JPH046778B2 - - Google Patents

Info

Publication number
JPH046778B2
JPH046778B2 JP16969087A JP16969087A JPH046778B2 JP H046778 B2 JPH046778 B2 JP H046778B2 JP 16969087 A JP16969087 A JP 16969087A JP 16969087 A JP16969087 A JP 16969087A JP H046778 B2 JPH046778 B2 JP H046778B2
Authority
JP
Japan
Prior art keywords
ore
fluidized bed
particle size
less
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16969087A
Other languages
Japanese (ja)
Other versions
JPS6415332A (en
Inventor
Kazuhiko Sato
Shinobu Takeuchi
Hiroshi Itaya
Takashi Ushijima
Hisao Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16969087A priority Critical patent/JPS6415332A/en
Publication of JPS6415332A publication Critical patent/JPS6415332A/en
Publication of JPH046778B2 publication Critical patent/JPH046778B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、金属酸化物を含有する粉状鉱石の流
動層還元方法に関し、特に微粉の鉱石を安定に流
動化せしめて効率良く還元する方法に関する。 <従来の技術> 地下資源としての鉄鉱石などの金属酸化物の採
取形態は塊状よりは粉状のものが大半であり、将
来さらに粉状鉱石が増大すると予想される。ま
た、現在、焼結鉱原料として使用されている粉鉱
石は平均粒子径が1mm前後のシンターフイード
(Sinter feed)が大半であるが、その供給量は次
第に減少し、今後、これよりも粒子径が小さい平
均粒径0.3mm以下で、しかも325メツシユ(0.044
mm)以下のものを少なからず含有するいわゆるペ
レツトフイード(Pellet feed)の供給量が増大
する傾向にある。また、原理的には還元されるべ
き鉱石の粒度は小さいぼど熱効率や、還元ガスの
利用効率は高い。そのため金属製錬の工程におい
て、このような粉状鉱石を直接使用することが原
料事情から余儀なくされつつある。一方、このよ
うな粉状鉱石を直接使用して金属を製錬すること
は省エネルギー、製造コストの面からは有利であ
る。従来、平均粒径が1mm前後のシンターフイー
ドの粉状鉱石を直接使用して製錬する技術として
は、例えば、流動層を用いて粉状鉱石を予備還元
し、その後この予備還元鉱を塊成化して電炉、転
炉、その他溶解炉で溶融還元する方法、あるいは
最近開発されつつある電力によらないフエロアロ
イ製造技術として、流動層予備還元炉と堅型溶融
還元炉を合わせ持つ装置を用い、粉状鉱石を予備
還元後、塊成化工程なしに直接フエロアロイを製
造する方法がある。ことに、特公昭59−18453に
開示されているような上、下2段の羽口を含有す
る堅型溶融還元炉に流動層予備還元炉で予備還元
した鉄鉱石を吹込んで溶融還元する場合、上、下
羽口間での溶融還元速度が未還元FeO濃度に影響
し、同一還元率の予備還元粉鉱石では粒子径が小
さいほど溶融還元速度が増し上、下羽口間の溶融
物中のFeO濃度は低くなり、炉壁耐火物との反応
性も低下し、炉壁耐火物の浸食が軽減できること
が期待される。 第3図は、試験的に製造した種々の粒径の予備
還元鉄鉱石を、堅型溶融還元炉に吹込んで溶融還
元を行つた場合の予備還元鉱粒子径と、上、下羽
口間の溶融物中FeO濃度の関係を示しており、同
一還元率のもとでは粒子径と、FeO濃度は正相関
関係にある。つまり、予備還元鉱の粒子径が小さ
いほど上、下羽口間のFeO濃度が低くなり、炉壁
耐火物の浸食が軽減できると同時に溶融還元炉内
での溶融反応も速くなり生産性も向上できる。 かかる観点からも、より粒径の小さい微粉鉱石
の使用できる流動還元方法の開発が望まれてい
る。 従来一般に鉱石の還元炉としての流動層に必要
な主な条件としては、下記の(1)〜(5)か考えられ
る。 (1) 必要な還元速度が得られる反応温度維持のた
めの熱供給が容易なこと。 (2) 局部加熱や高温域での予備還元鉱石の粘着に
よつて焼結が起り流動化が阻害されることがな
いこと。 (3) 均一かつ安定な流動化現象が得られること。 (4) 短い滞留時間でも必要な還元率が得られるこ
と。 (5) 粒子の流動層からの飛び出しによりダスト発
生が少ないこと。 このような考え方のもとに、シンターフイード
程度の粗粒子系の流動化条件は流動化ガスの流速
を流動化開始速度の2〜3倍に流速に設定して流
動化還元を施していた。 しかし、このような流動化条件で平均粒子径が
0.3mm以下で粉鉱石中の0.044mm以下のものを、か
なりの割合で含むペレツトフイードなどの微粉鉱
を流動層還元した場合、以下の問題があつた。即
ち、 (1) 微粉鉱の特性として粒子間の凝集力が強く粒
子と還元ガスの接触が悪く、流動化条件によつ
ては必ずしも必要な還元率が得られず、生産性
も向上しない。 (2) 流動層からの粒子の飛び出しが多くなり、し
かも例えば溶融還元炉から発生する流動化ガス
中のダストと合わせると多量のダストが発生
し、歩留りが著しく低下する。 (3) 粒子径が小さいため予備還元鉱の焼結が起こ
り易く流動化が阻害される。 <発明が解決しようとする問題点> 本発明はいわゆるペレツトフイードと称される
微粉鉱の流動層還元方法における(1)粒子間の凝集
による生産性の低下、(2)流動層からの飛び出しに
よる歩留の低下、(3)粒子の焼結による流動化の阻
害等の問題を解決し、原料事情を克服し、微粉鉱
石が本来有する熱効率、還元ガスの利用効率の高
い点を十分利用できる流動層還元方法を提供しよ
うとするものである。 <問題解決のための手段> 本発明は、平均粒径0.3mm以下の鉱石であつて、
かつ、粒径0.044mm以下の鉱石の含有率が10wt
以上である粉状鉱石を、流動層還元炉において流
動化しガス還元するに際し、該粉鉱石中の粒径
0.044mm以下の含有率R(wt%)に応じて、流動槽
内の粒子層密度DF(Kg/m3)を 20000・R-1.4≦DF≦7000・R-0.67 の範囲に制御して還元することを特徴とする、粉
鉱石の流動層還元方法を提供するものである。 <作用> 第4図は本発明の実施にあたり好適に使用され
る流動層還元装置の概略図である。1は流動層還
元炉で粉鉱石はホツパー4に導入さえており、排
出装置5により、切り出してスクリユーフイーダ
ー6で流動層還元炉1に連続的に供給される。次
に流動化還元ガスは図示しない還元ガス供給設備
から、あるいは流動層還元炉を他の溶融還元炉に
予備還元鉱石を供給するための予備還元炉として
用いる場合は、溶融還元炉から排出される高温の
還元性排ガスをそのまま、または還元ガス温度調
整装置8で温度制御し、ダクト9を介して流動層
還元炉1に導入される。10は流動化ガス量調節
装置で流動化ガス流速を制御するもので余分なガ
スは排ガスとして排出される。7は分散板であ
る。14は差圧検出装置、15は演算装置であ
り、差圧検出装置14により検出した流動層の差
圧ΔPにもとづき演算装置15により粒子層密度
DFを計算し、その信号にもとづいて、流動化ガ
ス量調節装置10によつてDFが目的の値となる
ように流動化ガス量を調節する。 一方、流動層還元炉2から飛び出した粒子やダ
ストはサイクロン3で捕集され、循環用パイプ1
1を介して、連続的に流動層還元炉に戻され流動
層還元される。次に予備還元された鉱石は還元率
が所定値になつた時点で循環用パイプ11の途中
から分岐する予備還元鉱排出パイプ12を介して
予備還元鉱切り出し装置13により切り出され
る。 粒子層密度DF(Kg/m3)は流動化している流動
層内の装入物量(Kg)を内容積(m3)で除した値
であるが、マクロ的には流動層の差圧ΔP(N/
m2)と、差圧検出位置間の高さΔh(m)と次式の
関係にあるので、差圧ΔPを検出することにより、
容易に知ることができる。但しgは重力加速度
(m/sec2)である。 DF=ΔP/(Δh・g) 一方DFは、操業上、流動化ガス流速、鉱石の
供給速度、槽内の温度、槽内の圧力等に依存する
が、流動化ガス流速を調節して制御するのが最も
容易である。 粒子層密度DFが操業の安定性に寄与する理由
は、DFが過度に大きいと、鉱石の量に対し流動
化のガス量が過少であつて、流動化が悪く還元ガ
スとの接触効率も小さくなり、また粒子間の凝集
や焼結が生じ易いこと、また、DFが過度に小さ
いと、流動化ガスが過多になり、粒子の飛び出し
が多くなり還元ガスの利用率が結局小さくなり、
生産性が低下するものと考えられる。 次に1例として粒子径が0.3mm以下で0.044mm以
下の微粉鉱を約70%含む粉鉱石を用いて流動層内
の粒子層密度を流動化還元ガス流速を制御して変
化させた実験の結果を説明する。第2図に示すよ
うに流動層内の粒子層密度と予備還元鉱の生産性
の関係は粒子径0.044mm以下が70%の粉鉱石にお
いては粒子層密度が400Kg/m3以上では生産性は
小さくなり、一方、50〜400Kg/m3の間では、流
動化も良く、生産性は良いが、50Kg/m3以下にな
ると流動化即ち還元ガスとの接触効率は良いが、
粒子の飛び出しが多くなり、還元ガスの利用率が
小さくなり逆に生産性は小さくなつた。第2表に
は0.044mm以下が70%の粉鉱石の粒子層密度と各
特性を総合的に比較したものを示しており、粒子
層の密度が50〜400Kg/m3で最適となることを見
出した。
<Industrial Application Field> The present invention relates to a fluidized bed reduction method for powdery ore containing metal oxides, and particularly to a method for stably fluidizing and efficiently reducing fine powder ore. <Conventional technology> Most metal oxides such as iron ore are extracted as underground resources in the form of powder rather than lumps, and it is expected that the number of powder ores will increase further in the future. Currently, most of the fine ore used as a raw material for sintering is sinter feed, which has an average particle size of around 1 mm, but its supply is gradually decreasing, and in the future, it will become smaller than this. The average particle size is 0.3 mm or less, and the size is 325 mesh (0.044 mm).
There is a tendency for the amount of so-called pellet feed, which contains a considerable amount of less than 1 mm), to be supplied. In principle, the particle size of the ore to be reduced is small, but the thermal efficiency and reducing gas utilization efficiency are high. Therefore, in the process of metal smelting, it is becoming necessary to use such powdered ores directly due to raw material conditions. On the other hand, directly using such powdered ore to smelt metal is advantageous in terms of energy saving and manufacturing cost. Conventionally, the technology for directly using sintered ore powder with an average particle size of around 1 mm is to pre-reduce the powder ore using a fluidized bed, and then turn this pre-reduced ore into agglomerates. The ferroalloy manufacturing technology that does not require electric power is the method of smelting and reducing in electric furnaces, converters, and other melting furnaces, or the recently developed ferroalloy manufacturing technology that does not require electricity, using equipment that combines a fluidized bed pre-reduction furnace and a rigid smelting and reduction furnace. There is a method of pre-reducing powdered ore and directly producing ferroalloy without an agglomeration process. In particular, when iron ore pre-reduced in a fluidized bed pre-reduction furnace is injected into a vertical smelter-reduction furnace containing two upper and lower tuyere stages as disclosed in Japanese Patent Publication No. 59-18453, iron ore pre-reduced in a fluidized bed pre-reduction furnace is smelted and reduced. , the melt reduction rate between the upper and lower tuyeres influences the unreduced FeO concentration, and for pre-reduced fine ore with the same reduction rate, the smaller the particle size, the higher the melt reduction rate in the melt between the upper and lower tuyeres. It is expected that the FeO concentration will be lower and the reactivity with the furnace wall refractories will also be reduced, reducing erosion of the furnace wall refractories. Figure 3 shows the pre-reduced ore particle size and the difference between the upper and lower tuyeres when experimentally produced pre-reduced iron ores with various particle sizes were blown into a vertical smelting reduction furnace and smelted and reduced. It shows the relationship between the FeO concentration in the melt, and under the same reduction rate, there is a positive correlation between the particle size and the FeO concentration. In other words, the smaller the particle size of the pre-reduced ore, the lower the FeO concentration between the upper and lower tuyeres, which reduces erosion of the furnace wall refractories, and at the same time speeds up the melting reaction in the smelting reduction furnace, improving productivity. can. From this point of view as well, it is desired to develop a fluidized reduction method that can use fine ore having a smaller particle size. Conventionally, the following (1) to (5) can be considered as the main conditions required for a fluidized bed as an ore reduction furnace. (1) It is easy to supply heat to maintain the reaction temperature to obtain the required reduction rate. (2) Fluidization will not be inhibited due to sintering caused by local heating or adhesion of the pre-reduced ore at high temperatures. (3) A uniform and stable fluidization phenomenon should be obtained. (4) The required reduction rate can be obtained even with a short residence time. (5) Less dust is generated due to particles flying out of the fluidized bed. Based on this idea, the fluidization conditions for coarse particle systems such as sinter feed were performed by setting the flow rate of the fluidizing gas to 2 to 3 times the fluidization start speed and performing fluidization reduction. . However, under these fluidization conditions, the average particle size
When fine ore such as pellet feed containing a considerable proportion of fine ore of 0.3 mm or less and 0.044 mm or less was subjected to fluidized bed reduction, the following problems occurred. That is, (1) As a characteristic of fine powder ore, the cohesive force between particles is strong and the contact between particles and reducing gas is poor, and depending on the fluidization conditions, it is not always possible to obtain the required reduction rate and productivity does not improve. (2) More particles fly out from the fluidized bed, and when combined with the dust in the fluidizing gas generated from, for example, a smelting reduction furnace, a large amount of dust is generated, resulting in a significant decrease in yield. (3) Because the particle size is small, sintering of the pre-reduced ore tends to occur and fluidization is inhibited. <Problems to be Solved by the Invention> The present invention solves the following problems in the fluidized bed reduction method of fine ore called pellet feed: (1) reduction in productivity due to agglomeration between particles; (2) drop in productivity due to particles flying out of the fluidized bed. A fluidized bed that solves problems such as a decrease in distillation and (3) inhibition of fluidization due to sintering of particles, overcomes the raw material situation, and fully utilizes the inherent high thermal efficiency and reducing gas utilization efficiency of fine ore. This is an attempt to provide a method for giving back. <Means for solving the problem> The present invention is directed to an ore having an average particle size of 0.3 mm or less,
And the content of ore with a particle size of 0.044 mm or less is 10 wt %
When the above powdered ore is fluidized and gas-reduced in a fluidized bed reduction furnace, the particle size of the powdered ore is
Depending on the content R ( wt %) of 0.044 mm or less, the particle layer density D F (Kg/m 3 ) in the fluidized tank is controlled within the range of 20000・R -1.4 ≦D F ≦7000・R -0.67 . The present invention provides a fluidized bed reduction method for fine ore, which is characterized by reducing fine ore. <Function> FIG. 4 is a schematic diagram of a fluidized bed reduction apparatus suitably used in carrying out the present invention. 1 is a fluidized bed reduction furnace, and fine ore is introduced into a hopper 4, cut out by a discharge device 5, and continuously supplied to the fluidized bed reduction furnace 1 by a screw feeder 6. Next, the fluidized reducing gas is discharged from the reducing gas supply equipment (not shown) or from the smelting reduction furnace when the fluidized bed reduction furnace is used as a pre-reduction furnace for supplying pre-reduced ore to another smelting reduction furnace. The high-temperature reducing exhaust gas is introduced into the fluidized bed reduction furnace 1 via a duct 9 either as it is or with its temperature controlled by a reducing gas temperature adjustment device 8 . Reference numeral 10 denotes a fluidizing gas amount adjusting device that controls the flow rate of the fluidizing gas, and excess gas is discharged as exhaust gas. 7 is a dispersion plate. 14 is a differential pressure detection device, 15 is a calculation device, and the particle bed density is determined by the calculation device 15 based on the differential pressure ΔP of the fluidized bed detected by the differential pressure detection device 14.
D F is calculated, and based on the signal, the fluidizing gas amount is adjusted by the fluidizing gas amount adjusting device 10 so that D F becomes the target value. On the other hand, particles and dust ejected from the fluidized bed reduction furnace 2 are collected by the cyclone 3, and are collected by the circulation pipe 1.
1, and is continuously returned to the fluidized bed reduction furnace for fluidized bed reduction. Next, the pre-reduced ore is cut out by the pre-reduced ore cutting device 13 via the pre-reduced ore discharge pipe 12 which branches from the middle of the circulation pipe 11 when the reduction rate reaches a predetermined value. The particle bed density D F (Kg/m 3 ) is the value obtained by dividing the charge amount (Kg) in the fluidized bed by the internal volume (m 3 ), but from a macroscopic perspective, it is the differential pressure of the fluidized bed. ΔP(N/
m 2 ) and the height Δh (m) between the differential pressure detection positions as shown in the following equation, so by detecting the differential pressure ΔP,
easy to know. However, g is gravitational acceleration (m/sec 2 ). D F = ΔP/(Δh・g) On the other hand, D F depends on the fluidizing gas flow rate, ore supply rate, temperature in the tank, pressure in the tank, etc. during operation, but it can be adjusted by adjusting the fluidizing gas flow rate. It is easiest to control the The reason why the particle bed density D F contributes to operational stability is that if D F is excessively large, the amount of fluidizing gas is too small relative to the amount of ore, resulting in poor fluidization and poor contact efficiency with the reducing gas. Also, if D F is too small, there will be too much fluidizing gas, which will cause more particles to fly out and reduce the utilization rate of reducing gas. ,
It is thought that productivity will decrease. Next, as an example, we conducted an experiment in which the particle bed density in the fluidized bed was changed by controlling the flow rate of the fluidizing reducing gas using fine ore containing about 70% fine ore with a particle size of 0.3 mm or less and 0.044 mm or less. Explain the results. As shown in Figure 2, the relationship between the particle bed density in the fluidized bed and the productivity of pre-reduced ore is that for fine ore in which 70% of the particles have a particle size of 0.044 mm or less, the productivity decreases when the particle bed density is 400 Kg/ m3 or more. On the other hand, between 50 and 400 Kg/m 3 , fluidization is good and productivity is good, but below 50 Kg/m 3 , fluidization, that is, contact efficiency with reducing gas is good, but
The number of particles flying out increased, the utilization rate of reducing gas decreased, and productivity decreased. Table 2 shows a comprehensive comparison of the particle layer density and each property of fine ore with 70% of 0.044 mm or less, and shows that the optimum particle layer density is 50 to 400 kg/ m3 . I found it.

【表】 またさらに流動層内の適正な粒子層密度範囲は
粒度0.044mm以下の鉱石の含有率によつて変化す
る。第1図は0.044mm以下の含有率と適正な流動
層内の粒子層密度の関係を示しており、適正範囲
外の粒子層密度では、流動化不良や粒子の飛び出
しが増加し、ガス利用率も低下し本発明の対象と
する0.044mm以下の鉱石を10%以上含有する粉鉱
石の還元では図示の 20000・R-1.4≦DF≦7000・R-0.67の範囲にDFを制
御しなければならない。一方、0.044mm以下の含
有率10%以下になると適正な粒子層密度は800〜
1500Kg/m3の範囲で一定となる。これは粒子径が
粗粒子系に近づいてきたためである。しかし、こ
れよりも微粉の多い0.044mm以下の微粉の含有率
Rが10%以上の範囲ではRに応じて適正な流動層
内の粒子層密度が変化するという知見は、全く新
規なものである。 <実施例・比較例> 炉内径1.0mの流動層還元炉を用いて、平均粒
径0.3mm以下で0.044mm以下を66.3%含有する第1
表に示す粒度構成の微粉鉄鉱石を700〜800Kg/H
の速度で、また流動化送風ガスとして溶融還元炉
からの1000℃前後の排ガスを750〜800℃に制御し
て用い粒子層密度を(A)50Kg/m3、(B)200Kg/m3
(C)1000Kg/m3の3水準に設定して生産性を比較し
た。
[Table] Furthermore, the appropriate particle bed density range within the fluidized bed changes depending on the content of ore with a particle size of 0.044 mm or less. Figure 1 shows the relationship between the content of 0.044 mm or less and the particle layer density in an appropriate fluidized bed.If the particle layer density is outside the appropriate range, poor fluidization and particles flying out will increase, and the gas utilization rate will increase. When reducing fine ore containing 10% or more of ore of 0.044 mm or less, which is the object of the present invention, D F must be controlled within the range of 20000・R -1.4 ≦D F ≦7000・R -0.67 as shown in the figure. Must be. On the other hand, when the content of 0.044 mm or less is 10% or less, the appropriate particle layer density is 800~
It becomes constant within the range of 1500Kg/ m3 . This is because the particle size has approached that of a coarse particle system. However, the finding that the appropriate particle layer density in the fluidized bed changes depending on R in a range where the content R of fine powder of 0.044 mm or less, which is more fine than this, is 10% or more is completely new. . <Example/Comparative Example> Using a fluidized bed reduction furnace with a furnace inner diameter of 1.0 m, the first sample containing 66.3% of particles with an average particle size of 0.3 mm or less and 0.044 mm or less was prepared.
700-800Kg/H of fine iron ore with the particle size composition shown in the table.
The particle layer density was (A) 50 Kg/m 3 , (B) 200 Kg/m 3 , and the exhaust gas at around 1000°C from the smelting reduction furnace was controlled at 750 to 800°C as the fluidizing blast gas.
(C) Three levels of 1000Kg/m 3 were set and productivity was compared.

【表】【table】

【表】 結果は、第3表に示すごとく粒子密度50(Kg/
m3)ではサイクロンからの飛び出しが大きく、ガ
スの利用率も小さいため生産性は十分ではなかつ
た。また、1000(Kg/m3)の場合には還元ガスの
利用率は良く、サイクロンからの飛び出しも小さ
いものの粒子間の粘着が多発し流動化が阻害され
て安定した還元を行わせることができず、生産性
はやはり十分ではなかつた。一方、本発明の適用
範囲内にある200Kg/m3の場合は粒子の粘着も少
なく、流動層を安定し、ガス利用率も良いため、
50(Kg/m3)、1000(Kg/m3)に比較し生産性で約
30%向上し、12ton/dayと良好な生産性が得ら
れた。 本実験例では鉄鉱石の例を示したが、Ni鉱石、
Cr鉱石、Mn鉱石等でも同様に本発明が適用でき
た。 <発明の効果> 本発明により、従来、流動層還元炉において使
用が困難であつた平均粒径0.3mm以下の粉鉱石で
あつて粒径0.044mm以下の粉鉱石を相当量含む粉
鉱石を安定して使用することが可能となり、結果
として、生産量の増大とエネルギー消費量の低減
をはかることができる。 さらには、流動層還元炉にて製造した予備還元
鉄鉱石を溶融還元炉に装入して溶融還元する場合
には、より粒径の小さい予備還元鉄鉱石の供給が
できることにより、溶融物中のFeO濃度が低下
し、溶融還元炉の炉壁耐火物の浸食が低減できる
効果がある。
[Table] The results are as shown in Table 3, with a particle density of 50 (Kg/
m 3 ), the protrusion from the cyclone was large and the gas utilization rate was low, so productivity was not sufficient. In addition, in the case of 1000 (Kg/m 3 ), the utilization rate of the reducing gas is good and the splashing out from the cyclone is small, but the adhesion between particles occurs frequently and fluidization is inhibited, making it impossible to perform stable reduction. However, productivity was still not sufficient. On the other hand, in the case of 200Kg/ m3 , which is within the scope of the present invention, there is less adhesion of particles, the fluidized bed is stabilized, and the gas utilization rate is good.
50 (Kg/m 3 ) and 1000 (Kg/m 3 ), the productivity is approx.
A good productivity of 12 tons/day was achieved, which was an improvement of 30%. In this experimental example, an example of iron ore was shown, but Ni ore,
The present invention was similarly applicable to Cr ore, Mn ore, and the like. <Effects of the invention> The present invention makes it possible to stabilize fine ore containing a considerable amount of fine ore with an average particle size of 0.3 mm or less and with a particle size of 0.044 mm or less, which was conventionally difficult to use in a fluidized bed reduction furnace. As a result, production can be increased and energy consumption reduced. Furthermore, when pre-reduced iron ore produced in a fluidized bed reduction furnace is charged into a smelting reduction furnace and smelted and reduced, it is possible to supply pre-reduced iron ore with a smaller particle size, making it possible to reduce the amount of iron ore in the melt. This has the effect of reducing the FeO concentration and reducing erosion of the furnace wall refractories of the smelting reduction furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は0.044mm以下の含有率と適正な粒子層
密度を示す図で、第2図は流動層内の粒子層密度
と生産性の関係を示す図で第3図は予備還元鉱粒
子径と上、下羽口間の溶融物中FeO濃度の関係を
示す図で、第4図は本発明による流動層予備還元
装置を示す図である。 1……流動層予備還元炉、3……サイクロン、
3……粉鉱石ホツパー、6……スクリユーフイー
ダ、7……分散板、8……還元ガス温度調節装
置、10……流動化ガス量調節装置、13……予
備還元鉱切出し装置、14……差圧検出装置、1
5……演算装置。
Figure 1 shows the content of 0.044 mm or less and the appropriate particle layer density, Figure 2 shows the relationship between the particle layer density in the fluidized bed and productivity, and Figure 3 shows the pre-reduced ore particle diameter. FIG. 4 is a diagram showing the relationship between the FeO concentration in the melt between the upper and lower tuyeres, and FIG. 4 is a diagram showing the fluidized bed pre-reduction apparatus according to the present invention. 1...Fluidized bed preliminary reduction furnace, 3...Cyclone,
3... Fine ore hopper, 6... Screw feeder, 7... Dispersion plate, 8... Reducing gas temperature control device, 10... Fluidization gas amount control device, 13... Preliminary reduced ore cutting device, 14 ...Differential pressure detection device, 1
5...Arithmetic device.

Claims (1)

【特許請求の範囲】 1 平均粒径0.3mm以下の鉱石であつて、かつ、
粒径0.044mm以下の鉱石を10wt%以上含む粉状鉱
石を流動層還元炉において流動化しガス還元する
に際し、流動層の粒子層密度DF(Kg/m3)を鉱石
中の粒径0.044mm以下のものの含有率R(wt%)に
応じて下記式の範囲に制御して、還元することを
特徴とする粉鉱石の流動層還元方法。 記 20000・R-1.4≦DF≦7000・R-0.67
[Scope of Claims] 1. An ore with an average particle size of 0.3 mm or less, and
When powdered ore containing 10 wt % or more of ore with a particle size of 0.044 mm or less is fluidized and gas-reduced in a fluidized bed reduction furnace, the particle layer density D F (Kg/m 3 ) of the fluidized bed is set to the particle size of 0.044 mm in the ore. A fluidized bed reduction method for fine ore, characterized by controlling the reduction within the range of the following formula according to the content R ( wt %) of fine ore of less than mm. Note 20000・R -1.4 ≦D F ≦7000・R -0.67
JP16969087A 1987-07-09 1987-07-09 Fluidized bed reduction of fine ore Granted JPS6415332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16969087A JPS6415332A (en) 1987-07-09 1987-07-09 Fluidized bed reduction of fine ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16969087A JPS6415332A (en) 1987-07-09 1987-07-09 Fluidized bed reduction of fine ore

Publications (2)

Publication Number Publication Date
JPS6415332A JPS6415332A (en) 1989-01-19
JPH046778B2 true JPH046778B2 (en) 1992-02-06

Family

ID=15891088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16969087A Granted JPS6415332A (en) 1987-07-09 1987-07-09 Fluidized bed reduction of fine ore

Country Status (1)

Country Link
JP (1) JPS6415332A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082468B2 (en) * 1991-05-08 1996-01-17 アイダエンジニアリング株式会社 Coil material feed position correction device for press machine

Also Published As

Publication number Publication date
JPS6415332A (en) 1989-01-19

Similar Documents

Publication Publication Date Title
EP0316819B1 (en) Metal-making process and apparatus involving the smelting reduction of metallic oxides
JP2000192153A (en) Sintered ore and production thereof, and operation of blast furnace
CA2211906C (en) 2-stage fluidized bed furnace for pre-reducing fine iron ore and method for pre-reducing fine iron ore using the furnace
JPH046778B2 (en)
JP3829516B2 (en) Blast furnace operation method
WO1982001724A1 (en) A method for manufacturing metal from fine-grain metal-oxide material
US5131942A (en) Method for producing molten metal from powder state ore
JP3014556B2 (en) Blast furnace operation method
RU2092564C1 (en) Blast furnace charging method
JP2579785B2 (en) Pre-reduction device for smelting reduction
JPH05156329A (en) Method for operating powder injection from tuyere in blast furnace
JP2000119722A (en) Production of reduced iron pellet
CN106834743A (en) The technique of rotary kiln one-step method reduction roasting laterite nickel ore and producing ferronickel particle
JP3485787B2 (en) How to charge raw materials for blast furnace
JPS6043403B2 (en) Blast furnace operation method using pulverized coal injection
JP2770305B2 (en) Feeding method for smelting reduction of iron ore
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace
JPS59104410A (en) Fluidized bed type preliminary reducing furnace
JPS63118026A (en) Operating method for zinc blast furnace
JPS59162213A (en) Operating furnace of melt reduction furnace
JPH0774368B2 (en) Iron ore fluidized bed reduction device
JPH10251729A (en) Smelting reduction method for chromium ore
JPS6132366B2 (en)
JPS62230922A (en) Operating method for vertical type melt reduction furnace
JP2002146414A (en) Method for operating blast furnace