at least one element among hydrogen and nitrogen, and x, z, δ, and q are 0.05 by atomic ratio. ≦ x ≦ 0.2, 0 <z ≦ 0.1, −1 ≦ δ ≦
1. A giant magnetostrictive material having a composition represented by the following formula: 1, 0 <q <2).
【請求項4】 一般式:La1-zREz(Fe1-xx-y
y13-δq(ただし、AはAl,Si,Ga,G
e,Snのうち少なくとも1種の元素、TMはFeを除
く遷移金属元素のうち少なくとも1種の元素、REはL
aを除く希土類元素のうち少なくとも1種の元素、Dは
水素、窒素のうち少なくとも1種の元素、x,y,z,
δ,qは原子比で0.05≦x≦0.2、0<y<0.
1、x>y、0<z≦0.1、−1≦δ≦1、0<q<
2)で示される組成からなることを特徴とする超磁歪材
料。
4. A general formula: La 1-z RE z (Fe 1-x Axy T
M y) 13-δ D q ( although, A is Al, Si, Ga, G
e, at least one element of Sn, TM is at least one element of transition metal elements other than Fe, and RE is L
a is at least one element among rare earth elements except a, D is at least one element among hydrogen and nitrogen, x, y, z,
δ and q are 0.05 ≦ x ≦ 0.2 and 0 <y <0.
1, x> y, 0 <z ≦ 0.1, −1 ≦ δ ≦ 1, 0 <q <
A giant magnetostrictive material having a composition represented by 2).
【請求項5】 一般式:La(Fe1-a-bSiaCOb
13q(ただし、Dは水素、窒素のうち少なくとも1種
の元素、0.10≦a≦0.16、0<b≦0.08、
0<q<2)で示される組成からなることを特徴とする
超磁歪材料。
5. The general formula: La (Fe 1-ab Si a CO b)
13 D q (where D is at least one element of hydrogen and nitrogen, 0.10 ≦ a ≦ 0.16, 0 <b ≦ 0.08,
A giant magnetostrictive material having a composition represented by 0 <q <2).
【請求項6】 TMがCo,Ni,Cuのうちの少なく
とも1種の元素である請求項2又は請求項4記載の超磁
歪材料。
6. The giant magnetostrictive material according to claim 2, wherein TM is at least one element of Co, Ni, and Cu.
【請求項7】 REがY,Ce,Pr,Nd,Pm,S
m,Eu,Gd,Tb,Dy,Ho,Er,Tm,Y
b,Luのうちの少なくとも1種の元素である請求項3
又は請求項4記載の超磁歪材料。
7. RE is Y, Ce, Pr, Nd, Pm, S
m, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
4. An element which is at least one element of b and Lu.
Or the giant magnetostrictive material according to claim 4.
【請求項8】 10原子%以下で不可避的不純物を含む
請求項1ないし7のいずれかに記載の超磁歪材料。
8. The giant magnetostrictive material according to claim 1, which contains unavoidable impurities at 10 atomic% or less.
【請求項9】 体積率で90%以上が立方晶系のNaZ
13型金属間化合物である請求項1ないし8のいずれか
に記載の超磁歪材料。
9. A cubic NaZ having a volume ratio of 90% or more.
giant magnetostrictive material according to any one of claims 1 to 8 is n 13 type intermetallic compound.
JP2000268192A 2000-09-05 2000-09-05 Magnetic material Expired - Fee Related JP4471249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000268192A JP4471249B2 (en) 2000-09-05 2000-09-05 Magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000268192A JP4471249B2 (en) 2000-09-05 2000-09-05 Magnetic material

Publications (3)

Publication Number Publication Date
JP2002069596A true JP2002069596A (en) 2002-03-08
JP2002069596A5 JP2002069596A5 (en) 2007-08-16
JP4471249B2 JP4471249B2 (en) 2010-06-02

Family

ID=18755000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000268192A Expired - Fee Related JP4471249B2 (en) 2000-09-05 2000-09-05 Magnetic material

Country Status (1)

