JPH05124815A - 酸化物超電導体の製造方法 - Google Patents

酸化物超電導体の製造方法

Info

Publication number
JPH05124815A
JPH05124815A JP1283650A JP28365089A JPH05124815A JP H05124815 A JPH05124815 A JP H05124815A JP 1283650 A JP1283650 A JP 1283650A JP 28365089 A JP28365089 A JP 28365089A JP H05124815 A JPH05124815 A JP H05124815A
Authority
JP
Japan
Prior art keywords
superconductor
oxide
raw material
oxide superconductor
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1283650A
Other languages
English (en)
Inventor
Kazuyuki Shibuya
和幸 渋谷
Seiji Hayashi
征治 林
Yoshito Fukumoto
吉人 福本
Rikuro Ogawa
陸郎 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Kobe Steel Ltd
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER, Kobe Steel Ltd filed Critical KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Priority to JP1283650A priority Critical patent/JPH05124815A/ja
Priority to DE69020327T priority patent/DE69020327T2/de
Priority to KR1019910700270A priority patent/KR0159487B1/ko
Priority to PCT/JP1990/000877 priority patent/WO1991000847A1/ja
Priority to EP90910173A priority patent/EP0436723B1/en
Publication of JPH05124815A publication Critical patent/JPH05124815A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】 電子出願以前の出願であるので 要約・選択図及び出願人の識別番号は存在しない。

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は新規な酸化物超電導体を製造する方法 に関し、詳細には超電導遷移温度(以下、単に Tcと記すことがある)が液体窒素温度を十分に 超え、且つ加工中に酸素を放出して上記Tcが変 動するといった問題の少ない酸化物超電導体を製 造する方法に関するものである。
[従来の技術] 液体窒素温度を超えるTc(例えば90K)を もつ代表的酸化物超電導体として、三層構造ペロ ブスカイトRBa2Cu3O7(但しRはY若しくはラン タニド系列希土類元素よりなる群から選択される 1種以上の元素)が発見されている[Appl.phys. Lett.Vol.51(1987)P57]。
しかしながら上記酸化物超電導体は、構成員で ある酸素原子が加工時の熱影響によって抜け出し 易いという性質を有しており、従って加工時の熱 処理条件等で酸素含有量が変化し、それに伴なっ て斜方晶−正方晶転移を起こし、この相転移に よってTcも0Kから90Kまでの範囲で大きく 変動することが知られている[Phys.Rev.B36 (1987)P5719]。
例えばRBaCu粉末を銀パイプに充 填し、これを冷間線引加工によって線状にした 後、粉末部の焼結熱処理(800〜900℃)に よって超電導線材とする方法(銀シース線材法) を採用した場合、焼結熱処理時に酸素原子が抜け てしまい、超電導特性が劣化してしまうという欠 点があった。
これに対し、三層構造ペロブスカイトRBa Cu型結晶構造における1重のCuO鎖が 2重のCuO鎖になったRBaCu型酸 化物において、Rの0.1〜50原子%をCaに置 換した(R1−XCa)BaCu型酸化 物(xは0.001〜0.5)は、850℃付近まで加 熱しても酸素の抜け出しが見られず安定であり、 しかもTcが80〜90K付近にあって、液体 窒素温度を上回るので実用上からも重要な物質で あると注目されている[Nature341(1989)P41〜 42]。
[発明が解決しようとする課題] ところでRをCaに置換していないRBa Cu型酸化物超電導体の製造方法として は、これまで下記の2つの方法が提案されてい る。
(1)仮焼粉または仮焼なしの酸化物原料粉を純酸 素の高圧雰囲気下で熱処理(例えば930℃ ×8時間、酸素圧100atm)する方法[高 圧酸素法;Tc=81K,Nature 336 (1988) P660-662]。
(2)仮焼粉を炭酸ナトリウム等の触媒と混合し、 これを長時間酸素気流中で熱処理する方法 [常圧法;Tc=77K;Nature 338 (1989) P328-330]。
しかしながら、上記(1),(2)の方法では下記に 示す様な欠点があった。
(1)の方法では、温度や圧力条件によっては RBaCu7−δ相(以下1−2−3相と言 うことがある)やRBaCu相等が出 現し、RBaCu(以下1−2−4相と 言うことがある)の生成量が極めて少なくなり、 RBaCu相本来の特性が失われてしま うことが分かった。また(2)の方法では生成物中 に不純物が残り易いという欠点があった。更に (1),(2)のいずれの方法においても長時間の熱処 理を要することから、実際の応用には不向きであ るという問題があった。
一方RBaCu型酸化物のRの一部を Caで置換した(R1-XCaX)BaCu 型酸化物の製造方法としては、下記(3)の方法が 知られている。
(3)原料粉末を仮焼後、アルゴンガスと酸素ガ スの混合雰囲気下で熱間静水圧加圧処理 (以下HIP処理と言うことがある)を 行なう方法[Nature 341 (1989)P41〜 42]。
しかしながら、本発明者らが実験によって確認 したところによると、上記(3)の方法では下記に 示す様な欠点があることが分かった。
即ち(3)の方法では、仮焼時に一旦1−2−3 相が生成され、この1−2−3相を経て1−2− 4相が生成するので、長時間のHIP処理が必要 となるが、高温で長時間のHIP処理を続けるこ とは、1−2−4相が1−2−3相に比べて分解 し易いことから、一旦生成した1−2−4相が再 び1−2−3相へ分解してしまうという不都合が 生じる。
本発明はこうした技術的課題を解決する為にな されたものであって、その目的は、液体窒素温度 よりも十分高いTcを有し且つ加工時の高温下で 酸素の抜けが生じない様な安定な(R1-XCaX) BaCu型酸化物超電導体を、短時間且 つ高収率で製造する方法を提供することにあ る。
[課題を解決する為の手段] 上記目的を達成し得た本発明とは、R(但し RはY及びランタニド系列希土類元素よりなる群 から選択される1種以上の元素),Ca,Ba, Cu,Oからなる酸化物超電導体製造用原料粉末 混合物を、不活性ガスと酸素ガスの混合雰囲気 下、850〜1100℃の温度範囲で熱間静水圧 処理することにより、 (R1−XCa)BaCu で示される中間体としての酸化物を熱間静水圧処 理前に生成させないで、 (R1−XCa)BaCu で示される酸化物を含む酸化物超電導体を製造す る点に要旨を有する酸化物超電導体の製造方法で ある。
[作用] 本発明者らは、(R1−XCa)BaCu型酸化物超電導体を短時間且つ高収率で製造 するという観点に立ち、様々な角度から検討を加 えた。
その結果、1−2−3相が生成し易い熱処理工 程をできるだけ回避し、1−2−3相が生成して いない状態で原料粉末をHIP処理して直接1− 2−4相を形成すると共に、一旦生成した1− 2−4相が1−2−3相に分解されるのを抑えた 状態で反応を停止すれば、上記目的が見事に達成 されることを見出し、本発明を完成した。
本発明方法によれば、HIP処理前に1−2− 3相の合成が進行せず、且つ一旦生成した1− 2−4相が1−2−3相に分解されるのを極力抑 えることができるので、例えば仮焼や予備熱処理 等の1−2−3相が生じやすい反応の省略が達成 されて短時間化が図れると共に、HIP処理も長 時間行なう必要がなく、全体としての製造の効率 化が図れる。また炭酸塩を触媒として用いる必要 もなく、炭素原子が不純物として混入することに よる超電導特性の劣化という不都合も生じない。
但し、本発明では仮焼や予備熱処理は必ず省略し なければならないという訳ではなく、1−2−3 相が生成しない限度であればある程度のHIP前 処理は許容される。
本発明におけるHIP処理は、不活性ガスと酸 素ガスの混合雰囲気下の処理であるので、純酸素 による場合と同じ圧力(例えば200atm)を酸 素分圧で達成しようとすれば混合雰囲気としての 全圧を大幅に高めることができる。例えば不活性 ガスと酸素のモル比を1:1にしたときは全圧を 400気圧に、また4:1にしたときは全圧を 1000気圧にすることが可能となり、Cu原子 の拡散が更に高められ、(R1-XCaX)Ba2Cu4O8型酸 化物超電導体の生成が促進されるものと考えられ る。またこのことは、純酸素によって全圧力を高 くする場合と比べ、操業上の安全性の見地からも 大きな利点である。
HIP処理における温度は、(R1-XCaX)Ba2Cu3O7 型酸化物の生成を抑制し、(R1-XCaX)Ba2Cu4O8型 酸化物の生成を促進するという観点から、少なく とも850℃以上であることが必要であるが、 1100℃を超えると(R1-XCaX)2Ba4Cu7OZが生成 して混相となりやすいので温度上限は1100℃ にする必要がある。またHIP処理時間は原料粉 末の種類やHIP処理温度或は圧力によっても異 なり、一律には特定できないが、例えば1050 ℃でHIP処理した場合は5時間程度で1−2− 4相の生成が最大となり、10時間処理では1− 2−3相と1−2−4相の比率が50:50の混 相となることが分かっており、原料要因や反応 条件を勘案して総合的な立場から決定すれば良 い。
一方本発明において、(R1-XCaX)Ba2Cu4O8型酸 化物のCa置換量(即ちxの範囲)を、0.001〜 0.5とした理由は下記の通りである。即ちCa置 換の効果が現われるのはxが0.001以上のときで あり、また本発明の製造条件下においてはxが 0.5を超えることはほとんどないからである。
尚本発明のHIP処理前の原料粉末の組成は必 ずしも(R+Ca):Ba:Cu=1:2:4に する必要はなく、これから若干はずれた組成で あってもHIP処理によって実質的に(R1-XCaX) Ba2Cu4O8相が生成されておればよい。しかしこの 相を安定的に生成させるためにはやはり原料 粉末の組成を(R+Ca):Ba:Cu=1: 2:4にするのが好ましい。また原料粉末の形態 は、生成反応を容易に進行させるという観点か ら、Y,Ho,CaO,BaO, CuO,OuO等の酸化物を用いるのが好まし い。
また本発明におけるHIP処理工程と製品成形 工程との関係については、予め原料粉を混合 後、薄膜化或は線材化し、その後HIP処理して 超電導体としてもよく、或は粉末状態でHIP 処理を行なって超電導体とした後、薄膜化或は線 材化する様にしてもよい。
以下本発明を実施例によって更に詳細に説明す るが、下記実施例は本発明を限定する性質のもの ではなく、前・後記の趣旨に徴して設計変更する ことはいずれも本発明の技術的範囲に含まれるも のである。
[実施例] 実施例1 純度99.9%のY,Ho,CaO, BaO,CuOの各粉末を用い、(R1-X CaX)BaCu(但し、R=Y,H) におけるxが0,0.05,0.1,0.2,0.3,0.5 となる様に各種原料粉末混合物を調製した。尚こ の際、BaO,CuOは空気中では不安定である ので、混合調製はアルゴン雰囲気のグローブボッ クス内で行なった。次に、混合調製した原料粉末 混合物を仮焼(または予備熱処理工程)を経ずし てAr−80%,O−20%の混合ガス雰囲気 下、全圧1500atm(酸素分圧Po=300 atm)にて1050℃の温度で3時間のHIP処 理を行なった。
得られた粉末をX線回折に付した。第1図およ び第2図にその結果の一部を示す。第1図は Y0.9Ca0.1BaCuに対応するもの であり、第2図はHo0.95Ca0.05BaCuに対応するものである。第1図の粉末X線 パターンでは、粉末生成相がYBaCu 型構造を示すことを示しており、第2図の 粉末X線パターンでは、粉末生成相がHoBa Cu型構造であることを示している。
また前記粉末試料の超電導特性を振動試料型 磁力計を用いて測定した。その結果の一部を 第3図に示す。第3図は(Y0.9Ca0.1) BaCuに対応するものである。
粉末X線回折の結果で1−2−4相の他に 1−2−3相の認められないサンプルとして (Y1−XCa)BaCu(x=0, 0.05,0.1,0.2)及び(Ho1−XCa) BaCu(x=0,0.05,0.1)を選 び、4.2Kにおけるマイスナー体積分率および Tc値を第1表に示した。
比較例 純度99.9%のY,Ho,BaCO, CuO,CaCOの各粉末を用い、(R1−X Ca)BaOu(但し、R=Y, Ho)におけるxが0,0.05,0.1,0.2, 0.3,0.5となる様に原料粉末混合物を調製し、 空気中で880℃×16時間の仮焼処理を行 なった。仮焼粉を粉砕した後、Ar−80%, O−20%の混合ガス雰囲気下、全圧1500 atm(酸素分圧Po=200atm)にて 1050℃の温度で3時間のHIP処理を行なっ た。
得られた粉末をX線回折に付して含有相の決定 を行なうと共に、実施例と同様にして超電導特性 を測定した。
その結果を生成相と共に第2表に示す。
第1表および第2表の結果から明らかである が、本発明方法によれば短時間でしかも高収率で (R1-XCaX)BaCu型酸化物超電 導体が得られているのがよく分かる。
[発明の効果] 以上述べた如く本発明によれば、液体窒素 温度よりも十分高い超電導遷移温度を有し、 且つ加工時の高温下で酸素の抜けが生じない様な (R1-XCaX)BaCu型酸化物超電 導体が短時間且つ高収率で得られた。
【図面の簡単な説明】
第1図は本発明によって得られる(Y1-X CaX)BaCuの粉末X線回折パター ンを示すグラフ、第2図は本発明によって得 られる(Ho1-XCaX)BaCuの 粉末X線回折パターンを示すグラフ、第3図は Y0.9Ca0.1BaCuの超電導特性を 示すグラフである。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 陸郎 兵庫県神戸市北区泉台3―12―11

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 R(但しRはY及びランタニド系列希土
    類元素 よりなる群から選択される1種以上の元素), Ca,Ba,Cu,Oからなる酸化物超電導体製 造用原料粉末混合物を、不活性ガスと酸素ガスの 混合雰囲気下、850〜1100℃の温度範囲で 熱間静水圧処理することにより、 (R1−XCa)BaCu で示される中間体として酸化物を熱間静水圧処 理前に生成させないで、 (R1−XCa)BaCu (但し、上記各式においてxは0.001〜0.5, Rは前と同じ意味) で示される酸化物を含む酸化物超電導体を生成 することを特徴とする酸化物超電導体の製造方 法。
JP1283650A 1989-07-07 1989-10-30 酸化物超電導体の製造方法 Pending JPH05124815A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1283650A JPH05124815A (ja) 1989-10-30 1989-10-30 酸化物超電導体の製造方法
DE69020327T DE69020327T2 (de) 1989-07-07 1990-07-07 Oxyde supraleitfahiges mittel und verfahren zur herstellung.
KR1019910700270A KR0159487B1 (ko) 1989-07-07 1990-07-07 산화물초전도체 및 그 제조방법
PCT/JP1990/000877 WO1991000847A1 (en) 1989-07-07 1990-07-07 Oxide superconductor and method of producing the same
EP90910173A EP0436723B1 (en) 1989-07-07 1990-07-07 Oxide superconductor and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1283650A JPH05124815A (ja) 1989-10-30 1989-10-30 酸化物超電導体の製造方法

Publications (1)

Publication Number Publication Date
JPH05124815A true JPH05124815A (ja) 1993-05-21

Family

ID=17668271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1283650A Pending JPH05124815A (ja) 1989-07-07 1989-10-30 酸化物超電導体の製造方法

Country Status (1)

Country Link
JP (1) JPH05124815A (ja)

Similar Documents

Publication Publication Date Title
US5409888A (en) Process for producing a high-temperature superconductor and also shaped bodies composed thereof
EP0280812B1 (en) Superconductivity in square - planar compound systems
EP0411943B1 (en) Metal oxide 247 superconducting materials
JPH05124815A (ja) 酸化物超電導体の製造方法
EP0659704B1 (en) Method of manufacturing oxide superconductor
EP1411154B1 (en) Oxide high-critical temperature superconductor acicular crystal and its production method
EP0436723B1 (en) Oxide superconductor and method of producing the same
JP2821568B2 (ja) 超電導ウィスカー複合体の製造方法
JP2634187B2 (ja) タリウム系酸化物超電導体の製造方法
JP2597579B2 (ja) 超電導体の製造方法
JPH02243519A (ja) 酸化物超伝導体及びその製造方法
JPH02153823A (ja) 酸化物超電導体の作製方法
JP2675998B2 (ja) 粒子高配向性高緻密焼結体の製造法
JPH06345425A (ja) 酸化物超電導体及びその製造方法
Kutami et al. Direct synthesis of orthorhombic YBa2Cu3Ox by using Ba (NO3) 2 as a flux
JPH0393664A (ja) 酸化物超電導体の製造方法
JPH02258665A (ja) 超伝導材料の製造方法
JPH04285058A (ja) ビスマス系酸化物超伝導材の製造方法
JPH03131521A (ja) 酸化物超伝導体およびその製造方法
JPH02296729A (ja) 酸化物超電導体
JPH01157455A (ja) 酸化物超電導焼結体の製造方法
JPH09255332A (ja) 酸化物超電導体の作製方法
JPH06321537A (ja) 酸化物超電導材料の製造方法
JPH01270561A (ja) 酸化物超電導体の製造方法
JPH02172823A (ja) Bi系酸化物超電導体の製造方法