JPH0479310B2 - - Google Patents

Info

Publication number
JPH0479310B2
JPH0479310B2 JP60022771A JP2277185A JPH0479310B2 JP H0479310 B2 JPH0479310 B2 JP H0479310B2 JP 60022771 A JP60022771 A JP 60022771A JP 2277185 A JP2277185 A JP 2277185A JP H0479310 B2 JPH0479310 B2 JP H0479310B2
Authority
JP
Japan
Prior art keywords
layer
thermal head
solder
conductor
terminal portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60022771A
Other languages
Japanese (ja)
Other versions
JPS61182964A (en
Inventor
Noboru Araya
Hisahiro Hiraide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP60022771A priority Critical patent/JPS61182964A/en
Publication of JPS61182964A publication Critical patent/JPS61182964A/en
Publication of JPH0479310B2 publication Critical patent/JPH0479310B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/345Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads characterised by the arrangement of resistors or conductors

Landscapes

  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はサーマルヘツドに関し、詳しくは複数
個の発熱抵抗体素子を同一基板上に直線的に配置
し、情報に従い、この発熱抵抗体素子を通電発熱
させて感熱記録紙に発色記録させ、あるいはイン
クリボンを介して普通紙に転写記録させるサーマ
ルヘツドに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a thermal head, and more specifically, a plurality of heating resistor elements are linearly arranged on the same substrate, and the heating resistor elements are energized according to information. This invention relates to a thermal head that generates heat to perform color recording on thermosensitive recording paper, or transfers and records onto plain paper via an ink ribbon.

〔従来技術〕[Prior art]

従来のサーマルヘツドは、例えば第6図に示す
ように、電気絶縁性のアルミナ基板1の上に薄く
グレーズ層2を設け、その上にTa2Nなどからな
り発熱して感熱記録紙(図示せず)等に発色エネ
ルギーを与える発熱抵抗体層3と、その発熱抵抗
体層3に接続されて情報に応じて電流を通じる
Al、Niなどからなる導体層4,5(Niからなる
導体層5は第7図を参照されたい)と、SiO2
どからなり、前記発熱抵抗体層3を酸化による劣
化から保護する耐酸化層6と、Ta2O5などからな
り、感熱記録紙との接触による摩耗から前記発熱
抵抗体層3及び導体層4及び耐熱酸化層6を保護
するための耐摩耗層7とを順次積層して形成され
ている。
For example, as shown in Fig. 6, a conventional thermal head has a thin glaze layer 2 formed on an electrically insulating alumina substrate 1, and is made of Ta 2 N, etc., which generates heat and coats a thermal recording paper (not shown). A heating resistor layer 3 that provides coloring energy to
Conductor layers 4 and 5 made of Al, Ni, etc. (please refer to FIG. 7 for the conductor layer 5 made of Ni), and an oxidation-resistant layer made of SiO 2 etc. to protect the heating resistor layer 3 from deterioration due to oxidation. layer 6, and a wear-resistant layer 7 made of Ta 2 O 5 or the like for protecting the heat-generating resistor layer 3, conductor layer 4, and heat-resistant oxidation layer 6 from abrasion due to contact with thermal recording paper. It is formed by

そして、前記導体層4,5に電流を通じたと
き、導体層4の一部が取り除かれて一段下つて形
成された発熱部8が発熱して感熱記録紙等に発色
記録エネルギーを与えるようになつている。第7
図に示すように、上記サーマルヘツドは発熱部8
の両側に、共通電極ライン9とそれぞれの個別電
極ライン10a〜10gとが設けられている。そ
して、共通及び個別の電極ライン9,10a〜1
0gの両者は、図中、線Bにより示された下側の
端子部11の範囲域で、第9図に示すように半田
層13がニツケル層5を覆つて予備半田付されて
いる。この半田層13は、外部回路と、半田付に
より接続されるようになつている。第7図中の線
Bにより示された下側の端子部11以外の上側の
ヘツド面12は、耐酸化層6及び耐摩耗層7によ
つて覆われ保護されている。なお、第6図は第7
図のA−A′線に沿つて切断した拡大断面図であ
る。
When a current is passed through the conductor layers 4 and 5, a part of the conductor layer 4 is removed, and the heat generating part 8 formed one step lower generates heat and gives color recording energy to the thermal recording paper or the like. ing. 7th
As shown in the figure, the thermal head has a heat generating section 8.
A common electrode line 9 and respective individual electrode lines 10a to 10g are provided on both sides. And common and individual electrode lines 9, 10a-1
As shown in FIG. 9, the solder layer 13 covers the nickel layer 5 and is pre-soldered in the area of the lower terminal portion 11 indicated by the line B in the figure. This solder layer 13 is connected to an external circuit by soldering. The upper head surface 12 other than the lower terminal portion 11 indicated by line B in FIG. 7 is covered and protected by an oxidation-resistant layer 6 and an abrasion-resistant layer 7. Note that Figure 6 is the same as Figure 7.
FIG. 2 is an enlarged cross-sectional view taken along line A-A' in the figure.

〔従来の問題点〕[Conventional problems]

このような従来のサーマルヘツドにおいて、端
子部11には第9図に示すように半田層13がニ
ツケル層5を覆つて予備半田付されているが、そ
の予備半田付の方法は、例えばサーマルヘツドを
直接、溶融半田に浸漬したり、又は半田クリーム
を端子部に印刷して、リフローしたりする場合な
どがある。このいずれの場合も溶融した半田は表
面張力により導体層上でカマボコ型に盛り上が
り、端子幅寸法の大小により、その厚みと付着量
は異なる。一般に、サーマルヘツドの端子間ギヤ
ツプ寸法は0.2mm以内と小さなものであり、その
サーマルヘツドに単なる半田デイツプによつて半
田層13を形成した場合、端子部11に外部回路
(図示せず)との電気接続を行うフレキシブル・
プリント回路(FPC)を位置決めし、加圧、加
熱して両方の半田を溶かし、溶着させた時、根本
的に半田量が多く、互いの端子間に半田ブリツジ
が生じ、電気的シヨート不良を多発する。このた
め、サーマルヘツドの端子半田デイツプ工程にお
いては、例えばノズルから圧縮空気を吹き付けて
表面張力による盛り上がりを押えているが、それ
ぞれの端子に付着した半田の厚みのバラツキは、
サーマルヘツドが形成されたチツプ内で略10〜
20μmも生じるものがある。このように、半田デ
イツプ法による端子部11の半田層13の形成は
厚みのバラツキが根本的に大きくなることはさけ
られない欠点である。
In such a conventional thermal head, a solder layer 13 is pre-soldered to the terminal portion 11 so as to cover the nickel layer 5, as shown in FIG. In some cases, the terminal is directly immersed in molten solder, or solder cream is printed on the terminal and reflowed. In either case, the molten solder rises in a semicircular shape on the conductor layer due to surface tension, and its thickness and adhesion amount vary depending on the width of the terminal. Generally, the gap size between the terminals of a thermal head is small, within 0.2 mm, and when the solder layer 13 is formed on the thermal head by a simple solder dip, the terminal portion 11 is connected to an external circuit (not shown). Flexible electrical connections
When a printed circuit (FPC) is positioned, pressurized and heated to melt and weld both solders, there is fundamentally a large amount of solder, and solder bridging occurs between the terminals, resulting in frequent electrical shot defects. do. For this reason, in the terminal solder dipping process for thermal heads, for example, compressed air is blown from a nozzle to suppress swelling caused by surface tension, but variations in the thickness of the solder attached to each terminal are
Approximately 10~ within the chip where the thermal head is formed
In some cases, the diameter is as large as 20 μm. As described above, the formation of the solder layer 13 of the terminal portion 11 by the solder dip method has the unavoidable drawback that the variation in thickness becomes fundamentally large.

例えば、第9図に示すように、半田層13の厚
みのバラツキの大きい状態で外部回路接続用の
FPC(図示せず)を溶着するとき、加圧、加熱し
ていくと複数の端子の中で最も半田層13が盛り
上がり、高くなつた部分に集中荷重が加わり、そ
の部分の半田が多量に溶けて広がり、全体の端子
がFPCに接続されたときには端子間に半田のブ
リツジが生じ、電気的にシヨート不良を多発する
ものであり、製造管理が困難となり、最終工程に
おいて完全不良となるため損失額が大きいなどの
重大な欠点があつた。また、従来のサーマルヘツ
ドにおいてニツケル(Ni)から成る導体層5を
設けるのは、Alが半田付性に劣り、カーマルヘ
ツドの端子として外部回路と半田付によつて接続
することに適さないため、半田付けされやすい
NiをAlの上に蒸着して、外部回路との容易な接
続を可能とするためである。導体層4,5は、従
来発熱抵抗体層3の上に、まず、Alの導体層4
を蒸着し、その上にNiの導体層5を蒸着してホ
トリソ技術で2回のマスキングにより、順にNi
→Al→Ta2N→Alの各層をパターンニングしてヘ
ツド面にて電極部と発熱部を形成し、ヘツド面に
て耐酸化層6と耐摩耗層7とからなる保護層17
を被覆すれば、サーマルヘツドとなる。しかし、
この場合、Al層より上のNiと耐酸化層6のSiO2
の密着性が悪いため、一般に保護層17を被覆す
るヘツド面12の導体層4は第7図に示すように
Ni層をエツチング除去してAlのみとしている。
このため、第8図のように従来のフオトプロセス
は、Ta2Nエツチングの後、次のAlエツチングの
前にNiエツチングのためのレジストコートから
レジスト剥離の工程を要し、反復3回、マスキン
グすることになり、計23工程と多大の時間を要
し、著しくコスト高となる欠点があつた。なお、
第8図中のレジストコート(工程、、)、
プリベーク(溶剤蒸発)(工程、、)、アラ
イメント(マスクと基板の位置合わせ)・露光
(工程、、)、現像・リンス(工程、、
)、ポストベーク(レジストの密着性を上げる
工程)(工程、、)、エツチング(工程、
、、、)及びレジスト剥離(工程、
、〓〓)工程は、通常のマスキングで行われてい
る技術を示す。
For example, as shown in FIG. 9, when the thickness of the solder layer 13 varies widely,
When welding an FPC (not shown), as pressure and heat are applied, the solder layer 13 rises the most among the multiple terminals, a concentrated load is applied to the raised part, and a large amount of solder in that part melts. When all the terminals are connected to the FPC, solder bridging occurs between the terminals, which causes many electrical short defects, which makes manufacturing control difficult and results in complete defects in the final process, resulting in large losses. It had serious drawbacks, such as a large amount of Furthermore, the conductor layer 5 made of nickel (Ni) is provided in a conventional thermal head because Al has poor solderability and is not suitable for connecting to an external circuit by soldering as a terminal of a thermal head. easy to attach
This is because Ni is deposited on Al to enable easy connection with external circuits. The conductor layers 4 and 5 are formed by first placing an Al conductor layer 4 on top of the conventional heating resistor layer 3.
A conductor layer 5 of Ni is deposited on top of the Ni conductor layer 5, and by masking twice using photolithography, the Ni conductor layer 5 is deposited on it.
→Al→Ta 2 Each layer of N→Al is patterned to form an electrode part and a heat generating part on the head surface, and a protective layer 17 consisting of an oxidation-resistant layer 6 and a wear-resistant layer 7 is formed on the head surface.
If it is covered, it becomes a thermal head. but,
In this case, Ni above the Al layer and SiO 2 in the oxidation-resistant layer 6
Because of the poor adhesion of the conductor layer 4 on the head surface 12 covering the protective layer 17, as shown in FIG.
The Ni layer is etched away leaving only Al.
For this reason, as shown in Fig. 8, the conventional photo process requires a step of removing the resist from the resist coat for Ni etching after Ta 2 N etching and before the next Al etching, and repeats the masking process three times. This required a total of 23 steps, which took a lot of time, and had the drawback of significantly increasing costs. In addition,
Resist coat (step, ) in Fig. 8,
Pre-bake (solvent evaporation) (process, ,), alignment (positioning of mask and substrate)/exposure (process, , ), development/rinsing (process, ,)
), post-bake (process to improve resist adhesion) (process, ), etching (process,
) and resist stripping (process,
, 〓〓) process shows the technique used in normal masking.

しかも、サーマルヘツドの保護層17を被覆し
ないヘツド端子部11において、フオトエツチン
グされた端子部11の断面を見ると、第9図に示
すように下にAlの導体層4、上にNiの導体層5
が積層された2層構造となつている。このためイ
オン化傾向順位の大きく異なるAlとNiの接合部
が外気に触れていることから、湿気等により腐蝕
が発生して導体抵抗が上昇しやすく、防湿性の良
いプラステイツク接着剤等を選定して湿気を封ず
るようなパシベーシヨンが不可欠であるなど信頼
性に欠けるものであつた。
Moreover, when looking at the cross section of the photoetched terminal part 11 in the head terminal part 11 which is not covered with the protective layer 17 of the thermal head, as shown in FIG. layer 5
It has a two-layered structure. For this reason, since the joint between Al and Ni, which have significantly different ionization tendency rankings, is exposed to the outside air, corrosion is likely to occur due to moisture, etc., and the conductor resistance increases. Therefore, a plastic adhesive with good moisture resistance should be selected. It lacked reliability, requiring passivation to seal out moisture.

〔発明の目的〕[Purpose of the invention]

本発明は、前記従来技術の問題点に鑑みてなさ
れたものであり、その目的とするところは導体層
4,5からなる端子部11の製造方法を変更する
ことにより、端子部11の半田厚み寸法のバラツ
キを低減し、製造歩留りの高いサーマルヘツドを
提供することにあり、さらにまた、サーマルヘツ
ド製造プロセスの導体層成膜工数及びフオトプロ
セスの工数を削減し、コスト低減をはかるととも
に、端子部11のAlからなる導体層4の全面を
Niからなる導体層5で被覆して異種の金属の接
合部が外気に触れないものとし、耐蝕効果を増
し、信頼性の高いサーマルヘツドを提供すること
にある。
The present invention has been made in view of the problems of the prior art, and its purpose is to reduce the solder thickness of the terminal portion 11 by changing the manufacturing method of the terminal portion 11 consisting of the conductor layers 4 and 5. The purpose is to provide a thermal head with reduced dimensional variations and a high manufacturing yield.Furthermore, it reduces the number of steps for forming a conductor layer and photo process in the thermal head manufacturing process, reducing costs and reducing the number of terminals. The entire surface of the conductor layer 4 made of Al of 11
The purpose of this invention is to provide a thermal head which is coated with a conductive layer 5 made of Ni so that the joints of different metals are not exposed to the outside air, thereby increasing the corrosion resistance effect and having high reliability.

〔発明の構成〕[Structure of the invention]

かかる目的を達成するために、本発明は、絶縁
性基板上にグレーズ層を設け、該グレース層上に
発熱抵抗体層を設け、さらに該発熱抵抗体層に供
電するアルミニウム又はアルミニウム合金からな
る導体層を設けるとともに、耐酸化層及び耐摩耗
層を順に積層してなるサーマルヘツドであつて、
前記導体層の端子部に該端子部の全面を包囲する
ようにニツケル又は銅若しくはそれ等の合金から
なる下地鍍着層を形成し、さらにこの下地鍍着層
上にスズ又はスズ合金からなる低融点金属層を鍍
着したことを特徴とするものである。
In order to achieve this object, the present invention provides a glaze layer on an insulating substrate, a heating resistor layer on the glaze layer, and a conductor made of aluminum or aluminum alloy that supplies electricity to the heating resistor layer. A thermal head comprising a layer, an oxidation-resistant layer and an abrasion-resistant layer laminated in this order,
A base plating layer made of nickel, copper, or an alloy thereof is formed on the terminal portion of the conductor layer so as to surround the entire surface of the terminal portion, and a low plating layer made of tin or a tin alloy is further formed on the base plating layer. It is characterized by being plated with a melting point metal layer.

前記絶縁基板、グレーズ層及び発熱抵抗体層は
従来、公知の材料、例えば絶縁基板にアルミナ、
グレーズ層にガラス、発熱抵抗体層にTa2N等を
使用し得るが、この他、これら材料と同一機能を
持つ材料を用いることができることはいうまでも
ない。グレース層、発熱抵抗体層及びアルミニウ
ム又はアルミニウム合金(例えばアルミニウムと
シリコンの合金)から成る導体層を従来法を用い
て所定膜厚に形成する。
The insulating substrate, glaze layer, and heating resistor layer are conventionally made of known materials, such as alumina,
Although glass can be used for the glaze layer and Ta 2 N can be used for the heating resistor layer, it goes without saying that other materials having the same functions as these materials can also be used. A grace layer, a heating resistor layer, and a conductor layer made of aluminum or an aluminum alloy (for example, an alloy of aluminum and silicon) are formed to a predetermined thickness using a conventional method.

ヘツド面における導体層の導電パターンを作る
には、フオトリリ技術で2回の慣用マスキング反
復により作る。例えば、後述する実施例のように
行う。
The conductive pattern of the conductor layer on the head surface is produced by two conventional masking iterations using photolithography techniques. For example, it is performed as in the embodiment described later.

耐酸化層及び耐摩耗層も、従来公知の材料、例
えば耐酸化層にSiO2、耐摩耗層にはTa2O5等を使
用し得るが、この他、これら材料と同一機能を持
つ材料を用いることができることはいうまでもな
い。
The oxidation-resistant layer and the wear-resistant layer can also be made of conventionally known materials, such as SiO 2 for the oxidation-resistant layer and Ta 2 O 5 for the wear-resistant layer, but other materials having the same functions as these materials may also be used. Needless to say, it can be used.

これらの各層の成膜も、従来法、例えば、スパ
ツタリングにより、所望の膜厚に形成して行う。
Each of these layers is also formed to a desired thickness by a conventional method such as sputtering.

端子部におけるAlの導体層の導電パターンは
ヘツド面での導電パターン形成時に形成される。
そして、電解鍍着のための下地金属(ニツケル又
は銅)の鍍着層は無電解又は電解メツキ処理によ
り作られるが、一般に、無電解メツキ処理を行う
ことにより作られることが多い。その厚さは、ニ
ツケル層のピンホール対策上から約2μm以上が
好ましい。低融点金属層(スズ又はスズ合金)は
下地鍍着層を介して電解メツキ処理により形成す
る。その層厚は、10〜20μmが望ましい。
The conductive pattern of the Al conductor layer in the terminal portion is formed when the conductive pattern is formed on the head surface.
The plated layer of the base metal (nickel or copper) for electrolytic plating is produced by electroless or electrolytic plating, but generally it is often produced by electroless plating. The thickness is preferably about 2 μm or more from the viewpoint of preventing pinholes in the nickel layer. The low melting point metal layer (tin or tin alloy) is formed by electrolytic plating through the base plating layer. The layer thickness is preferably 10 to 20 μm.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図ないし第5図
に従つて説明する。なお、図中、従来例として示
した第6図、第7図及び第9図と同一物には、同
一符号が付してある。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. In the drawings, the same components as in FIGS. 6, 7, and 9 shown as conventional examples are given the same reference numerals.

第1図に示すように、絶縁性基板1の表面を薄
いグレーズ層2で覆つた、いわゆるグレーズドア
ルミナ基板上にTaをAγとN2ガスのリアクテイ
ヴスパツタリング法により0.05〜0.2μmの厚みで
Ta2Nから成る発熱抵抗体層3を形成し、次に約
2μmの厚みでAlからなる導体層4を形成する。
そして、第3図に示すように図中矢印進行方向の
工程(〜)を行い、フオトリソ技術で2回の
慣用マスキング反覆により順にレジストコート
(工程)、プリベーク(工程)、アライメン
ト・露光(工程)、現像・リンス(工程)、ポ
ストベーク(工程)、Alエツチング(工程)、
Ta2Nエツチング(工程)、レジスト剥離(工
程)を行い、再びレジストコート(工程)、
プリベーク(工程)、アライメント・露光(工
程)、現像・リンス(工程)、ポストベーク
(工程)、Alエツチング(工程)そしてレジ
スト剥離(工程)を順に行う。よつて、15工程
で電極部と発熱部パターンを形成する。次に、端
子部11をメタルマスクで覆つた後、約2μmの
厚みのSiO2膜よりなる耐酸化層6及び約5μmの
厚みのTa2O5よりなる耐摩耗層7をスパツタリン
グにより形成することにより、ヘツド面12は作
成される。
As shown in FIG. 1, on a so-called glazed alumina substrate, in which the surface of an insulating substrate 1 is covered with a thin glaze layer 2, Ta is deposited to a thickness of 0.05 to 0.2 μm by reactive sputtering using Aγ and N2 gas. in thickness
A heating resistor layer 3 made of Ta 2 N is formed, and then approximately
A conductor layer 4 made of Al is formed with a thickness of 2 μm.
Then, as shown in Figure 3, the steps (~) in the direction of the arrow in the figure are performed, and resist coating (process), pre-bake (process), and alignment/exposure (process) are performed in order by repeating conventional masking twice using photolithography technology. , development/rinsing (process), post-bake (process), Al etching (process),
Ta 2 N etching (process), resist stripping (process), resist coating again (process),
Pre-bake (process), alignment/exposure (process), development/rinsing (process), post-bake (process), Al etching (process), and resist stripping (process) are performed in this order. Therefore, the electrode part and the heat generating part pattern are formed in 15 steps. Next, after covering the terminal portion 11 with a metal mask, an oxidation-resistant layer 6 made of SiO 2 film with a thickness of about 2 μm and a wear-resistant layer 7 made of Ta 2 O 5 with a thickness of about 5 μm are formed by sputtering. Thus, the head surface 12 is created.

次に、第4図に示す工程で端子部11の範囲域
でのアルミ層(第2図及び第5図参照)に選択的
に無電解メツキを行い、ニツケル層14を約2μ
mの厚みで第5図のように端子全面に被面し、そ
して低融点金属層15をニツケル層14を覆つて
スズ又はスズ合金の電解メツキにより形成して第
1図及び第2図の端子部16を作製した後、外部
回路(図示せず)との接続を行うものである。
Next, in the step shown in FIG. 4, electroless plating is selectively applied to the aluminum layer (see FIGS. 2 and 5) in the area of the terminal portion 11, and the nickel layer 14 is coated with approximately 2μ
The terminal of FIGS. 1 and 2 is formed by electrolytically plating tin or a tin alloy to cover the entire surface of the terminal with a thickness of m, and covering the nickel layer 14 with a low melting point metal layer 15 as shown in FIG. 5. After the section 16 is manufactured, it is connected to an external circuit (not shown).

本実施例によれば、ヘツド面12の導体層4を
その上にNi層を一旦形成する過程を経ずにAl又
はAl合金の単層蒸着とするため、成膜材料、成
膜時間、メンテナンス時間の削減とフオトプロセ
スにおけるマスキングとエツチングの反復回数の
削減がはかられ、従来、多大の時間を要してした
工程が削減されて著しく時間短縮された。また、
上述した従来のサーマルヘツドの製造過程にはな
かつた端子部の電解ハンダメツキの処理は、第4
図に示すように順にアルカリ脱脂、酸洗、Zn置
換、無電解Niメツキ、電解ハンダメツキ、フレ
オン乾燥を行う工程から成り、多数枚の基板を同
時に処理できる上、その工程は製造時間として、
約30分サイクルとなり、マスキング、エツチン
グ、ハンダデイツプの一連の工程に費す時間に比
べて大巾に短かいため、サーマルヘツド製造工程
の時間短縮効果は大きい。また、端子部はスズ又
はスズ合金を電解メツキで鍍着させるため、全面
にメツキ膜厚が均一に被覆でき、上述した従来の
サーマルヘツドのハンダ被覆と対比すると著しく
厚みのバラツキが少なく、外部回路の接続におい
て均一に溶融するため製造管理が容易で製造歩留
りが著しく高くなる。また、無電解ニツケルメツ
キは、メツキ液に接するAlの全面に一様にNi膜
を被覆してAlとNi接合部が外気に接触しなくな
るため、Alの防蝕効果がある。
According to this embodiment, since the conductor layer 4 on the head surface 12 is formed by depositing a single layer of Al or Al alloy without going through the process of once forming a Ni layer thereon, the film forming material, film forming time, maintenance The reduction in time and the number of repetitions of masking and etching in the photo process has been achieved, and the process that conventionally took a lot of time has been eliminated, resulting in a significant time reduction. Also,
The process of electrolytic solder plating of the terminal part, which was not included in the manufacturing process of the conventional thermal head mentioned above, is carried out in the fourth step.
As shown in the figure, the process consists of alkaline degreasing, pickling, Zn replacement, electroless Ni plating, electrolytic solder plating, and Freon drying in order, and not only can a large number of substrates be processed simultaneously, but the process requires a short manufacturing time.
The cycle time is approximately 30 minutes, which is much shorter than the time required for the series of masking, etching, and soldering processes, so it has a significant time-saving effect in the thermal head manufacturing process. In addition, since the terminal part is plated with tin or tin alloy by electrolytic plating, the plating film can be coated uniformly over the entire surface, and compared to the solder coating of the conventional thermal head mentioned above, there is significantly less variation in thickness, and the external circuit Because it melts uniformly in the connections, manufacturing control is easy and manufacturing yields are significantly high. In addition, electroless nickel plating has a corrosion-preventing effect on Al because it uniformly coats the entire surface of Al that is in contact with the plating solution with a Ni film so that the joint between Al and Ni does not come into contact with the outside air.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明は、ヘツド面の導体層をア
ルミニウム又はアルミニウム合金層上にニツケル
層を一旦形成する過程を経ずに、アルミニウム又
はアルミニウム合金の単層蒸着とし、かつ、端子
部をアルミニウム又はアルミニウム合金の導体層
の上にそれを囲繞してニツケル又は銅メツキ層を
形成し、さらにその上に低融点金属(スズ又はス
ズ合金)層を形成したサーマルヘツドなので、絶
縁基板上のアルミニウム又はアルミニウム合金か
らなる導体層上に、一旦ニツケル層を形成した
後、ヘツド面でのニツケル層を除いた従来のサー
マルヘツドに比べてニツケル層の成膜材料、導体
層成膜工数及びフオトプロセスの工数を大幅に削
減して、その分、コスト低減を容易に達成でき
る。
As described above, in the present invention, the conductor layer on the head surface is formed by depositing a single layer of aluminum or aluminum alloy without going through the process of once forming a nickel layer on the aluminum or aluminum alloy layer, and the terminal portion is made of aluminum or aluminum alloy. This is a thermal head with a nickel or copper plating layer surrounding it on top of an aluminum alloy conductor layer, and a low melting point metal (tin or tin alloy) layer on top of that, so aluminum or aluminum on an insulating substrate. Once a nickel layer is formed on a conductor layer made of an alloy, the material for forming the nickel layer, the number of man-hours for forming the conductor layer, and the number of man-hours for the photo process are reduced compared to conventional thermal heads that exclude the nickel layer on the head surface. It is possible to significantly reduce costs and easily achieve corresponding cost reductions.

しかも、本発明のサーマルヘツドは、端子部の
アルミニウム(アルミニウム合金)からなる導体
層上に電解メツキした低融点金属層の厚みのバラ
ツキが極みめて少ないので、外部回路接続部の
FPC加圧、加熱条件設定が容易で端子間プリツ
ジによる電気的シヨート不良の発生が著しく低い
という効果を奏し、さらにまた、導体層の全面を
ニツケルで被覆して異種の金属接合部が外気に触
れないように形成されているので耐蝕効果が増し
て信頼性が高いという実用上の効果をも奏する。
Moreover, in the thermal head of the present invention, there is extremely little variation in the thickness of the low melting point metal layer electrolytically plated on the conductor layer made of aluminum (aluminum alloy) in the terminal part, so that the external circuit connection part can be easily
The FPC pressurization and heating conditions can be easily set, and the occurrence of electrical shot defects due to terminal prisms is extremely low.Furthermore, the entire surface of the conductor layer is coated with nickel, so that the joints of dissimilar metals are exposed to the outside air. Since it is formed so that there is no corrosion, the corrosion resistance effect is increased and reliability is increased, which is a practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は、本発明に係り、第1図は、
第2図のC−C′線に沿つて切断した本発明のサー
マルヘツドの一実施例を示す拡大断面図、第2図
は本発明のサーマルヘツドを示す平面図、第3図
は本発明のサーマルヘツドの導電パターンを作る
ためのフオトプロセスの示す工程図、第4図は本
発明のサーマルヘツドのニツケル層、低融点金属
層を形成するためのメツキ工程を示す図、第5図
は本発明のサーマルヘツドの端子部を示す断面
図、第6図〜第9図は従来例に係り、第6図は第
7図のA−A′線に沿つて切つた従来のサーマル
ヘツドを示す拡大断面図、第7図はサーマルヘツ
ドを示す平面図、第8図はサーマルヘツドの導電
パターンを作るためのフオトプロセスを示す工程
図、第9図はサーマルヘツドの端子部を示す要部
断面図である。 1……絶縁性基板、2……グレーズ層、3……
発熱抵抗体層、4……導体層、6……耐酸化層、
7……耐摩耗層、12……ヘツド面、14……ニ
ツケル層、15……低融点金属層、16……端子
部。
1 to 5 relate to the present invention, and FIG.
FIG. 2 is an enlarged sectional view showing one embodiment of the thermal head of the present invention taken along the line C-C' in FIG. 2, FIG. 2 is a plan view showing the thermal head of the present invention, and FIG. FIG. 4 is a process diagram showing the photo process for making the conductive pattern of the thermal head. FIG. 4 is a diagram showing the plating process for forming the nickel layer and low melting point metal layer of the thermal head of the present invention. FIG. 6 to 9 are related to conventional examples, and FIG. 6 is an enlarged sectional view showing the conventional thermal head taken along line A-A' in FIG. 7. Figure 7 is a plan view showing the thermal head, Figure 8 is a process diagram showing the photo process for making the conductive pattern of the thermal head, and Figure 9 is a sectional view of the main parts showing the terminal part of the thermal head. . 1... Insulating substrate, 2... Glaze layer, 3...
heating resistor layer, 4... conductor layer, 6... oxidation resistant layer,
7... Wear-resistant layer, 12... Head surface, 14... Nickel layer, 15... Low melting point metal layer, 16... Terminal portion.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁性基板上にグレーズ層を設け、該グレー
ス層上に発熱抵抗体層を設け、さらに該発熱抵抗
体層に供電するアルミニウム又はアルミニウム合
金からなる導体層を設けるとともに、耐酸化層及
び耐摩耗層を順に積層してなるサーマルヘツドで
あつて、前記導体層の端子部に該端子部の全面を
包囲するようにニツケル又は銅若しくはそれ等の
合金からなる下地鍍着層を形成し、さらにこの下
地鍍着層上にスズ又はスズ合金からなる低融点金
属層を鍍着したことを特徴とするサーマルヘツ
ド。
1. A glaze layer is provided on an insulating substrate, a heating resistor layer is provided on the glazing layer, a conductor layer made of aluminum or aluminum alloy is provided to supply electricity to the heating resistor layer, and an oxidation-resistant layer and a wear-resistant layer are provided. The thermal head is a thermal head formed by laminating layers in order, and a base plating layer made of nickel, copper, or an alloy thereof is formed on the terminal portion of the conductive layer so as to surround the entire surface of the terminal portion, and further this A thermal head characterized in that a low melting point metal layer made of tin or a tin alloy is plated on a base plated layer.
JP60022771A 1985-02-09 1985-02-09 Thermal head Granted JPS61182964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60022771A JPS61182964A (en) 1985-02-09 1985-02-09 Thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60022771A JPS61182964A (en) 1985-02-09 1985-02-09 Thermal head

Publications (2)

Publication Number Publication Date
JPS61182964A JPS61182964A (en) 1986-08-15
JPH0479310B2 true JPH0479310B2 (en) 1992-12-15

Family

ID=12091930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60022771A Granted JPS61182964A (en) 1985-02-09 1985-02-09 Thermal head

Country Status (1)

Country Link
JP (1) JPS61182964A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263770A (en) * 1985-05-20 1986-11-21 Alps Electric Co Ltd Thermal head
JPH0632929B2 (en) * 1985-06-27 1994-05-02 アルプス電気株式会社 Method of manufacturing thermal head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135081A (en) * 1980-03-26 1981-10-22 Matsushita Electric Ind Co Ltd Thermal head
JPS56159178A (en) * 1980-05-14 1981-12-08 Ricoh Co Ltd Thermal head
JPS57165275A (en) * 1981-04-07 1982-10-12 Ricoh Co Ltd Thermal head device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135081A (en) * 1980-03-26 1981-10-22 Matsushita Electric Ind Co Ltd Thermal head
JPS56159178A (en) * 1980-05-14 1981-12-08 Ricoh Co Ltd Thermal head
JPS57165275A (en) * 1981-04-07 1982-10-12 Ricoh Co Ltd Thermal head device

Also Published As

Publication number Publication date
JPS61182964A (en) 1986-08-15

Similar Documents

Publication Publication Date Title
EP0059102B1 (en) Crossover construction of thermal-head
GB2076747A (en) Thermal Recording Head
JPH0479310B2 (en)
JP2002140975A (en) Fuse element and its manufacturing method
JP3118509B2 (en) Chip resistor
JPH10119335A (en) Thermal head and manufacture thereof
JP3042682B2 (en) Thermal head and method of manufacturing thermal head
JPH068053B2 (en) Thermal head
JPH0380435B2 (en)
JPH05283853A (en) Printed-circuit board
JP2968389B2 (en) Thermal head
JPS63268663A (en) Thermal head substrate and manufacture thereof
JP3365530B2 (en) Thermal head
JPS61263770A (en) Thermal head
JP3129912B2 (en) Manufacturing method of thermal head
JP2000331590A (en) Circuit protection element and its manufacture
JPS6161988B2 (en)
JPS6347164A (en) Substrate for thermal print head and manufacture therefor
JPH0586346B2 (en)
JPS6250166A (en) Thermal head
JPS61202857A (en) Thermal head
JP2002178515A (en) Flexible cable for ink jet recording head, and its manufacturing method
JPH0230554A (en) Thermal head and production thereof
JPH0632929B2 (en) Method of manufacturing thermal head
JPH0712694B2 (en) Thermal head