Country Link
JP (1) JP4471249B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005842A1 (en) * 2002-07-05 2004-01-15 Matsushita Electric Industrial Co., Ltd. Reader and authentication device including the same
JP2004099928A (en) * 2002-09-05 2004-04-02 Sumitomo Special Metals Co Ltd Magnetic alloy material
JP2004100043A (en) * 2002-08-21 2004-04-02 Sumitomo Special Metals Co Ltd Magnetic alloy material and its production method
WO2004038055A1 (en) * 2002-10-25 2004-05-06 Showa Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
JP2005113209A (en) * 2003-10-08 2005-04-28 Hitachi Metals Ltd Magnetic particle, manufacturing method therefor and magnetic particle unit
JP2005226124A (en) * 2004-02-13 2005-08-25 Hitachi Metals Ltd Magnetic alloy and its manufacturing method
JP2006124783A (en) * 2004-10-29 2006-05-18 Hitachi Metals Ltd Magnetic grain and method for producing the same
US7186303B2 (en) 2002-08-21 2007-03-06 Neomax Co., Ltd. Magnetic alloy material and method of making the magnetic alloy material
EP1867744A1 (en) * 2005-04-05 2007-12-19 Hitachi Metals, Ltd. Magnetic alloy and method for producing same
US7578892B2 (en) 2005-03-31 2009-08-25 Hitachi Metals, Ltd. Magnetic alloy material and method of making the magnetic alloy material
CN101882493A (en) * 2009-05-08 2010-11-10 包头稀土研究院 Magnetic alloy material and manufacturing method thereof as well as magnetic refrigeration system
CN102246248A (en) * 2008-12-11 2011-11-16 德累斯顿协会莱布尼茨固体材料研究所 Coated magnetic alloy material and method for the manufacture thereof
GB2459066B (en) * 2007-02-12 2012-02-15 Vacuumschmelze Gmbh & Co Kg Article for magnetic heat exchange and method of manufacturing the same
US8518194B2 (en) 2008-10-01 2013-08-27 Vacuumschmelze Gmbh & Co. Kg Magnetic article and method for producing a magnetic article
US8551210B2 (en) 2007-12-27 2013-10-08 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
US8938872B2 (en) 2008-10-01 2015-01-27 Vacuumschmelze Gmbh & Co. Kg Article comprising at least one magnetocalorically active phase and method of working an article comprising at least one magnetocalorically active phase
US9175885B2 (en) 2007-02-12 2015-11-03 Vacuumschmelze Gmbh & Co. Kg Article made of a granular magnetocalorically active material for heat exchange
US9524816B2 (en) 2010-08-18 2016-12-20 Vacuumschmelze Gmbh & Co. Kg Method of fabricating a working component for magnetic heat exchange
US9773591B2 (en) 2009-05-06 2017-09-26 Vacuumschmelze Gmbh & Co. Kg Article for magnetic heat exchange and method of fabricating an article for magnetic heat exchange
US9895748B2 (en) 2009-10-14 2018-02-20 Vacuumschmelze & Gmbh & Co. Kg Article for magnetic heat exchange and method of manufacturing the same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005842A1 (en) * 2002-07-05 2004-01-15 Matsushita Electric Industrial Co., Ltd. Reader and authentication device including the same
JP2004100043A (en) * 2002-08-21 2004-04-02 Sumitomo Special Metals Co Ltd Magnetic alloy material and its production method
US7186303B2 (en) 2002-08-21 2007-03-06 Neomax Co., Ltd. Magnetic alloy material and method of making the magnetic alloy material
US7670443B2 (en) 2002-08-21 2010-03-02 Hitachi Metals, Ltd. Magnetic alloy material and method of making the magnetic alloy material
JP2004099928A (en) * 2002-09-05 2004-04-02 Sumitomo Special Metals Co Ltd Magnetic alloy material
WO2004038055A1 (en) * 2002-10-25 2004-05-06 Showa Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
US8110049B2 (en) 2002-10-25 2012-02-07 Showa Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
US7695574B2 (en) 2002-10-25 2010-04-13 Showda Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
JP2005113209A (en) * 2003-10-08 2005-04-28 Hitachi Metals Ltd Magnetic particle, manufacturing method therefor and magnetic particle unit
JP2005226124A (en) * 2004-02-13 2005-08-25 Hitachi Metals Ltd Magnetic alloy and its manufacturing method
JP2006124783A (en) * 2004-10-29 2006-05-18 Hitachi Metals Ltd Magnetic grain and method for producing the same
US7578892B2 (en) 2005-03-31 2009-08-25 Hitachi Metals, Ltd. Magnetic alloy material and method of making the magnetic alloy material
EP1867744A4 (en) * 2005-04-05 2010-07-28 Hitachi Metals Ltd Magnetic alloy and method for producing same
EP1867744A1 (en) * 2005-04-05 2007-12-19 Hitachi Metals, Ltd. Magnetic alloy and method for producing same
US7815752B2 (en) 2005-04-05 2010-10-19 Hitachi Metals, Ltd. Magnetic alloy and method for producing same
JP5158485B2 (en) * 2005-04-05 2013-03-06 日立金属株式会社 Magnetic alloy and method for producing the same
US9175885B2 (en) 2007-02-12 2015-11-03 Vacuumschmelze Gmbh & Co. Kg Article made of a granular magnetocalorically active material for heat exchange
GB2459066B (en) * 2007-02-12 2012-02-15 Vacuumschmelze Gmbh & Co Kg Article for magnetic heat exchange and method of manufacturing the same
US8551210B2 (en) 2007-12-27 2013-10-08 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
US9666340B2 (en) 2007-12-27 2017-05-30 Vacuumschmelze Gmbh & Co. Kg Composite article with magnetocalorically active material and method for its production
US8518194B2 (en) 2008-10-01 2013-08-27 Vacuumschmelze Gmbh & Co. Kg Magnetic article and method for producing a magnetic article
US8938872B2 (en) 2008-10-01 2015-01-27 Vacuumschmelze Gmbh & Co. Kg Article comprising at least one magnetocalorically active phase and method of working an article comprising at least one magnetocalorically active phase
CN102246248A (en) * 2008-12-11 2011-11-16 德累斯顿协会莱布尼茨固体材料研究所 Coated magnetic alloy material and method for the manufacture thereof
US9773591B2 (en) 2009-05-06 2017-09-26 Vacuumschmelze Gmbh & Co. Kg Article for magnetic heat exchange and method of fabricating an article for magnetic heat exchange
CN101882493A (en) * 2009-05-08 2010-11-10 包头稀土研究院 Magnetic alloy material and manufacturing method thereof as well as magnetic refrigeration system
US9895748B2 (en) 2009-10-14 2018-02-20 Vacuumschmelze & Gmbh & Co. Kg Article for magnetic heat exchange and method of manufacturing the same
US9524816B2 (en) 2010-08-18 2016-12-20 Vacuumschmelze Gmbh & Co. Kg Method of fabricating a working component for magnetic heat exchange

Also Published As

Publication number Publication date
JP4471249B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4471249B2 (en) Magnetic material
JP2002069596A5 (en)
Hathaway et al. Magnetostrictive materials
Rao et al. Anisotropic fully dense MnBi permanent magnet with high energy product and high coercivity at elevated temperatures
Ullakko et al. Large magnetic‐field‐induced strains in Ni2MnGa single crystals
Shima et al. Lattice axial ratio and large uniaxial magnetocrystalline anisotropy in L 1 0-type FePd single crystals prepared under compressive stress
McCallum et al. Composite magnetostrictive materials for advanced automotive magnetomechanical sensors
JP3466481B2 (en) Giant magnetostrictive material
Zhao et al. Coercivity mechanisms in nanostructured permanent magnets
Clark Magnetostrictive RFe2 intermetallic compounds
Wang et al. Characterization of polycrystalline Fe 2 B compound with high saturation magnetization
Takenaka et al. Magnetostructural correlations in nitrogen-deficient antiperovskite Mn3CuN1-δ
Dai et al. Magnetism, elasticity, and magnetostriction of FeCoGa alloys
JP2970809B2 (en) Rare earth permanent magnet
JP3452210B2 (en) Manufacturing method of magnetostrictive material
Hu et al. Anisotropy compensation and magnetostrictive properties in Tbx Dy1− x (Fe0. 9Mn0. 1) 1.93 Laves compounds: Experimental and theoretical analysis
JPH0359977B2 (en)
US5565830A (en) Rare earth-cobalt supermagnetostrictive alloy
de Lacheisserie et al. From bulk to film magnetostrictive actuators
Du et al. Magnetostriction in twin-free single crystals Tb y Dy 1− y Fe 2 with the addition of aluminum or manganese
Liu et al. Structural, magnetic and magnetostrictive properties of Co-doped Tb1-xHoxFe2 (0≤ x≤ 1.0) alloys
Clark et al. Modern magnetostrictive materials: classical and nonclassical alloys
Hu et al. Structural, magnetic and magnetostrictive behavior in Nd (Fe1− xCox) 1.9 compounds
Takenaka et al. Ferromagnetic shape memory effects in tetragonally distorted antiperovskite manganese nitrides
US6451131B1 (en) Terbium-dysprosium-iron magnetostrictive materials and devices using these materials

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A681

Effective date: 20091117

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees