JP5686314B2 - Rare earth magnetic refrigerant for magnetic refrigeration system - Google Patents
Rare earth magnetic refrigerant for magnetic refrigeration system Download PDFInfo
- Publication number
- JP5686314B2 JP5686314B2 JP2010210623A JP2010210623A JP5686314B2 JP 5686314 B2 JP5686314 B2 JP 5686314B2 JP 2010210623 A JP2010210623 A JP 2010210623A JP 2010210623 A JP2010210623 A JP 2010210623A JP 5686314 B2 JP5686314 B2 JP 5686314B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- rare earth
- refrigerant
- refrigeration system
- transition temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Landscapes
- Hard Magnetic Materials (AREA)
Description
本発明は、磁気冷凍システムに用いられる希土類磁気冷媒に関するものであり、ホウ素を含有する新規な磁気冷凍システム用希土類磁気冷媒に関する。 The present invention relates to a rare earth magnetic refrigerant used in a magnetic refrigeration system, and relates to a novel rare earth magnetic refrigerant for a magnetic refrigeration system containing boron.
磁気冷凍は、磁気熱量効果を示す磁性材料を冷媒として用いる冷却技術であり、磁場増加・減少のサイクルによって強磁性・常磁性相転移を起こし、そこで生じる吸熱反応・発熱反応を利用して冷凍する技術である。 Magnetic refrigeration is a cooling technology that uses a magnetic material exhibiting a magnetocaloric effect as a refrigerant, causing a ferromagnetism / paramagnetic phase transition by a cycle of magnetic field increase / decrease, and freezing using an endothermic reaction / exothermic reaction generated there. Technology.
一般的なヒートポンプ方式の冷却では、冷媒としてCO2やフロン等、温室効果ガスを利用するが、これを磁気冷凍システムに置き換えることで、温室効果ガスを使わない冷蔵庫やエアコン等、環境に優しい冷凍システムを実現することができるものと期待される。また、ヒートポンプ方式では、冷媒ガスの膨張・圧縮用のコンプレッサーが必要であるが、磁気冷凍システムにおいては、このようなコンプレッサーは不要であり、例えば冷蔵庫やエアコン等において低雑音・低振動化が図れるばかりでなく、室外機不要の小型エアコンや自動車エンジンの冷却等、小型冷凍機への応用も可能になるものと考えられる。 In general heat pump cooling, greenhouse gases such as CO 2 and chlorofluorocarbon are used as refrigerants. By replacing them with magnetic refrigeration systems, environmentally friendly refrigeration such as refrigerators and air conditioners that do not use greenhouse gases is used. It is expected that the system can be realized. In addition, the heat pump system requires a compressor for expanding and compressing the refrigerant gas, but such a compressor is not necessary in the magnetic refrigeration system. For example, low noise and low vibration can be achieved in a refrigerator or an air conditioner. In addition, it can be applied to small refrigerators such as small air conditioners that do not require outdoor units and cooling of automobile engines.
ところで、磁気冷凍システムにおいては、高性能な冷媒(磁性材料)の開発が大きな課題となっている。例えば、磁気冷凍システムにおいては、磁気相転移時のエントロピー変化ΔSの大きさが冷凍能力を決めることから、前記エントロピー変化ΔSが大きく高い冷凍能力を持つ冷媒の開発及び実用化が磁気冷凍システムの高性能化の鍵となる。また、磁気冷凍システムにおいて、冷凍能力は強磁性相転移温度Tc付近で最も高くなることから、強磁性相転移温度Tcが室温付近にある冷媒を開発することができれば、例えば家庭用冷凍機が実用化できるものと期待される。 By the way, in a magnetic refrigeration system, development of a high-performance refrigerant (magnetic material) has become a major issue. For example, in a magnetic refrigeration system, the magnitude of the entropy change ΔS at the time of the magnetic phase transition determines the refrigerating capacity. The key to performance. Also, in the magnetic refrigeration system, the refrigerating capacity becomes the highest near the ferromagnetic phase transition temperature Tc. Therefore, if a refrigerant having the ferromagnetic phase transition temperature Tc near room temperature can be developed, for example, a home refrigerator is put to practical use. It is expected that
このような観点から、各方面で磁気冷凍システム用の冷媒(磁性材料)に関する研究が進められており、様々な磁気冷媒が開発されている(例えば、特許文献1や特許文献2等を参照)。 From this point of view, research on a refrigerant (magnetic material) for a magnetic refrigeration system has been promoted in various directions, and various magnetic refrigerants have been developed (see, for example, Patent Document 1 and Patent Document 2). .
例えば、特許文献1には、強磁性相においてNiAs型六方晶構造を有し、第1元素としてのMnと、第2元素としてのAsと、前記第2元素と置換可能な第3元素とを含み、230K以上318K未満の温度範囲で磁気相転移を起こす磁気冷凍作業物質が開示されており、具体的な組成式として、Mn(As1−xSbx)が記載されている。特許文献1記載の発明によれば、室温付近で大きな磁気熱量効果を呈する磁気冷凍作業物質が提供されるとしている。 For example, Patent Document 1 discloses that a ferromagnetic phase has a NiAs-type hexagonal crystal structure, Mn as a first element, As as a second element, and a third element that can be substituted for the second element. In addition, a magnetic refrigeration working substance that causes a magnetic phase transition in a temperature range of 230 K or more and less than 318 K is disclosed, and Mn (As 1-x Sb x ) is described as a specific composition formula. According to the invention described in Patent Document 1, a magnetic refrigeration working material that exhibits a large magnetocaloric effect near room temperature is provided.
一方、特許文献2には、NaZn13型La(Fe1−xSix)13Hyにおいて、Ceを部分置換、Hを吸収させその組成をNaZn13型La1−zCez(Fe1−xSix)13Hyとした磁気冷凍作業物質が開示されている。特許文献2記載の発明では、水素吸収量を制御することで、温度170K付近から340K付近までの任意の温度で大きな磁気熱量効果を示すLa(Fe1−xSix)13及びその水素吸収化合物のLaをCeで部分置換することにより、磁気熱量効果を向上させることができるとしている。 On the other hand, Patent Document 2 discloses that in NaZn 13 type La (Fe 1-x Si x ) 13 H y , Ce is partially substituted, H is absorbed, and the composition thereof is NaZn 13 type La 1-z Ce z (Fe 1− x Si x) 13 H y and the magnetic refrigerant material is disclosed. In the invention described in Patent Document 2, La (Fe 1-x Si x ) 13 and its hydrogen absorbing compound exhibiting a large magnetocaloric effect at an arbitrary temperature from around 170 K to around 340 K by controlling the hydrogen absorption amount It is said that the magnetocaloric effect can be improved by partially replacing La in Ce.
しかしながら、例えば特許文献1に記載されるMn(As1−xSbx)は、作製中に砒素(As)が気化する危険性が高いという問題がある。砒素は毒性が高く、取り扱いが難しい。一方、特許文献2に記載されるLa(Fe1−xSix)13の水素添加物は、水素雰囲気中での加熱による合成が必要であり、製造に際して危険を伴うという問題がある。 However, for example, Mn (As 1-x Sb x ) described in Patent Document 1 has a high risk of arsenic (As) being vaporized during production. Arsenic is highly toxic and difficult to handle. On the other hand, the hydrogenated product of La (Fe 1-x Si x ) 13 described in Patent Document 2 needs to be synthesized by heating in a hydrogen atmosphere, and there is a problem that it involves a risk in production.
本発明は、このような従来の実情に鑑みて提案されたものであり、大きな磁気エントロピー変化ΔSと高い強磁性相転移温度Tcで、簡単且つ安全な方法で安定に作製することが可能な磁気冷凍システム用希土類磁気冷媒を提供することを目的とする。 The present invention has been proposed in view of such a conventional situation, and a magnetic material that can be stably produced by a simple and safe method with a large magnetic entropy change ΔS and a high ferromagnetic phase transition temperature Tc. An object is to provide a rare earth magnetic refrigerant for a refrigeration system.
本発明者は、大きな磁気エントロピー変化ΔSを持つ希土類強磁性体RX2に注目し、ホウ素等の軽金属添加により磁気エントロピー変化ΔSや強磁性転移温度Tcが変化する様子を調べた。その結果、大きな磁気エントロピー変化ΔSと高い強磁性転移温度Tcを併せ持つ高性能な磁気冷媒を合成するに至った。 The inventor paid attention to the rare earth ferromagnet RX 2 having a large magnetic entropy change ΔS, and investigated how the magnetic entropy change ΔS and the ferromagnetic transition temperature Tc change due to addition of a light metal such as boron. As a result, a high-performance magnetic refrigerant having both a large magnetic entropy change ΔS and a high ferromagnetic transition temperature Tc has been synthesized.
本発明の磁気冷凍システム用希土類磁気冷媒は、一般式ErCo 2 Bxで表され、当該式中のBxはモル比で0.02≦x≦0.1であり、添加されたB(ホウ素)が母体であるErCo 2 の空隙に入り込むことでその結晶構造を損なうことなく体積の増大をもたらしていることを特徴とする。本発明は、前記式中のBxがモル比で0.04≦x≦0.07であることを特徴とする。 The rare earth magnetic refrigerant for a magnetic refrigeration system of the present invention is represented by the general formula ErCo 2 Bx, where Bx is 0.02 ≦ x ≦ 0.1 in terms of molar ratio, and the added B (boron) is It is characterized in that the volume is increased without impairing the crystal structure by entering the void of ErCo 2 which is the base material . The present invention is characterized in that Bx in the above formula is 0.04 ≦ x ≦ 0.07 in molar ratio.
希土類元素Rと遷移金属元素Xとからなる磁性合金においては、希土類元素Rが持つ大きな磁気モーメントが反映され、低温での磁気エントロピー変化ΔSが大きい。また、希土類元素Rと遷移金属元素Xの組成により、強磁性相転移温度Tcを制御することができる。ただし、強磁性相転移温度Tcが室温付近の組成では磁気エントロピー変化ΔSが抑制され、熱効率が悪いという欠点がある。 In a magnetic alloy composed of the rare earth element R and the transition metal element X, the large magnetic moment of the rare earth element R is reflected, and the magnetic entropy change ΔS at a low temperature is large. Further, the ferromagnetic phase transition temperature Tc can be controlled by the composition of the rare earth element R and the transition metal element X. However, a composition having a ferromagnetic phase transition temperature Tc near room temperature has a drawback that the magnetic entropy change ΔS is suppressed and the thermal efficiency is poor.
本発明の磁気冷凍システム用希土類磁気冷媒においては、ホウ素添加により結晶体積増加と試料硬化とを同時に達成し、前記欠点を解消することに成功した。希土類元素Rと遷移金属元素Xとからなる磁性合金において、前記ホウ素を添加すると、安定な結晶構造を保ったまま結晶体積が増加し、強磁性相転移温度Tcが高くなる。また、試料硬化により磁気エントロピー変化ΔS増加する。すなわち、希土類元素Rと遷移金属元素Xとからなる磁性合金の長所である大きな磁気エントロピー変化ΔSを保ったまま、強磁性相転移温度Tcの室温付近へのシフトが実現される。 In the rare earth magnetic refrigerant for a magnetic refrigeration system of the present invention, the increase in crystal volume and sample hardening were simultaneously achieved by adding boron, and the above-mentioned drawbacks were successfully solved. In the magnetic alloy composed of the rare earth element R and the transition metal element X, when boron is added, the crystal volume increases while maintaining a stable crystal structure, and the ferromagnetic phase transition temperature Tc increases. Further, the magnetic entropy change ΔS increases due to sample hardening. That is, the ferromagnetic phase transition temperature Tc can be shifted to around room temperature while maintaining the large magnetic entropy change ΔS, which is an advantage of the magnetic alloy composed of the rare earth element R and the transition metal element X.
本発明によれば、大きな磁気エントロピー変化ΔSと高い強磁性相転移温度Tcを併せ持つ高性能な磁気冷凍システム用希土類磁気冷媒を提供することが可能である。また、本発明の希土類磁気冷媒は、水素雰囲気中での加熱による合成のような危険を伴う工程も不要であり、安全性を損なうことなく、製造コストの増大を招くことなく、簡単な方法で安定に製造することが可能である。 According to the present invention, it is possible to provide a high-performance rare earth magnetic refrigerant for a magnetic refrigeration system having both a large magnetic entropy change ΔS and a high ferromagnetic phase transition temperature Tc. Further, the rare earth magnetic refrigerant of the invention comprises the steps of dangerous as synthesis by heating in a hydrogen atmosphere is not required, without compromising safety, without increasing the manufacturing cost, in a simple way It is possible to manufacture stably.
以下、本発明を適用した磁気冷凍システム用希土類磁気冷媒について、図面を参照しながら詳細に説明する。 Hereinafter, a rare earth magnetic refrigerant for a magnetic refrigeration system to which the present invention is applied will be described in detail with reference to the drawings.
磁気冷凍システムは、気体冷凍技術とは異なり、磁性体の内部自由度(エントロピー)を利用した冷凍技術であり、磁場印加の有無により磁気冷媒に強磁性・常磁性転移を起こし、そこで生じる吸熱反応・発熱反応による熱エネルギーを利用して冷凍を行う。例えば、磁気冷媒に磁場印加を行うと、電子スピンの方向が揃い、磁気エントロピーが小さくなり、発熱反応が起こる。これに対して、磁場を下げて、磁気冷媒の電子スピンの状態をランダムにすると、磁気エントロピーが大きくなり、吸熱反応が起こる。磁気冷凍システムでは、このような磁気エントロピーの変化(磁気熱量効果)を利用して冷却を行う。 The magnetic refrigeration system, unlike the gas refrigeration technology, is a refrigeration technology that uses the internal degree of freedom (entropy) of the magnetic material, causing a ferromagnetic / paramagnetic transition in the magnetic refrigerant depending on whether a magnetic field is applied, and the endothermic reaction that occurs there.・ Freeze using heat energy from exothermic reaction. For example, when a magnetic field is applied to a magnetic refrigerant, the directions of electron spin are aligned, magnetic entropy is reduced, and an exothermic reaction occurs. On the other hand, when the magnetic field is lowered and the electron spin state of the magnetic refrigerant is made random, the magnetic entropy increases and an endothermic reaction occurs. In the magnetic refrigeration system, cooling is performed using such a change in magnetic entropy (magnetocaloric effect).
図1は、磁気冷凍システムにおける熱サイクルを示す図である。磁気冷凍システムでは、冷媒となる磁性材料を図1に示すように熱サイクルさせる。すなわち、
(a)強磁性相転移温度Tcで等温励磁(ΔS)
(b)断熱消磁により冷却(ΔT)
(c)ゼロ磁場で元に戻す。
という循環サイクルで、1サイクル当たりQ1−Q2=Wの熱量を排熱する。したがって、前記熱サイクルにおいて、熱効率を良くするためには、前記Wを大きくすれば良いことになる。
FIG. 1 is a diagram showing a thermal cycle in a magnetic refrigeration system. In the magnetic refrigeration system, a magnetic material serving as a refrigerant is thermally cycled as shown in FIG. That is,
(A) Isothermal excitation at the ferromagnetic phase transition temperature Tc (ΔS)
(B) Cooling by adiabatic demagnetization (ΔT)
(C) Return to the original state with zero magnetic field.
In this circulation cycle, the heat quantity of Q 1 -Q 2 = W per cycle is exhausted. Therefore, in order to improve the thermal efficiency in the thermal cycle, the W may be increased.
このことを前提にして、磁気冷凍システムを実用化するための条件を考えると、以下のことが必要となる。
(1)熱サイクルの動作温度、すなわち強磁性相転移温度Tcを高くする。
(2)前記Wを大きくするためにΔS,ΔTが大きな材料を選ぶ。
(3)材料コストや安全面も考慮する。
Given the above, considering the conditions for putting the magnetic refrigeration system into practical use, the following is necessary.
(1) operating temperature of the thermal cycle, i.e. to increase the ferromagnetic phase transition temperature Tc.
(2) In order to increase the W, a material having a large ΔS and ΔT is selected.
(3) Consider material cost and safety.
本発明では、大きな磁気熱量効果を持つRX2化合物(Rは希土類元素、Xは遷移金属元素)をベースとして、ホウ素(B)添加により大きな磁気エントロピー変化ΔSと高い強磁性相転移温度Tcを併せ持つ希土類磁気冷媒を実現する。 In the present invention, RX 2 compound (R is a rare earth element, X is a transition metal element) having a large magnetocaloric effect as based, both boron (B) large magnetic entropy change ΔS high ferromagnetic phase transition temperature Tc by addition Realize rare earth magnetic refrigerant.
RX2化合物は、希土類元素Rが持つ大きな磁気モーメントを反映し、低温でのΔS,ΔTが大きく、構成元素に適当な希土類元素R,遷移金属元素Xを選ぶことにより、ΔS,ΔTの大きさを制御することができる。しかしながら、図2に示すように、一般に強磁性相転移温度Tcが高くなるほど磁気エントロピー変化ΔSが小さくなる傾向にある。 The RX 2 compound reflects the large magnetic moment of the rare earth element R, and has a large ΔS and ΔT at low temperature. By selecting an appropriate rare earth element R and transition metal element X as constituent elements, the magnitude of ΔS and ΔT can be obtained. Can be controlled. However, as shown in FIG. 2, generally, the magnetic entropy change ΔS tends to decrease as the ferromagnetic phase transition temperature Tc increases.
これに対し、前記RX2化合物にホウ素を添加し、RX2Bxとすると、次のような効果を得ることができる。
(1)ホウ素が母物質(RX2化合物)の空隙に入り込み、結晶構造を損なうことなく体積が増す。実際、ErCo2において、Bの7%添加により格子体積が0.8%程度増加することが実験的に確かめられている。
(2)強磁性相転移温度Tcは希土類元素の持つ磁気モーメント間の距離、格子定数・体積に大きく影響を受けるので、ホウ素の添加は強磁性相転移温度Tcを制御する手法として有効である。
(3)磁性体のエントロピー変化ΔSは以下の式で表わされる。
ΔS=ΔSmag+ΔSph
一般に、希土類材料は柔らかいためにΔSに対するΔSphの割合が大きく、励磁・消磁に伴う磁気エントロピー変化ΔSmagがΔSphに流れて熱効率Wをロスしやすい。ここで、ΔSphの寄与を小さくするためには、材料硬度を硬くすることが効果的であるが、ホウ素を添加することにより、RX2化合物の高硬度化が見込まれる。
(4)前記(2),(3)により、ホウ素添加により磁気エントロピー変化ΔSの増大と強磁性相転移温度Tcの高温化が同時に実現される。
On the other hand, when boron is added to the RX 2 compound to form RX 2 B x , the following effects can be obtained.
(1) Boron enters the voids of the parent material (RX 2 compound), and the volume increases without impairing the crystal structure. In fact, in ErCo 2 , it has been experimentally confirmed that the lattice volume increases by about 0.8% when 7% of B is added.
(2) Since the ferromagnetic phase transition temperature Tc is greatly influenced by the distance between the magnetic moments of the rare earth elements, the lattice constant and the volume, addition of boron is effective as a method for controlling the ferromagnetic phase transition temperature Tc.
(3) The entropy change ΔS of the magnetic material is expressed by the following equation.
ΔS = ΔS mag + ΔS ph
Generally, since the rare earth material is soft, the ratio of ΔS ph to ΔS is large, and the magnetic entropy change ΔS mag due to excitation / demagnetization flows to ΔS ph and the thermal efficiency W tends to be lost. Here, in order to reduce the contribution of ΔS ph , it is effective to increase the material hardness. However, by adding boron, the RX 2 compound is expected to increase in hardness.
(4) By the above (2) and (3), an increase in the magnetic entropy change ΔS and an increase in the ferromagnetic phase transition temperature Tc are realized at the same time by adding boron.
前記ホウ素添加により、図2に示すように、RX2Bxにおける磁気エントロピー変化ΔSと強磁性相転移温度Tcの関係を示す曲線が、RX2化合物の場合よりも右側にシフトし、大きな磁気エントロピー変化ΔSと強磁性相転移温度Tcの上昇という相反するファクターを両立させることができる。 Due to the boron addition, as shown in FIG. 2, the curve indicating the relationship between the magnetic entropy change ΔS and the ferromagnetic phase transition temperature Tc in RX 2 B x shifts to the right as compared with the case of the RX 2 compound, resulting in a large magnetic entropy. The contradictory factors of the change ΔS and the increase of the ferromagnetic phase transition temperature Tc can be made compatible.
本発明の磁気冷凍システム用希土類磁気冷媒は、前記の観点に基づき、希土類元素Rと遷移金属元素Xとからなる磁性合金をベースとなる化合物とし、これにホウ素(B)を添加したものである。ここでベースとなる化合物は、希土類元素Rと遷移金属元素Xとからなる磁性合金はであれば如何なるものであっても良く、例えば一般式RX2で表される磁性合金を例示することができる。勿論、これに限らず、例えば希土類元素Rと遷移金属元素Xとの比率は任意に設定することができる。また、希土類元素Rは、1種類の希土類元素から構成しても良いし、2種類以上の希土類元素から構成しても良い。同様に、遷移金属元素Xについても、1種類の遷移金属元素から構成しても良いし、2種類以上の遷移金属元素から構成しても良い。 The rare earth magnetic refrigerant for a magnetic refrigeration system according to the present invention is based on the above-mentioned viewpoint, a magnetic alloy composed of a rare earth element R and a transition metal element X is used as a base compound, and boron (B) is added thereto. . Here the base compound, as long as the magnetic alloy comprising a rare earth element R and a transition metal element X may be any one can be exemplified a magnetic alloy represented e.g. by the general formula RX 2 . Of course, not limited to this, for example, the ratio of the rare earth element R and the transition metal element X can be arbitrarily set. The rare earth element R may be composed of one kind of rare earth element or may be composed of two or more kinds of rare earth elements. Similarly, the transition metal element X may be composed of one kind of transition metal element or may be composed of two or more kinds of transition metal elements.
母物質である磁性合金において、希土類元素Rとしては任意の希土類元素を使用することができ、遷移金属元素Xとしても任意の遷移金属元素を用いることができる。具体的な化合物としては、例えばErCo2等が好適である。 In the magnetic alloy that is the base material, any rare earth element can be used as the rare earth element R, and any transition metal element can be used as the transition metal element X. As a specific compound, for example, ErCo 2 is suitable.
その他、R3Co、R24Co11、R2Co、R3Co2、R4Co3、RCo、RCo2、RCo3、R2Co7、R5Co19、RCo5、R2Co17、RCo13、RMn2、R6Mn23、RMn5、RMn12、RTc2、RRe2、R5Re24、RFe2、RFe3、R6Fe23、R2Fe17、RRu、RRu2、ROs2、R3Rh、R7Rh3、R5Rh3、R4Rh3、RRh、RRh2、RRh3、R2Rh7、RRh5、R7Ir3、RIr、RIr2、RIr3、R2Ir7、RIr5、R3Ni、R7Ni3、R2Ni、R3Ni2、RNi、RNi2、RNi3、R2Ni7、RNi5、R2Ni17、R5Pd2、R7Pd3、R2Pd、R3Pd2、RPd、R3Pd4、RPd3、R7Pt3、RPt、R3Pt4、RPt2、RPt3、RPt5、RCu、RCu2、RCu5、RCu6、RCu7、RAg、RAg2、RAg3.6、R2Au、RAu、RAu2、RAu3、RAu3.6、RAu4、RAu6、RZn、RZn2、RZn3、R3Zn11、RZn4、R13Zn58、RZn5、R3Zn22、R2Zn17、RZn11、RZn12、RZn13、R3Al、R2Al、R3Al2、RAl、RAl2、RAl3、R3Al11、R3Tl、R2Tl、R5Tl3、RTl、RTl3、R5Si3、R3Si2、R5Si4、RSi、RSi2−x、RSi2、R5Ge3、R4Ge3、R5Ge4、R11Ge10、RGe、RGe2−x、RGe2、R3Sn、R5Sn3、R5Sn4、R11Sn10、RSn2、RSn3、R3Pb、R5Pb3、R4Pb3、R5Pb4、R11Pb10、RPb2、RPb3等も使用可能である。ここで、希土類元素Rは、Sc、Y、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Er、Luから選ばれる1種または2種以上であり、例えばRMn2の場合、Pr0.5Nd0.5Mn2であっても良い。 In addition, R 3 Co, R 24 Co 11 , R 2 Co, R 3 Co 2 , R 4 Co 3 , RCo, RCo 2 , RCo 3 , R 2 Co 7 , R 5 Co 19 , RCo 5 , R 2 Co 17 , RCo 13 , RMn 2 , R 6 Mn 23 , RMn 5 , RMn 12 , RTc 2 , RRe 2 , R 5 Re 24 , RFe 2 , RFe 3 , R 6 Fe 23 , R 2 Fe 17 , RRu, RRu 2 , ROs 2, R 3 Rh, R 7 Rh 3, R 5 Rh 3, R 4 Rh 3, RRh, RRh 2, RRh 3, R 2 Rh 7, RRh 5, R 7 Ir 3, rIr, rIr 2, rIr 3 , R 2 Ir 7, rIr 5 , R 3 Ni, R 7 Ni 3, R 2 Ni, R 3 Ni 2, RNi, RNi 2, RNi 3, R 2 Ni 7, RNi 5, R 2 Ni 17 , R 5 Pd 2 , R 7 Pd 3 , R 2 Pd, R 3 Pd 2 , RPd, R 3 Pd 4 , RPd 3 , R 7 Pt 3 , RPt, R 3 Pt 4 , RPt 2 , RPt 3 , RPt 5 , RCu, RCu 2 , RCu 5 , RCu 6 , RCu 7 , RAg, RAg 2 , RAg 3.6 , R 2 Au, RAu, RAu 2 , RAu 3 , RAu 3.6 , RAu 4 , RAu 6 , RZn, RZn 2 , RZn 3 , R 3 Zn 11 , RZn 4 , R 13 Zn 58 , RZn 5 , R 3 Zn 22 , R 2 Zn 17 , RZn 11 , RZn 12 , RZn 13 , R 3 Al, R 2 Al, R 3 Al 2 , RAl, RAl 2 , RAl 3 , R 3 Al 11 , R 3 Tl, R 2 Tl, R 5 Tl 3 , RTl, RTl 3 , R 5 Si 3 , R 3 Si 2 , R 5 Si 4, RSi, RSi 2 -x, RSi 2, R 5 Ge 3, R 4 Ge 3, R 5 Ge 4, R 11 Ge 10, RGe, RGe 2-x, RGe 2, R 3 Sn, R 5 Sn 3, R 5 Sn 4, R 11 Sn 10, RSn 2, RSn 3, R 3 Pb, R 5 Pb 3, R 4 Pb 3, R 5 Pb 4, R 11 Pb 10, RPb 2, RPb also 3 etc. It can be used. Here, the rare earth element R is one or more selected from Sc, Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu. For example, in the case of RMn 2 , Pr 0.5 Nd 0.5 Mn 2 may be sufficient.
本発明の希土類磁気冷媒において、ホウ素の添加量は任意に設定することができるが、0.1モル%以下とすることが好ましい。すなわち、前記希土類磁気冷媒をRX2Bxと表した場合、0<x≦0.1とすることが好ましい。前記xの値がゼロであると、ホウ素添加の効果を得ることができない。逆に、前記xの値が0.1を越えると、強磁性相転移温度Tcが無添加の時よりも低下するおそれがある。 In the rare earth magnetic refrigerant of the present invention, the amount of boron added can be arbitrarily set, but is preferably 0.1 mol% or less. That is, when the rare earth magnetic refrigerant is expressed as RX 2 B x , it is preferable that 0 <x ≦ 0.1. If the value of x is zero, the effect of boron addition cannot be obtained. On the other hand, if the value of x exceeds 0.1, the ferromagnetic phase transition temperature Tc may be lower than when it is not added.
表1に各種磁気冷媒の強磁性相転移温度Tc、磁気エントロピー変化ΔS、及びΔTを示す。 Table 1 shows the ferromagnetic phase transition temperature Tc and magnetic entropy changes ΔS and ΔT of various magnetic refrigerants .
また、本発明の希土類磁気冷媒は、毒性の高い元素を含んでおらず、水素雰囲気中での加熱等も必要なく、簡単な操作で安全且つ安定に製造することができる。例えば、各元素を所定の比率で混合し、アルゴン雰囲気中でアーク溶解(高温で不揮発な金属を溶かして混ぜる方法)することにより合成することができる。したがって、本発明の希土類磁気冷媒は、製造コストの点でも有利である。 In addition, the rare earth magnetic refrigerant of the present invention does not contain highly toxic elements, does not require heating in a hydrogen atmosphere, and can be manufactured safely and stably with simple operations. For example, each element can be mixed at a predetermined ratio and synthesized by arc melting in argon atmosphere (a method of melting and mixing non-volatile metals at a high temperature). Therefore, the rare earth magnetic refrigerant of the present invention is advantageous also in terms of production cost.
以下、本発明を適用した具体的な実施例について、実験結果を基に説明する。 Hereinafter, specific examples to which the present invention is applied will be described based on experimental results.
希土類磁気冷媒の合成
希土類元素RとしてEr、遷移金属元素XとしてCoを用い、モル比でEr:Co=1:2となるようにErとCoを秤取するとともに、所定の割合でホウ素(B)を添加し、アルゴン雰囲気中でアーク溶解することにより希土類磁気冷媒を作製した。作製した希土類磁気冷媒は、ErCo2、ErCo2B0.02、ErCo2B0.04、ErCo2B0.07、ErCo2B0.1の5種類である。
Synthetic rare earth magnetic refrigerant E r is used as the rare earth element R, Co is used as the transition metal element X, Er and Co are weighed so that the molar ratio is E r : Co = 1: 2, and at a predetermined ratio Boron (B) was added and arc-dissolved in an argon atmosphere to prepare a rare earth magnetic refrigerant. Rare earth magnetic refrigerant produced is, ErCo 2, ErCo 2 B 0.02 , ErCo 2 B 0.04, ErCo 2 B 0.07, a five ErCo 2 B 0.1.
X線回折による確認
作製した5種類の希土類磁気冷媒について、X線回折による解析を行った。各希土類磁気冷媒のX線回折パターンを図3(a)〜図3(e)に示す。
Confirmation by X-ray diffraction Five kinds of rare earth magnetic refrigerants prepared were analyzed by X-ray diffraction. The X-ray diffraction patterns of each rare earth magnetic refrigerant are shown in FIGS. 3 (a) to 3 (e).
これら図面を見ると明らかなように、ホウ素添加によってX線回折パターンはほとんど変化しておらず、母体磁性材料(ErCo2)の結晶構造が維持されていることがわかる。 As is apparent from these drawings, it can be seen that the X-ray diffraction pattern is hardly changed by the addition of boron, and the crystal structure of the base magnetic material (ErCo 2 ) is maintained.
格子定数
次に、各試料の格子定数を求めた。結果を図4及び表2に示す。
Lattice constant was then calculated lattice constants of the sample. The results are shown in FIG.
図4や表1から明らかなように、ホウ素添加によって格子定数の増加が見られる。これらのことから、添加したホウ素が母体であるErCo2の空隙に入り込み、結晶構造を損なうことなく体積の増大をもたらしているものと考えられる。実際、ErCo2では、ホウ素を7%添加することにより格子体積が0.8%増加した。 As is apparent from FIG. 4 and Table 1, an increase in lattice constant is observed with boron addition. From these facts, it is considered that the added boron enters the ErCo 2 void, which is the base material, and increases the volume without deteriorating the crystal structure. In fact, ErCo 2 increased the lattice volume by 0.8% by adding 7% boron.
強磁性相転移温度Tc
さらに、作製した各試料について強磁性相転移温度Tcを測定した。格子定数と強磁性相転移温度Tcの関係を図5及び表3に、ホウ素の添加量xと強磁性相転移温度Tcの関係を図6に示す。
Ferromagnetic phase transition temperature Tc
Further, the ferromagnetic phase transition temperature Tc was measured for each of the prepared samples. 5 and Table 3 show the relationship between the lattice constant and the ferromagnetic phase transition temperature Tc, and FIG. 6 shows the relationship between the boron addition amount x and the ferromagnetic phase transition temperature Tc.
先ず、図5及び表3から明らかなように、格子定数の拡大に伴って強磁性相転移温度Tcが上昇している。同様に、図6から明らかなように、ホウ素の添加に伴って強磁性相転移温度Tcが上昇している。ただし、いずれの場合も極大値があり、格子定数7.14Å付近、ホウ素添加量7%(x=0.07)付近で強磁性相転移温度Tcが最大となっている。
First, as is apparent from FIG. 5 and Table 3, the ferromagnetic phase transition temperature Tc increases as the lattice constant increases. Similarly, as apparent from FIG. 6, the ferromagnetic phase transition temperature Tc increases with the addition of boron. However, in each case, there is a maximum value, and the ferromagnetic phase transition temperature Tc is maximum in the vicinity of a lattice constant of 7.14% and a boron addition amount of 7% (x = 0.07).
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010210623A JP5686314B2 (en) | 2010-09-21 | 2010-09-21 | Rare earth magnetic refrigerant for magnetic refrigeration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010210623A JP5686314B2 (en) | 2010-09-21 | 2010-09-21 | Rare earth magnetic refrigerant for magnetic refrigeration system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012067329A JP2012067329A (en) | 2012-04-05 |
JP5686314B2 true JP5686314B2 (en) | 2015-03-18 |
Family
ID=46164936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010210623A Expired - Fee Related JP5686314B2 (en) | 2010-09-21 | 2010-09-21 | Rare earth magnetic refrigerant for magnetic refrigeration system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5686314B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104451351B (en) * | 2014-12-25 | 2016-08-24 | 安徽工业大学 | A kind of method adding rare earth raising boracic high-entropy alloy obdurability |
JP6648884B2 (en) * | 2015-08-21 | 2020-02-14 | 国立研究開発法人物質・材料研究機構 | Magnetic refrigeration material |
JP7378773B2 (en) * | 2019-10-11 | 2023-11-14 | 国立研究開発法人物質・材料研究機構 | Magnetic refrigeration materials, magnetic refrigeration systems using them, cold storage materials |
JP7210072B2 (en) * | 2020-02-05 | 2023-01-23 | 国立研究開発法人物質・材料研究機構 | Magnetic refrigeration material, AMR bed using same, and magnetic refrigeration apparatus |
WO2022186017A1 (en) * | 2021-03-04 | 2022-09-09 | 国立研究開発法人物質・材料研究機構 | Erco2-based magnetocaloric compound and magnetic refrigeration device using same |
WO2022209879A1 (en) * | 2021-03-30 | 2022-10-06 | 国立研究開発法人物質・材料研究機構 | Erco2-based magnetocaloric compound and magnetic refrigeration device using same |
CN116190031B (en) * | 2023-03-14 | 2024-04-19 | 中国科学院赣江创新研究院 | Application of rare earth borate in magnetic refrigeration material and preparation method of rare earth borate |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11325628A (en) * | 1998-05-11 | 1999-11-26 | Toshiba Corp | Cold storage material and cold storage type refrigerating machine |
JP4622179B2 (en) * | 2001-07-16 | 2011-02-02 | 日立金属株式会社 | Magnetic refrigeration work substance, regenerative heat exchanger and magnetic refrigeration equipment |
JP3947066B2 (en) * | 2002-09-05 | 2007-07-18 | 株式会社Neomax | Magnetic alloy material |
JP4413804B2 (en) * | 2005-03-24 | 2010-02-10 | 株式会社東芝 | Magnetic refrigeration material and manufacturing method thereof |
JP4237730B2 (en) * | 2005-05-13 | 2009-03-11 | 株式会社東芝 | Manufacturing method of magnetic material |
-
2010
- 2010-09-21 JP JP2010210623A patent/JP5686314B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012067329A (en) | 2012-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5686314B2 (en) | Rare earth magnetic refrigerant for magnetic refrigeration system | |
Yibole et al. | Direct measurement of the magnetocaloric effect in MnFe (P, X)(X= As, Ge, Si) materials | |
US8424314B2 (en) | Intermetallic compounds, their use and a process for preparing the same | |
Guo et al. | Excellent cryogenic magnetocaloric properties in heavy rare-earth based HRENiGa2 (HRE= Dy, Ho, or Er) compounds | |
Brück et al. | Magnetic refrigeration—towards room-temperature applications | |
US8293030B2 (en) | Intermetallic compounds, their use and a process for preparing the same | |
JP4663328B2 (en) | Magnetic material having cooling capacity, method for producing the material, and method for using the material | |
US20110126550A1 (en) | Magnetocaloric refrigerators | |
CN106350690B (en) | Rare earth gadolinium-based AMORPHOUS ALLOY RIBBONS for room temperature magnetic refrigerating material and preparation method thereof | |
US20080276623A1 (en) | Magnetic refrigerant material | |
JP2015141016A (en) | Magnetic refrigerator and cooling device including the same | |
JP2009221494A (en) | Magnetic refrigerating material | |
JP2006089839A (en) | Magnetic refrigeration working substance and magnetic refrigeration system | |
JP2007084897A (en) | Magnetic refrigeration working substance, and magnetic refrigeration method | |
CN103668008B (en) | Thulium base metal glass, preparation method and application | |
JP6009994B2 (en) | Magnetic refrigeration material | |
Kang et al. | Magnetoelastic coupling induced magnetocaloric property variations in Ni-doped (Mn, Fe) 2 (P, Si) alloys | |
Fujita et al. | Magnetocaloric properties in (La, R)(Fe, Mn, Si) 13H (R= Ce and Pr)—toward a better alloy design that results in a reduction in volume of permanent magnets and the establishment of long-term reliability in cooling systems | |
JP6205838B2 (en) | Magnetic working material for magnetic refrigeration apparatus and magnetic refrigeration apparatus | |
JP6115306B2 (en) | Magnetic working material for magnetic refrigeration apparatus and magnetic refrigeration apparatus | |
US9732406B2 (en) | Magnetic refrigeration material and magnetic refrigeration device | |
Canepa et al. | Magnetocaloric properties of Gd/sub 7/Pd/sub 3/and related intermetallic compounds | |
Brück et al. | Transition Metal Based Magneto Caloric Materials for Energy Efficient Heat Pumps | |
Lee et al. | The effect of refractory (Zr, Hf) elements on the magnetocaloric property of Mn-based alloys | |
JP6205839B2 (en) | Magnetic working material for magnetic refrigeration apparatus and magnetic refrigeration apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140805 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150109 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5686314 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |