JP2770305B2 - Feeding method for smelting reduction of iron ore - Google Patents

Feeding method for smelting reduction of iron ore

Info

Publication number
JP2770305B2
JP2770305B2 JP63020473A JP2047388A JP2770305B2 JP 2770305 B2 JP2770305 B2 JP 2770305B2 JP 63020473 A JP63020473 A JP 63020473A JP 2047388 A JP2047388 A JP 2047388A JP 2770305 B2 JP2770305 B2 JP 2770305B2
Authority
JP
Japan
Prior art keywords
iron ore
amount
supply
secondary combustion
smelting reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63020473A
Other languages
Japanese (ja)
Other versions
JPH01195229A (en
Inventor
治良 田辺
仁 川田
正弘 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP63020473A priority Critical patent/JP2770305B2/en
Publication of JPH01195229A publication Critical patent/JPH01195229A/en
Application granted granted Critical
Publication of JP2770305B2 publication Critical patent/JP2770305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄鉱石の溶融還元における原料の装入方法に
関する。
Description: TECHNICAL FIELD The present invention relates to a method for charging raw materials in the smelting reduction of iron ore.

〔従来の技術〕[Conventional technology]

鉄溶融還元法は、鉄鉱石(酸化鉄)などの金属酸化物
を含有する鉱石を溶融状態で還元して鉄を製造する方法
であり、将来の原料及びエネルギー事情に適応する製鉄
技術として最近注目されるようになり、実用化のため研
究開発が進められている。この溶融還元法は、高炉法に
較べ安価な原料の使用、粉鉱の塊成化などの事前処理工
程の省略、設備の小型化などを実現できる方法として期
待されている。
The iron smelting reduction method is a method for producing iron by reducing ore containing a metal oxide such as iron ore (iron oxide) in a molten state, and has recently attracted attention as a steelmaking technology adapted to future raw materials and energy conditions. And research and development are in progress for practical use. This smelting reduction method is expected to be a method that can realize the use of less expensive raw materials compared to the blast furnace method, omission of a pretreatment step such as agglomeration of fine ore, and downsizing of equipment.

溶融還元法には種々のプロセスが提案されており、還
元炉の形式も多様であるが、代表的な形式として金属浴
炉式の溶融還元炉があげられる。これは、製鉄用のもの
では、鉄浴(溶鉄)内へ石炭及び酸素とともに鉄鉱石を
装入し、これを還元して溶鉄(銑鉄)を得る還元炉であ
るが、反応が速く(固体状態で還元するものに較べて10
0倍以上の速度で還元することができる)、設備形式が
シンプルであるなどの理由で多くのプロセスに採用され
ている。
Various processes have been proposed for the smelting reduction method, and there are various types of reduction furnaces. A typical example is a metal bath furnace type smelting reduction furnace. This is a reduction furnace for ironmaking, in which iron ore is charged together with coal and oxygen into an iron bath (molten iron) and reduced to obtain molten iron (pig iron). 10 compared to what is reduced by
It can be reduced at a rate of 0 times or more), and the equipment type is simple, so it is adopted in many processes.

溶融還元法において重要な要素技術は、溶融還元炉内
での発生ガスの2次燃焼比(%CO2+%H2O/%CO+%CO2
+%H2+%H2O)の向上及び高位安定化技術とスロッピ
ング(スラグや溶湯、粒鉄が突沸的に還元炉外に噴出す
る現象)の抑制技術である。
An important elemental technology in the smelting reduction method is the secondary combustion ratio (% CO 2 +% H 2 O /% CO +% CO 2 ) of the generated gas in the smelting reduction furnace.
+% H 2 +% H 2 O), high-level stabilization technology, and technology for suppressing slopping (a phenomenon in which slag, molten metal, and granular iron spurt out of the reduction furnace suddenly).

2次燃焼比の向上による効果は、第1図に示すように
炭材原単位の低減、すなわち溶鉄製造コストの低減が図
られることである。さらに、排ガスによる鉄鉱石の予備
還元の負荷が軽減され、予備還元炉などの付帯設備費も
安価になる利点がある。
The effect of the improvement in the secondary combustion ratio is to reduce the carbon unit consumption, that is, to reduce the molten iron production cost, as shown in FIG. Further, there is an advantage that the load of the pre-reduction of iron ore by the exhaust gas is reduced, and the cost of ancillary equipment such as a pre-reduction furnace is reduced.

一方、スロッピングの発生は、操業の停止や鉄歩留の
低下など、生産面や溶鉄製造コスト面に悪影響を与え
る。そのためスロッピングは皆無にする必要がある。
On the other hand, the occurrence of slopping has an adverse effect on production and molten iron production costs, such as a stoppage of operations and a decrease in iron yield. Therefore, it is necessary to eliminate slopping.

第2図は従来の金属浴炉式の溶融還元法を模式的に示
すもので、溶融還元炉中の金属浴に鉄鉱石、炭材及びフ
ラックスが装入され、上吹きランス2及び/または底吹
ノズル1からDC O2(脱炭用O2)とPC O2(2次燃焼用
O2)が吹き込まれて、還元処理が行われる。すなわち、
DC O2は、 によりCOガス及び熱量を発生させ、またPC O2は、 によりCOガスをCO2ガスとし、多量の熱量(Q2>Q1)を
発生させて、還元に必要な熱量を確保する。
FIG. 2 schematically shows a conventional metal bath furnace type smelting reduction method, in which iron ore, carbonaceous material and flux are charged into a metal bath in a smelting reduction furnace, and a top blowing lance 2 and / or a bottom are used. DC O 2 (for decarburization O 2 ) and PC O 2 (for secondary combustion)
O 2 ) is blown, and a reduction process is performed. That is,
DC O 2 To generate CO gas and heat, and PC O 2 To convert CO gas into CO 2 gas and generate a large amount of heat (Q 2 > Q 1 ) to secure the heat required for reduction.

ここでPC O2の領域(2次燃焼帯)に溶湯(粒鉄)が
飛散すると、 CO2(溶湯中)=2CO−Q3 ……(3) の反応が起こり、2次燃焼比を低減させる。そのため、
従来の2次燃焼比向上対策は、 2次燃焼用O2量の増大、特にPC O2量/〔DC O2量+鉄
鉱石中のO2量〕比の向上 粒鉄の飛散の低減のため底吹ノズル1からのガス吹込
量の適正化 粒鉄の飛散する領域よりも2次燃焼帯を高くするた
め、ランス高さのアップ などであった。
Here, when the molten metal (granular iron) scatters in the region of PC O 2 (secondary combustion zone), a reaction of CO 2 + C (in the molten metal) = 2CO−Q 3 (3) occurs and the secondary combustion ratio To reduce. for that reason,
Conventional secondary combustion ratio improvement measures, increasing the secondary combustion amount of O 2, in particular of reducing the scattering of improving the granulated metallic iron of PC O 2 amount / [DC O 2 amount + O 2 The amount of iron ore] ratio Therefore, the amount of gas blown from the bottom blowing nozzle 1 was optimized. In order to make the secondary combustion zone higher than the area where the granular iron scatters, the height of the lance was increased.

金属浴炉式の溶融還元法は、前述した如く反応速度が
大きいため、酸素や炭材、鉄鉱石の供給速度を大きくで
き、その結果、設備を小型化できる可能性が高い。
The metal bath furnace type smelting reduction method has a high reaction rate as described above, so that the supply rate of oxygen, carbonaceous material, and iron ore can be increased, and as a result, there is a high possibility that the equipment can be downsized.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、従来の方法ではこれらの供給速度が大きくな
るにしたがい、2次燃焼比が低下するとともに不安定に
なり、さらにスロッピングも多発する傾向にあつた。
However, in the conventional method, as these feed rates increase, the secondary combustion ratio decreases and becomes unstable, and the slopping tends to occur more frequently.

このため従来では、生産性を犠牲にして炭材などの供
給速度を小さくし、生産性の確保は設備の大型化等で対
応したり、或いは2次燃焼比の目標値を低目にし、排ガ
スによる鉄鉱石の予備還元率を高める方法で対応したり
する方法が一般に考えられているが、これらの方法は設
備コストが高くつき、また設備形式も複雑になる欠点が
ある。
For this reason, in the past, the supply rate of carbon materials etc. was reduced at the expense of productivity, and the productivity was secured by increasing the size of the equipment, or the target value of the secondary combustion ratio was lowered, In general, there is a method of increasing the preliminary reduction rate of iron ore by using such a method. However, these methods have disadvantages that the equipment cost is high and the equipment type is complicated.

〔課題を解決するための手段〕[Means for solving the problem]

以上のような問題に鑑み、本発明者等は2次燃焼比の
向上及び高位安定化と、スロッピングの発生防止を図る
ことにより溶融還元を安定して操業することができる方
法について検討を重ね、その結果、次のような事実を知
見した。
In view of the problems described above, the present inventors have repeated studies on a method capable of stably operating the smelting reduction by improving the secondary combustion ratio, stabilizing at a high level, and preventing the occurrence of slopping. As a result, the following facts were found.

従来では、2次燃焼比を低下させる原因は粒鉄の2次
燃焼帯への飛散が主体であると考えていたが、実際に
は、それ以上に炭材や鉄鉱石の装入方法が重要であるこ
とが判明した。
Conventionally, it was thought that the cause of lowering the secondary combustion ratio was mainly the scattering of granular iron into the secondary combustion zone. However, in practice, the method of charging carbonaceous materials and iron ore is more important. Turned out to be.

すなわち、必要量以上に炭材を装入すると、2次燃焼
帯へ炭材がいき、上記(3)式の反応により2次燃焼比
が低下する。ここで、炭材必要量は供給O2量(DC O2+P
C O2+鉄鉱石中のO2量)と2次燃焼比によって決まる値
である。
That is, when the carbon material is charged in an amount more than the required amount, the carbon material flows into the secondary combustion zone, and the secondary combustion ratio is reduced by the reaction of the above formula (3). Here, the required amount of carbon material is the amount of supplied O 2 (DC O 2 + P
CO 2 + O 2 in iron ore) and the secondary combustion ratio.

一方、炭材量が不足すると溶湯中〔C〕がDC O2等と
の反応により消費されて低下し、スラグ中(FeO)が増
大し、その結果スラグがフォーミングしやすくなり、ス
ロッピングが発生する。また、スラグのフォーミングや
スロッピングにより粒鉄や炭材が2次燃焼帯へいきやす
くなり、2次燃焼比を低下させることになる。
On the other hand, if the amount of carbonaceous material is insufficient, [C] in the molten metal is consumed and reduced by the reaction with DC O 2 and the like, and the amount of slag (FeO) is increased. I do. In addition, slag forming and slopping make it easier for the granular iron and the carbon material to enter the secondary combustion zone, thereby lowering the secondary combustion ratio.

すなわち、供給O2量に応じた炭材投入量を常に過不足
なく供給することが非常に重要である。
That is, it is very important to always supply the carbon material input amount according to the supplied O 2 amount without excess or shortage.

鉄鉱石も同様に、多すぎると溶湯〔C〕の低下を起こ
し、上記と同様な理由でスロッピングを発生させる。
一方少なすぎると、相対的に炭材過多となり2次燃焼比
を低下させるだけでなく、溶湯温度を上昇させて耐火物
に大きな損傷を与える。
Similarly, if the amount of iron ore is too large, the molten metal [C] is reduced, and slopping occurs for the same reason as described above.
On the other hand, if the amount is too small, the amount of carbonaceous material becomes relatively excessive and not only lowers the secondary combustion ratio, but also raises the temperature of the molten metal and greatly damages the refractory.

これらのことから、供給O2量を上げていくと、当然必
要炭材及び鉄鉱石の供給量が大きくなり、その供給バラ
ンスが少しでもくずれると2次燃焼比が不安定になり、
スロッピングも多発しやすくなる。
From these facts, if the supply O 2 amount is increased, the supply amount of necessary carbonaceous materials and iron ore naturally increases, and if the supply balance is broken even a little, the secondary combustion ratio becomes unstable,
Slopping is more likely to occur.

従来、このような事実は全く知られておらず、設備的
にも原料の供給ホッパは1銘柄1ホッパが通常の形態で
あるところから、ある原料の供給ホッパが空になるとそ
の原料の供給を一時的に休止するような操業形態をとる
など、連続供給に対する配慮のない場合が多く、また連
続切出装置等により、原料を一定速度で供給するという
ような配慮のない場合も多く、少なくともこれらのいず
れかの配慮が欠けた結果、原料の供給バランスが崩れ、
2次燃焼比が不安定化し、スロッピングも生じさせたも
のと考えられる。
Conventionally, such a fact has not been known at all, and even in terms of equipment, the supply hopper of the raw material is of a normal type with one brand and one hopper. In many cases, there is no consideration for continuous supply, such as an operation mode that temporarily suspends operation, and in many cases, there is no consideration for supplying raw materials at a constant speed by a continuous cutting device, etc. As a result, the supply balance of raw materials has been disrupted,
It is considered that the secondary combustion ratio became unstable and slopping also occurred.

本発明は、以上のような知見に基づきなされたもの
で、主たる溶融還元処理期間中、溶融還元炉内に鉄鉱石
及び石炭を連続的且つ一定の供給速度で供給し、原料供
給バランスを常に一定にして操業を行うようにしたもの
である。
The present invention has been made based on the above findings, and supplies iron ore and coal continuously and at a constant supply rate into a smelting reduction furnace during a main smelting reduction treatment period, so that the raw material supply balance is always constant. The operation is performed as follows.

本発明においては、供給O2量に応じ鉄鉱石及び石炭を
連続的、すなわち間断なく、しかも実質的に一定の供給
速度で供給する。ここで実質的に一定の供給速度とは、
供給装置による不可避的な供給量変動を除き一定である
ことを意味する。また、このような原料の連続的供給
は、原料供給が必要な全期間に亘って行われる。
In the present invention, iron ore and coal are supplied continuously, that is, without interruption, at a substantially constant supply rate according to the amount of O 2 supplied. Here, the substantially constant supply speed means
It means that it is constant except for inevitable fluctuations in the supply amount by the supply device. Further, such a continuous supply of the raw material is performed over the entire period in which the raw material supply is required.

このように供給O2量に応じ鉄鉱石及び石炭を連続的且
つ一定の供給速度で供給することにより、上記〜で
述べたように2次燃焼比を高位安定化させ、またスロッ
ピングの発生も効果的に抑えることができる。
By supplying this way the iron ore and coal according to the supplied amount of O 2 in a continuous and constant feed rate, as described above - is high regulate a secondary combustion ratio and the occurrence of slopping It can be suppressed effectively.

操業中、原料を炉内に間断なく、しかも一定の供給速
度で供給するためには、鉄鉱石と石炭の供給ホッパはそ
れぞれ2槽以上ずつ設け、一方が空になった場合、他方
のホッパから直ちに原料を供給できるようにする必要が
あり、またこれらホッパには、電磁フィーダやロータリ
ーフィーダ等の連続切出装置を設けることが好ましい。
During operation, to supply the raw materials into the furnace without interruption and at a constant supply rate, two or more supply hoppers for iron ore and coal are provided, and when one is empty, the other hopper is used. It is necessary to be able to supply the raw material immediately, and it is preferable that these hoppers are provided with a continuous cutting device such as an electromagnetic feeder or a rotary feeder.

〔実施例〕〔Example〕

金属浴炉式(転炉型)溶融還元炉(5ton,レンガ積内
容積:7m3)を用い、第3図(概念図)に示すような方法
で溶融還元を実施した。すなわち、炉に4tonの溶銑を装
入後、底吹きノズル1からN2ガス450Nm3/hr、横吹きノ
ズル2からN2ガス250Nm3/hr、上吹きランスから所定量
のDC O2及びPC O2をそれぞれ吹き込み、鉄鉱石(粒径1
〜20mm)と炭材(揮発分30%、F.C.〔固定カーボン〕56
%、粒径3〜20mm)を、下記する種々の装入方法によっ
て、自由落下により炉内に装入し、操業を行った。な
お、操業はスラグ量を800kgにして行った。
Using a metal bath furnace type (converter type) smelting reduction furnace (5 ton, inner volume of brick: 7 m 3 ), smelting reduction was performed by a method as shown in FIG. 3 (conceptual diagram). That is, after charging the molten pig iron of 4ton the furnace, bottom-blown N 2 gas from the nozzle 1 450Nm 3 / hr, horizontal blown N 2 gas from the nozzle 2 250 Nm 3 / hr, top-blown from the lance predetermined amount of DC O 2 and PC O 2 was blown into each iron ore (particle size 1
~ 20mm) and carbon (30% volatile, FC [fixed carbon] 56
%, A particle size of 3 to 20 mm) was charged into the furnace by free fall by the following various charging methods, and the furnace was operated. The operation was performed with a slag amount of 800 kg.

比較例(1) 鉄鉱石及び石炭の装入方法及び上吹きランスによる供
給O2量は、以下の通りである。
Comparative Example (1) The charging method of iron ore and coal and the amount of O 2 supplied by the top blowing lance are as follows.

鉄鉱石:50kg/minの一定供給速度で連続供給した。 Iron ore: Continuous supply at a constant supply rate of 50 kg / min.

石 炭:供給ホッパを用いず、15kg/袋を30秒毎に1
袋ずつ炉上部より投入した。
Coal: 15 kg / bag every 30 seconds without using a feed hopper
Bags were charged from the upper part of the furnace.

供給O2量 DC O2:1000Nm3/hr PC O2:1000Nm3/hr 第4図は操業中の2次燃焼比の変化を示すもので、2
次燃焼比は0.2〜0.4の間で大きく変動している。この比
較例では、操業開始6分経過後にスロッピングが発生
し、操業を中断した。
Supply O 2 amount DC O 2 : 1000 Nm 3 / hr PC O 2 : 1000 Nm 3 / hr FIG. 4 shows the change in the secondary combustion ratio during operation.
The secondary combustion ratio fluctuates greatly between 0.2 and 0.4. In this comparative example, slopping occurred 6 minutes after the start of the operation, and the operation was interrupted.

比較例(2) 鉄鉱石及び石炭の装入方法及び上吹きランスによる供
給O2量は、以下の通りである。
Comparative Example (2) The charging method of iron ore and coal and the amount of O 2 supplied by the top blowing lance are as follows.

鉄鉱石:50kg/minの一定供給速度で連続供給した。 Iron ore: Continuous supply at a constant supply rate of 50 kg / min.

石 炭:第5図に示すように、2分毎に供給速度を20
kg/minと40kg/minで変化させて投入した。
Coal: As shown in Fig. 5, the feed rate is 20 minutes every 2 minutes.
The feed was changed at kg / min and 40 kg / min.

供給O2量 DC O2:1000Nm3/hr PC O2:1000Nm3/hr 第5図は操業中の2次燃焼比の変化を示すもので、2
次燃焼比は0.1〜0.5の間で大きく変動している。この比
較例では、操業開始15分後にスロッピングが発生した。
Supply O 2 amount DC O 2 : 1000 Nm 3 / hr PC O 2 : 1000 Nm 3 / hr FIG. 5 shows the change in the secondary combustion ratio during operation.
The secondary combustion ratio fluctuates greatly between 0.1 and 0.5. In this comparative example, slopping occurred 15 minutes after the start of operation.

比較例(3) 鉄鉱石及び石炭の装入方法及び上吹きランスによる供
給O2量は、以下の通りである。
Comparative Example (3) The charging method of iron ore and coal and the amount of O 2 supplied by the top blowing lance are as follows.

鉄鉱石:50kg/minの一定供給速度で連続供給した。 Iron ore: Continuous supply at a constant supply rate of 50 kg / min.

石 炭:30kg/minの一定供給速度で連続供給後、第6
図に示すように、供給ホツパが空になったことを想定し
て供給を中断した。
Coal: After continuous supply at a constant supply rate of 30 kg / min,
As shown in the figure, the supply was interrupted on the assumption that the supply hopper became empty.

供給O2量 DC O2:1000Nm3/hr PC O2:1000Nm3/hr 第6図は操業中の2次燃焼比の変化を示すもので、石
炭を連続且つ一定供給速度で供給していた期間は、2次
燃焼比は0.5〜0.6と高位に安定していたが、石炭の供給
を中断した約2分後から2次燃焼比が0.2〜0.3迄急激に
低下し、且つスロッピングが発生した。
Supply O 2 amount DC O 2 : 1000 Nm 3 / hr PC O 2 : 1000 Nm 3 / hr FIG. 6 shows the change in the secondary combustion ratio during operation, in which coal was supplied continuously and at a constant supply rate. During the period, the secondary combustion ratio was stable at a high level of 0.5 to 0.6, but about 2 minutes after the supply of coal was interrupted, the secondary combustion ratio dropped sharply to 0.2 to 0.3 and slopping occurred. did.

比較例(4) 鉄鉱石及び石炭の装入方法及び上吹きランスによる供
給O2量は、以下の通りである。
Comparative Example (4) The charging method of iron ore and coal and the amount of O 2 supplied by the top blowing lance are as follows.

鉄鉱石:第7図に示すように、2分毎に供給速度を40
kg/minと60kg/minで変化させて投入した。
Iron ore: As shown in Fig. 7, the feed rate is 40
The input was changed at kg / min and 60 kg / min.

石 炭:30kg/minの一定供給速度で連続供給した。 Coal was continuously supplied at a constant supply rate of 30 kg / min.

供給O2量 DC O2:1000Nm3/hr PC O2:1000Nm3/hr 第7図は操業中の2次燃焼比の変化を示すもので、2
次燃焼比は0.3〜0.6の間で大きく変動し、操業開始30分
後にスロッピングが発生した。
Supply O 2 amount DC O 2 : 1000 Nm 3 / hr PC O 2 : 1000 Nm 3 / hr FIG. 7 shows the change in the secondary combustion ratio during operation.
The secondary combustion ratio fluctuated greatly between 0.3 and 0.6, and slopping occurred 30 minutes after the start of operation.

比較例(5) 鉄鉱石及び石炭の装入方法及び上吹きランスによる供
給O2量は、以下の通りである。
Comparative Example (5) The charging method of iron ore and coal and the amount of O 2 supplied by the top blowing lance are as follows.

鉄鉱石:35kg/minの一定供給速度で連続供給した。 Iron ore: continuously fed at a constant feed rate of 35 kg / min.

石 炭:2分毎に供給速度を11kg/minと25kg/minで変化
させて投入した。
Coal: The feed rate was changed every 11 minutes at 11 kg / min and 25 kg / min.

供給O2量 DC O2:700Nm3/hr PC O2:700Nm3/hr この比較例のように供給O2量が少ないと、原料の供給
量がある程度変動したとしても、2時間以上操業しても
スロッピングの発生はなく、しかも2次燃焼比は0.5〜
0.6と高位安定したものとなる。
Supply O 2 amount DC O 2 : 700 Nm 3 / hr PC O 2 : 700 Nm 3 / hr If the supply O 2 amount is small as in this comparative example, the operation is performed for 2 hours or more even if the supply amount of the raw material fluctuates to some extent. No slopping occurs, and the secondary combustion ratio is 0.5 to
0.6, which is stable at a high level.

なお、この比較例での生産性は4.7ton/D・m3(レンガ
積内容積1m3当り1日に生産できる溶銑ton数)であっ
た。
The productivity in this comparative example was 4.7 ton / D · m 3 (the number of hot metal tons that can be produced per day per 1 m 3 of the brick volume).

実施例(1) 鉄鉱石及び石炭の装入方法及び上吹きランスによる供
給O2量は、以下の通りである。
Example (1) The charging method of iron ore and coal and the amount of O 2 supplied by the top blowing lance are as follows.

鉄鉱石:50kg/minの一定供給速度で連続供給した。 Iron ore: Continuous supply at a constant supply rate of 50 kg / min.

石 炭:30kg/minの一定供給速度で連続供給した。 Coal was continuously supplied at a constant supply rate of 30 kg / min.

供給O2量 DC O2:1000Nm3/hr PC O2:1000Nm3/hr 第8図は操業中の2次燃焼比の変化を示すもので、本
実施例では2時間操業を行ったが、スロッピングの発生
はなく、しかも2次燃焼比は0.55〜0.65と高位安定して
いた。また生産性は6.7ton/D・m3であった。
Supplying O 2 amount DC O 2: 1000Nm 3 / hr PC O 2: 1000Nm 3 / hr 8 figure shows a change in the secondary combustion ratio in the operation, in this embodiment was carried out for 2 hours operation, No slopping occurred, and the secondary combustion ratio was as high as 0.55 to 0.65. The productivity was 6.7ton / D · m 3.

実施例(2) 鉄鉱石及び石炭の装入方法及び上吹きランスによる供
給O2量は、以下の通りである。
Example (2) The charging method of iron ore and coal and the amount of O 2 supplied by the top blowing lance are as follows.

鉄鉱石:60kg/minの一定供給速度で連続供給した。 Iron ore: Continuous supply at a constant supply rate of 60 kg / min.

石 炭:35kg/minの一定供給速度で連続供給した。 Coal: continuously supplied at a constant supply rate of 35 kg / min.

供給O2量 DC O2:1200Nm3/hr PC O2:1100Nm3/hr 本実施例では、2時間以上操業したが、スロッピング
の発生はなく、且つ2次燃焼比は0.55〜0.65と高位安定
していた。また生産性は8.0ton/D・m3であった。
Supply O 2 amount DC O 2 : 1200Nm 3 / hr PC O 2 : 1100Nm 3 / hr In this example, the operation was performed for 2 hours or more, but no slopping occurred, and the secondary combustion ratio was as high as 0.55 to 0.65. It was stable. The productivity was 8.0ton / D · m 3.

実施例(3) 鉄鉱石及び石炭の装入方法及び上吹きランスによる供
給O2量は、以下の通りである。
Example (3) The charging method of iron ore and coal and the amount of O 2 supplied by the top blowing lance are as follows.

鉄鉱石:40kg/minの一定供給速度で連続供給した。 Iron ore: continuously fed at a constant feed rate of 40 kg / min.

石 炭:23kg/minの一定供給速度で連続供給した。 Coal: Continuous supply at a constant supply rate of 23 kg / min.

供給O2量 DC O2:800Nm3/hr PC O2:800Nm3/hr 本実施例では、2時間以上操業したが、スロッピング
の発生はなく、且つ2次燃焼比は0.55〜0.65と高位安定
していた。また生産性は5.3ton/D・m3であった。
Supply O 2 amount DC O 2 : 800Nm 3 / hr PC O 2 : 800Nm 3 / hr In this example, the operation was performed for 2 hours or more, but no slopping occurred, and the secondary combustion ratio was as high as 0.55 to 0.65. It was stable. The productivity was 5.3ton / D · m 3.

実施例(4) 鉄鉱石及び石炭の装入方法及び上吹きランスによる供
給O2量は、以下の通りである。
Example (4) The charging method of iron ore and coal and the amount of O 2 supplied by the top blowing lance are as follows.

鉄鉱石:75kg/minの一定供給速度で連続供給した。 Iron ore: Continuously fed at a constant feed rate of 75 kg / min.

石 炭:40kg/minの一定供給速度で連続供給した。 Coal: continuously supplied at a constant supply rate of 40 kg / min.

供給O2量 DC O2:1350Nm3/hr PC O2:1350Nm3/hr 本実施例では、2時間以上操業してもスロッピングの
発生はなく、且つ2次燃焼比は0.55〜0.65と高位安定し
ていた。また生産性は10.0ton/D・m3であった。
Supply O 2 amount DC O 2 : 1350 Nm 3 / hr PC O 2 : 1350 Nm 3 / hr In this embodiment, no slopping occurs even if the operation is performed for 2 hours or more, and the secondary combustion ratio is as high as 0.55 to 0.65. It was stable. The productivity was 10.0ton / D · m 3.

以上のうち各比較例から判るように原料の供給速度が
変動したり、供給が途切れたりした場合、スロッピング
が発生し、また2次燃焼比も大きく変動し、その高位安
定は望めない。但し、比較例(5)のように原料供給量
が変動しても供給O2量が少なければ、安定した操業が可
能となるが、このように供給O2量が少ないと当然、生産
性が悪くなる。
As can be seen from each of the comparative examples, when the supply rate of the raw material fluctuates or the supply is interrupted, slopping occurs and the secondary combustion ratio also fluctuates greatly, so that high-order stability cannot be expected. However, even if the raw material supply amount fluctuates as in Comparative Example (5), stable operation is possible if the supply O 2 amount is small. However, if the supply O 2 amount is small, the productivity naturally increases. Deteriorate.

これに対し、上記各実施例のように原料を連続且つ一
定供給速度で投入することにより、操業の安定化と高い
生産性が得られる。
On the other hand, by supplying the raw material continuously and at a constant supply rate as in each of the above-described embodiments, stable operation and high productivity can be obtained.

〔発明の効果〕〔The invention's effect〕

以上述べた本発明によれば、高い生産性を確保しなが
ら、2次燃焼比を高位に安定でき、溶鉄製造コストの低
減を図ることができるとともに、スロッピングを防止
し、溶融還元の安定操業を実現できる。特に本発明法に
よれば、従来の高炉法及び溶融還元法に較べ、溶鉄の高
い生産性が得られる。すなわた、一般の高炉法の生産性
は2.0〜2.3ton/D・m3程度であり、また熱風の代わりにO
2を付加する所謂酸素高炉法(文献「鉄と鋼」73〔198
7〕,S80)では、max5.1ton/D・m3という報告がなされて
いる。また、比較例(5)に示されるように従来の溶融
還元法で操業可能な生産量はせいぜい4〜5ton/D・m3
まりである。これに対して本発明法によれば、6ton/D・
m3以上の生産性が容易に得られるものである。また、本
発明によれば、このような高い生産性が安定して得られ
るため、溶融還元炉及びその付帯設備を小型化でき、設
備コストを低く抑えることがてきる。
According to the present invention described above, it is possible to stabilize the secondary combustion ratio at a high level while ensuring high productivity, reduce the production cost of molten iron, prevent slopping, and stably operate the smelting reduction. Can be realized. In particular, according to the method of the present invention, higher productivity of molten iron can be obtained as compared with the conventional blast furnace method and smelting reduction method. Sunawa was, productivity of ordinary blast furnace process is about 2.0~2.3ton / D · m 3, also O instead of hot air
The so-called oxygen blast furnace method with the addition of 2 (Ref.
7], in S80), reports have been made that max5.1ton / D · m 3. Further, as shown in Comparative Example (5), the production amount that can be operated by the conventional smelting reduction method is at most 4 to 5 ton / D · m 3 . On the other hand, according to the method of the present invention, 6ton / D
A productivity of m 3 or more can be easily obtained. Further, according to the present invention, since such high productivity is stably obtained, the smelting reduction furnace and its accompanying equipment can be miniaturized, and the equipment cost can be kept low.

【図面の簡単な説明】[Brief description of the drawings]

第1図は溶融還元における2次燃焼比が炭材原単位に及
ぼす影響を示すものである。第2図は従来の金属浴炉式
の溶融還元法を模式的に示したものであ。第3図は実施
例における処理方式を模式的に示したものである。第4
図は比較例(1)における操業中の2次燃焼比の変化を
示すものである。第5図は比較例(2)における操業中
の2次燃焼比の変化を示すものである。第6図は比較例
(3)における操業中の2次燃焼比の変化を示すもので
ある。第7図は比較例(4)における操業中の2次燃焼
比の変化を示すものである。第8図は実施例(1)にお
ける操業中の2次燃焼比の変化を示すものである。
FIG. 1 shows the effect of the secondary combustion ratio in the smelting reduction on the basic unit of carbon material. FIG. 2 schematically shows a conventional metal bath furnace type smelting reduction method. FIG. 3 schematically shows a processing method in the embodiment. 4th
The figure shows a change in the secondary combustion ratio during operation in Comparative Example (1). FIG. 5 shows a change in the secondary combustion ratio during operation in Comparative Example (2). FIG. 6 shows a change in the secondary combustion ratio during operation in Comparative Example (3). FIG. 7 shows a change in the secondary combustion ratio during operation in Comparative Example (4). FIG. 8 shows a change in the secondary combustion ratio during operation in the embodiment (1).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−201406(JP,A) 特開 昭63−140010(JP,A) 特開 昭63−195206(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21B 11/00 - 13/14──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-201406 (JP, A) JP-A-63-140010 (JP, A) JP-A-63-195206 (JP, A) (58) Investigation Field (Int.Cl. 6 , DB name) C21B 11/00-13/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】石炭を炭材とする鉄鉱石の溶融還元におけ
る原料の装入方法において、主たる溶融還元処理期間
中、溶融還元炉内に鉄鉱石及び石炭を連続的且つ実質的
に一定の供給速度で供給することを特徴とする鉄鉱石の
溶融還元における原料装入方法。
1. A method for charging raw materials in the smelting reduction of iron ore using coal as a carbon material, comprising continuously and substantially constant supply of iron ore and coal into a smelting reduction furnace during a main smelting reduction process. A raw material charging method for smelting reduction of iron ore, characterized in that the raw material is supplied at a speed.
JP63020473A 1988-01-29 1988-01-29 Feeding method for smelting reduction of iron ore Expired - Fee Related JP2770305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63020473A JP2770305B2 (en) 1988-01-29 1988-01-29 Feeding method for smelting reduction of iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63020473A JP2770305B2 (en) 1988-01-29 1988-01-29 Feeding method for smelting reduction of iron ore

Publications (2)

Publication Number Publication Date
JPH01195229A JPH01195229A (en) 1989-08-07
JP2770305B2 true JP2770305B2 (en) 1998-07-02

Family

ID=12028074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63020473A Expired - Fee Related JP2770305B2 (en) 1988-01-29 1988-01-29 Feeding method for smelting reduction of iron ore

Country Status (1)

Country Link
JP (1) JP2770305B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140010A (en) * 1986-11-29 1988-06-11 Nippon Steel Corp Method and device for supplying raw material into smelting reduction furnace
JPS63195206A (en) * 1987-02-10 1988-08-12 Nippon Steel Corp Melting reduction method for chromium oxide
JPH01201406A (en) * 1987-08-26 1989-08-14 Seiren Shinkiban Gijutsu Kenkyu Kumiai Production of molten high chromium alloy from powdery ore

Also Published As

Publication number Publication date
JPH01195229A (en) 1989-08-07

Similar Documents

Publication Publication Date Title
CA1223740A (en) Method for the production of iron
US6143054A (en) Process of producing molten metals
SK2952000A3 (en) Method of making iron and steel
EP2210959B1 (en) Process for producing molten iron
JPH02236235A (en) Smelt reduction method of ni ore and smelting furnace thereof
JP2770305B2 (en) Feeding method for smelting reduction of iron ore
JP2000204409A (en) Operation of vertical furnace
JP6729073B2 (en) Reduction/dissolution method of iron raw material containing iron oxide
JP3509072B2 (en) Iron and steel making
US8475561B2 (en) Method for producing molten iron
JP3829516B2 (en) Blast furnace operation method
JP3516793B2 (en) How to load raw fuel such as dust agglomerate, self-reducing ore, iron scrap, solid fuel, etc. into vertical furnace
JPH01252709A (en) Method for operating iron bath type smelting reduction furnace
JPH0297611A (en) Method for melting cold iron source
JP3580059B2 (en) Smelting reduction method of chromium ore
JP2668912B2 (en) Smelting reduction method
JPS6114203B2 (en)
JP2666397B2 (en) Hot metal production method
RU2118371C1 (en) Method of smelting cast iron in blast furnace
JPH0394006A (en) Method for blowing powdery body from tuyere in blast furnace
JPS63118026A (en) Operating method for zinc blast furnace
RU2127316C1 (en) Method of smelting high-silicon pig iron
JPS6132366B2 (en)
JPH01195212A (en) Method for using powdered coal in iron bath type melting and reducing furnace
JPS62224616A (en) Manufacture of molten metal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees