JPS63195206A - Melting reduction method for chromium oxide - Google Patents

Melting reduction method for chromium oxide

Info

Publication number
JPS63195206A
JPS63195206A JP2936287A JP2936287A JPS63195206A JP S63195206 A JPS63195206 A JP S63195206A JP 2936287 A JP2936287 A JP 2936287A JP 2936287 A JP2936287 A JP 2936287A JP S63195206 A JPS63195206 A JP S63195206A
Authority
JP
Japan
Prior art keywords
oxygen
slag
reduction
molten slag
ton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2936287A
Other languages
Japanese (ja)
Inventor
Shinya Kitamura
信也 北村
Kazuo Ogahira
大河平 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2936287A priority Critical patent/JPS63195206A/en
Publication of JPS63195206A publication Critical patent/JPS63195206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To execute decarbonization of molten iron and reduction of Cr2O3 in molten slag at the same time and at quick reaction velocity, by supplying lump coke having the specific size to molten slag surface except firing point by top blowing oxygen at the specific velocity at the time of adding Cr by Cr ore into the molten iron in the top and bottom blowing converter. CONSTITUTION:At the time of producing a stainless steel in the top and bottom blowing converter, the Cr ore is added in the molten slag on the molten iron surface in the converter, to contain Cr2O3 in the molten slag. Under this condition, the oxygen gas from a top blowing lance is blown at low pressure, the lump coke having 5-50mm size is charged at the position except the firing point by oxygen jet at 0.1-0.5F(kg/ton.hr) velocity to the oxygen supplying velocity F(Nm<3>/ton-hr), while bringing the oxygen into no contact with the molten iron surface. By reduction reaction of the lump coke with the Cr2O3 in the molten slag, Cr is contained in the molten slag and also by injecting the oxygen from the bottom blowing tuyere, the oxidized decarbonizing reaction of the molten iron is executed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は上底吹転炉におけるクロム鉱石の溶解還元に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to the melting and reduction of chromium ore in a top-bottom blowing converter.

(従来の技術) 上底吹き転炉型精錬容器を用いた、クロム鉱石の溶融還
元法は、例えば鉄と鋼、 70(1984)、 511
6に示すようにすでに広く行われている技術である。
(Prior art) A smelting reduction method of chromium ore using a top-bottom blowing converter type refining vessel is described, for example, in Tetsu to Hagane, 70 (1984), 511.
As shown in Figure 6, this is a technology that is already widely used.

この方法を効率良〈実施するためには、1550℃以上
の温度を維持するとともに、次の4点を同時に満たすこ
とが必要である。
In order to carry out this method efficiently, it is necessary to maintain a temperature of 1550° C. or higher and to satisfy the following four points at the same time.

1、大量のスラグ中に炭材を混合させ、スラグ−炭材界
面でのクロム酸化物の還元を促進させる。
1. Mix carbonaceous material into a large amount of slag to promote reduction of chromium oxide at the slag-carbonaceous interface.

2、上吹きランスから供給される酸化性ガスは、直接鋼
浴には衝突させず、スラグ中の炭材を燃焼させるように
ソフトブローにする。
2. The oxidizing gas supplied from the top blowing lance does not collide directly with the steel bath, but is soft blown to burn the carbonaceous material in the slag.

3、投入したクロム鉱石に含まれているN20゜とMg
Oの合計がスラグ中で約40%以下になるように、フラ
ックスを投入し希釈する。
3. N20° and Mg contained in the chromium ore input
Flux is added and diluted so that the total amount of O in the slag is about 40% or less.

4、底吹きガスにより鋼浴とスラグを攪拌させる。4. Stir the steel bath and slag with bottom-blown gas.

このうち、特に2の要因により熱の供給をおこなうCの
酸化反応をスラグ相上部で行わせ、スラグ相内部でおこ
るクロム酸化物の還元反応と場所を分離することにより
、同一容器内での酸化と還元反応の同時進行を可能とし
ている。しかし、酸化性ガスと鋼浴とが直接反応しない
ため、鋼浴の脱炭は期待できず、また、スラグ中に炭材
を常に存在させなければならないため、鋼浴中のCは常
に飽和濃度で推移する。したがって、例えばステンレス
鋼を製造する場合には溶融還元後にスラグを排滓し、そ
の後改めてて、通常の転炉吹錬に相当する脱炭を行う必
要があり、長時間を要するためCC化を阻害する等の問
題を生じる。これを克服するため、例えば鉄と鋼、 7
N1985)、 5142に示すようにC不飽和溶銑に
おける溶融還元の試みも行われているが、実験結果によ
れば、不飽和C溶銑による還元速度は飽和C溶銑や炭材
による還元速度に比べてはるかに遅く、特に溶銑中のC
r濃度が5%以上になると、この差が非常に大きいこと
が明らかになっている。したがって、溶銑の脱炭をおこ
なうときにはCが不飽和となりかつスラグ中の炭材も無
くなるためCrの還元速度が低下し、一方還元速度を高
めるためにはスラグ中に炭材が必要なため溶銑のCが飽
和となり脱炭が同時にできないという相反する問題が生
じている。
Of these, the oxidation reaction of C, which supplies heat due to factor 2, is performed above the slag phase, and by separating the location from the reduction reaction of chromium oxide that occurs inside the slag phase, the oxidation reaction in the same container can be carried out in the same container. This makes it possible for the reduction reaction to proceed simultaneously. However, since the oxidizing gas and the steel bath do not react directly, decarburization of the steel bath cannot be expected, and since carbonaceous material must always be present in the slag, the C in the steel bath always remains at a saturated concentration. It will remain at . Therefore, for example, when manufacturing stainless steel, it is necessary to remove the slag after melting and reduction, and then perform decarburization equivalent to normal converter blowing, which takes a long time and hinders conversion to CC. This may cause problems such as To overcome this, for example, iron and steel, 7
Smelting reduction using C-unsaturated hot metal has been attempted as shown in N1985), 5142, but according to experimental results, the reduction rate with unsaturated C hot metal is lower than that with saturated C hot metal or carbonaceous material. Much slower, especially C in hot metal
It has been revealed that this difference becomes extremely large when the r concentration is 5% or more. Therefore, when decarburizing hot metal, C becomes unsaturated and the carbonaceous material in the slag also disappears, so the reduction rate of Cr decreases.On the other hand, in order to increase the reduction rate, carbonaceous material is required in the slag, so the hot metal A contradictory problem arises in that C becomes saturated and decarburization cannot be carried out at the same time.

(発明が解決しようとする問題点) 本発明は、鋼浴の脱炭とCr酸化物の還元溶解とを同時
にかつ速い速度でおこなわせるとともに、浴中Cの飽和
抑制による継続される脱炭精錬の短縮及び歩留間上等を
図りうる溶解還元法の提供を目的とする。
(Problems to be Solved by the Invention) The present invention enables decarburization of a steel bath and reductive dissolution of Cr oxides to be performed simultaneously and at a high speed, and continuous decarburization and refining by suppressing the saturation of C in the bath. The purpose of the present invention is to provide a dissolution reduction method that can shorten the process and increase the yield.

(問題点を解決するための手段) 本発明は、上方に酸化性ガスを供給するランスを有し、
炉底に攪拌用ガスを供給する羽口を有する精錬装置にお
いて、クロム鉱石を溶解還元する場合、5〜50mの直
径を有する塊状炭材を、酸素供給速度F (N cd 
/ (ton−Hr) )に対して0.1F〜0.5 
F (ktz/ (ton −Hr) )の速度で、酸
素ジェットが鋼浴表面に衝突する火点部以外の場所に落
下供給することを特徴とするクロム酸化物の溶解還元方
法である。
(Means for solving the problem) The present invention has a lance that supplies oxidizing gas upward,
When chromium ore is melted and reduced in a refining device that has tuyeres that supply stirring gas to the bottom of the furnace, lump carbonaceous material with a diameter of 5 to 50 m is heated at an oxygen supply rate F (N cd
/ (ton-Hr) ) 0.1F to 0.5
This is a method for dissolving and reducing chromium oxide, which is characterized in that an oxygen jet is supplied falling at a rate of F (ktz/(ton - Hr)) to a location other than the hot spot where it collides with the steel bath surface.

この方法は、本発明者らによる数多くの実験の結果、溶
銑中のCが不飽和であってもスラグ中に炭材が存在する
限りCrの還元速度は大きく、またスラグに添加した炭
材が鋼浴に溶解するまでの時間でも還元反応は充分に進
行しうるという事実の発見に基づくものである。
As a result of numerous experiments conducted by the present inventors, this method has shown that even if C in the hot metal is unsaturated, as long as carbonaceous material is present in the slag, the reduction rate of Cr is high. This is based on the discovery that the reduction reaction can proceed sufficiently even during the time it takes to dissolve in a steel bath.

この原理を実用に移すためには、投入した炭材を上吹き
及び羽目からの酸化性ガスにより燃焼せしめることなく
スラグ中に懸濁させることが必須でありそのためには炭
材の大きさを5fi以上の直径にするとともに、添加場
所を酸素ジェットが鋼浴表面に衝突する面、いわゆる火
点部以外の場所とする必要がある。しかし炭材を大きく
することは還元反応がスラグ−炭材界面でおこるために
反応速度の低下をまねく。
In order to put this principle into practice, it is essential to suspend the charged carbon material in the slag without burning it due to the oxidizing gas from the top blowing and the slag, and to do this, the size of the carbon material must be 5fi. In addition to making the diameter above, it is necessary to add the oxygen to a place other than the surface where the oxygen jet collides with the steel bath surface, that is, the so-called ignition point. However, increasing the size of the carbon material causes a reduction reaction to occur at the slag-carbon material interface, resulting in a reduction in the reaction rate.

そこで還元反応速度を高く維持する方法を検討した結果
、炭材の直径が塊状の場合は50鶴以下であることが、
必要であることがわかった。この他、実行上の要件とし
て、還元速度を高くするためには活性化エネルギーが約
50にcar /1aolと大きいため温度を高く保つ
ことが必要であるが、1600℃以上では耐火物の溶損
が著しく 、1450℃以下では還元速度自体が小さい
ため、1450〜1600℃の範囲が必要である。
Therefore, as a result of considering a method to maintain a high reduction reaction rate, it was found that when the diameter of the carbon material is in the form of a lump, the diameter is 50 or less.
It turned out to be necessary. In addition, as a practical requirement, in order to increase the reduction rate, it is necessary to keep the temperature high because the activation energy is as large as approximately 50 car / 1 aol, but at temperatures above 1600 °C, the refractory will melt. is remarkable, and the reduction rate itself is low below 1450°C, so a range of 1450 to 1600°C is required.

一方この他にも還元速度を高くするためにはクロム鉱石
に含まれるAl2O3とMgOのスラグ中での濃度を希
釈して、クロム酸化物スピネルをスラグにすばやく溶解
させることが必要である。
On the other hand, in order to increase the reduction rate, it is necessary to dilute the concentration of Al2O3 and MgO contained in the chromium ore in the slag to quickly dissolve the chromium oxide spinel in the slag.

しかし、ステンレス母溶鋼の場合にはフェロクロムより
も融点が低いため還元温度を低下できるが、前記の温度
範囲ではスラグ中のM2O,とMgOの合計が55%以
上ではスピネルの溶解速度が非常に遅く、30%以下で
はスラグ量が多くなり歩留の低下と操業の不安定化をま
ねくため、30〜55%の範囲が必要である。このため
に投入されるフラックスとしては安価であるCab、 
5iO1が考えられるが脱硫能を高くすることとスラグ
量を必要以上に増さないという条件からCaO/SiO
2を0、5〜1.5にすることが必要となる。
However, in the case of stainless steel, the melting point is lower than that of ferrochrome, so the reduction temperature can be lowered, but in the above temperature range, if the total of M2O and MgO in the slag exceeds 55%, the dissolution rate of spinel is very slow. If it is less than 30%, the amount of slag increases, resulting in a decrease in yield and destabilization of operation, so a range of 30 to 55% is required. Cab is an inexpensive flux used for this purpose.
5iO1 is considered, but CaO/SiO
It is necessary to set 2 to 0.5 to 1.5.

また、炭材の供給速度については従来のクロム酸化物の
溶融還元においては鋼浴をC飽和に保つために上方及び
下方からの全送酸速度をF(Nn(/(ton−Hr)
)とした場合、2C+0z=2COの反応から考えて1
.07 F (kg/ (ton−Hr))以上もしく
は、C+0t=COtの反応から考えて0.54 F(
k+r/ (ton−fir))以上の炭材を2次燃焼
率に応じて供給する必要があった。
In addition, regarding the supply rate of carbonaceous material, in order to keep the steel bath saturated with C in conventional smelting reduction of chromium oxide, the total oxygen supply rate from above and below is set to F(Nn(/(ton-Hr)).
), considering the reaction of 2C+0z=2CO, 1
.. 07 F (kg/ (ton-Hr)) or more, or 0.54 F ( considering the reaction of C+0t=COt)
It was necessary to supply carbonaceous material of k+r/(ton-fir) or more according to the secondary combustion rate.

しかし、この塊状炭材の投入速度は大きいほうがスラグ
中に懸濁する量が増えるため還元反応速度は増加するが
、すべての炭材が還元反応に消費されるわけではないの
でそれ以外の炭材は最終的には鋼浴に溶解するため炭材
の供給速度を大きくしすぎると脱炭時間自体が長くなる
However, if the charging speed of this lumpy carbonaceous material is high, the amount suspended in the slag increases and the reduction reaction rate increases, but not all of the carbonaceous material is consumed in the reduction reaction, so other carbonaceous materials will eventually dissolve in the steel bath, so if the feeding rate of carbonaceous material is increased too much, the decarburization time itself will become longer.

この2つの要因を満たす条件として、炭材供給速度とし
て全酸素供給速度(F、 NrI?/(ton−Hr)
)に対して0.1 F 〜0.5 F (kg/ (t
on−Hr))の範囲が必要となり、これにより、炭材
を入れない場合に比べても脱炭時間は10分以下の延長
にとどまり、かつ、所定のCr還元速度を得ることがで
きる。
As a condition that satisfies these two factors, the total oxygen supply rate (F, NrI?/(ton-Hr)) is set as the carbonaceous material supply rate.
) to 0.1 F to 0.5 F (kg/ (t
On-Hr)) is required, and as a result, the decarburization time remains at most 10 minutes longer than in the case where no carbon material is added, and a predetermined Cr reduction rate can be obtained.

この塊状炭材の投入速度が0.1 F (kg/ (t
on・Hr) )より少ないと急激にクロムの還元が低
下し、一方0.5Fよりも多いとクロム還元は行ない得
ても浴中のC含有量が急上昇し次工程の脱炭精錬の支障
となる。
The charging speed of this lump carbonaceous material is 0.1 F (kg/ (t)
On・Hr)) If the temperature is lower than 0.5F, the reduction of chromium will decrease rapidly, while if the temperature is higher than 0.5F, even if chromium reduction can be achieved, the C content in the bath will rise sharply, which will interfere with the decarburization refining process in the next step. Become.

なお、本発明に用いるクロム鉱石としてはCr含有量が
10〜50%の一般クロム鉱石はもちろん賞鉱を富化処
理したもの、あるいは還元処理されたベレット等のクロ
ム鉱石類を含めたもので一部クロム酸化物を含有するも
のを対象とするものである。さらに塊状炭材としても単
なる塊状炭あるいはコークス、若しくはこれ等を成形加
工した成形炭等を用いる。
The chromium ore used in the present invention includes not only general chromium ore with a Cr content of 10 to 50%, but also chromium ores enriched with prize ores, or reduced chromium ores such as pellets. This applies to products containing chromium oxide. Further, as the lump carbon material, simple lump coal or coke, or briquette formed by forming these or the like is used.

また、これ等を添加する酸素ジェットの火点部以外とし
ては上吹ランスノズルがストレートノズルの場合には±
12°の角度で0□ガスが拡がるとしてランスギャップ
より計算された部分以外の領域を、またラバールノズル
の場合には次式で求めたコアー長さくHc)だけ実質上
のランスギャップが下がっているとし、その位置から±
12°で0!ガスが拡がるとして計算される部分以外の
領域とした。
In addition, if the top blowing lance nozzle is a straight nozzle, except for the fire point of the oxygen jet that adds these, ±
Assuming that 0□ gas spreads at an angle of 12°, assume that the area other than the part calculated from the lance gap is assumed to be lower than the area calculated from the lance gap, and in the case of a Laval nozzle, the actual lance gap is lowered by the core length (Hc) calculated using the following formula. , ± from that position
0 at 12°! The area was defined as a region other than the area where gas is calculated to spread.

Hc= (3,52Poe  1.26) Xdここで
、POGはFax = 0.456 (nd”) X 
O,96X Poeより求める。
Hc = (3,52Poe 1.26) XdHere, POG is Fax = 0.456 (nd”)
Obtained from O,96X Poe.

Fo、  ;上吹送酸速度(Nrd/Hr)d;スロー
ト系(鶴) n;ノズル数 〔実施例〕 まず小型の融解炉を用いた場合の例を示す。第1図は約
1550℃に保持された約60kgの溶銑の上に約5 
kgのクロム鉱石を添加し、スラグ中のM、03とMg
Oの濃度の和が35%となり、CaO/5iOzが1.
0となるようにCaOとSingとを混合させた場合の
スラグ中のCr濃度の時間変化を調べたものである。
Fo, ; Top blowing acid rate (Nrd/Hr) d; Throat system (Tsuru) n; Number of nozzles [Example] First, an example in which a small melting furnace is used will be shown. Figure 1 shows about 60kg of hot metal held at about 1550℃.
By adding kg of chromium ore, M, 03 and Mg in the slag
The sum of O concentrations is 35%, and CaO/5iOz is 1.
This is an investigation of the change in Cr concentration in the slag over time when CaO and Sing were mixed so that the concentration of Cr was 0.

曲線Aは溶銑中のCが不飽和の場合であるが溶銑中のC
が飽和の場合の曲線Bや溶銑中のCが飽和でかつスラグ
中に5〜10日の直径のコークスを約400g添加した
場合の曲線Cに比べて著しくCrの低下速度が小さいこ
とがわかる。しかしCが不飽和であっても曲線りに示す
ように、約50gと少量のコークスを、ある時間に添加
すると瞬間的にスラグ中のCrflJ度は低下している
Curve A is for the case where C in the hot metal is unsaturated;
It can be seen that the rate of decrease in Cr is significantly lower than curve B when C is saturated and curve C when C in the hot metal is saturated and about 400 g of coke with a diameter of 5 to 10 days is added to the slag. However, even if C is unsaturated, as shown in the curve, when a small amount of coke of about 50 g is added at a certain time, the CrflJ degree in the slag instantly decreases.

このことは、従来のスラグ中に添加された炭材はC不飽
和の鋼浴の場合にはただちに鋼浴に溶解し、還元には寄
与しないという考えとは異なる結果であり、上述のごと
くスラグを充分に溶融状態に保つような組成と温度を維
持すれば、炭材の鋼浴への溶解よりもはや(Cr酸化物
の還元が進行することを示している。
This is different from the conventional idea that carbonaceous material added to slag is immediately dissolved in a C-unsaturated steel bath and does not contribute to reduction. This shows that if the composition and temperature are maintained to keep the Cr oxide sufficiently molten, the reduction of the Cr oxide proceeds faster than the dissolution of the carbonaceous material into the steel bath.

これをうけて100 ton規模の上底吹き転炉による
試験をおこなった。スラグ及び温度条件は小型試験時と
同じとした。Cr鉱石はコークスとともに〔%C〕が2
%程度になった時点より連続的に上方添加した。実炉の
場合は脱炭と熱供給のため上吹きランスより酸素を供給
するため、炭材を火点部へ供給すると即座に燃焼しCr
の還元に役立たず、第2図の曲線1に示すように鋼中の
CrtJI度は上がらなかった。しかし、曲線2に示す
ように特殊な添加方法により炭材を火点以外の場所に添
加すると、〔%Cr)は顕著に増加し本方法が有効であ
ることが確認゛された。
In response to this, a test was conducted using a 100 ton scale top-bottom blowing converter. The slag and temperature conditions were the same as in the small-scale test. Cr ore has [%C] of 2 along with coke.
%, continuous upward addition was made. In the case of an actual furnace, oxygen is supplied from the top blowing lance for decarburization and heat supply, so when carbon material is supplied to the fire point, it immediately burns and produces Cr.
As shown in curve 1 of FIG. 2, the CrtJI degree in the steel did not increase. However, as shown in curve 2, when the carbonaceous material was added at a location other than the fire point using a special addition method, [%Cr] increased significantly, confirming that this method is effective.

これ等の結果を基に表−1に示す操業条件で100 t
onの溶銑を用い7.5%Crのステンレス鋼の溶製を
行ない従来の操業と比較した。ここで全送酸速度は20
00ON rd / Hr、全Cr鉱石投入量は25t
onである。
Based on these results, 100 t under the operating conditions shown in Table 1.
7.5% Cr stainless steel was melted using hot metal of 1000 mL and compared with conventional operation. Here, the total oxygen delivery rate is 20
00ON rd/Hr, total Cr ore input amount is 25t
It's on.

表−1から明らかなように本発明法は、全精錬時間をC
Cの連々鋳のサイクルタイム(約40分)に順応できる
まで短縮できるとともに、高いクロム歩留が達成できる
等の点で比較例に対し明らかに優れていることが分かる
As is clear from Table 1, the method of the present invention requires a total refining time of C
It can be seen that this method is clearly superior to the comparative example in that it can shorten the cycle time (approximately 40 minutes) for continuous casting of C and achieve a high chromium yield.

(発明の効果) 以上述べた如く、本発明によるクロム鉱石の溶解還元方
法を用いることにより、必要最小限の炭材でもうて効果
的にクロム還元を行なわしめるとともに、浴中の(C)
を不飽和域に抑制することから継続する脱(C)精錬の
短縮歩留向上、低コスト化等が図れることから極めて優
れた溶解還元方法である。
(Effects of the Invention) As described above, by using the method for dissolving and reducing chromium ore according to the present invention, chromium can be effectively reduced even with the minimum necessary carbon material, and (C) in the bath can be effectively reduced.
It is an extremely excellent dissolution reduction method because it suppresses the amount of carbon to an unsaturated region, thereby shortening the continuous de(C) refining, improving the yield, and reducing costs.

【図面の簡単な説明】 第1図は、小型溶解炉による溶融還元試験結果を示す図
、第2図は100 ton規模の上底吹き転炉による実
験結果を示す図である。 符号の説明 図中Aは溶銑Cが不飽和の場合の例。 Bは溶銑Cが飽和の場合の例。 Cは溶銑Cが飽和でかつ常に炭材を投入した場合の例。 Dは溶銑Cが不飽和であるが14分時点で炭材を添加し
た場合の例。 曲線1は炭材を火点部へ供給した場合の例。 曲線2は炭材を火点以外の場所へ供給した場合の例。 図面の汀■占(内容に変更なし) 第1図 701!1倫j添加徨α峙M(を) 第2図 0      10     2θ     Jθ吠酸
時朋(を) 手続補正書(自発) 昭和62年5月8 日 特許庁長官 黒 1)明 雄 殿 1、事件の表示 昭和62年特許願第29362号 2、発明の名称 クロム酸化物の溶解還元方法 3、補正をする者 事件との関係 特許出願人 東京都千代田区大手町二丁目6番3号 (665)新日本製鐵株式會社 代表者 武  1)   量 4、代理人〒100 東京都千代田区丸の内二丁目4番1号 (内容に変更なし)
[Brief Description of the Drawings] Fig. 1 is a diagram showing the results of a melt reduction test using a small melting furnace, and Fig. 2 is a diagram showing the experimental results using a 100 ton scale top-bottom blowing converter. In the explanatory diagram of the symbols, A is an example where the hot metal C is unsaturated. B is an example when hot metal C is saturated. C is an example when the hot metal C is saturated and carbonaceous material is always added. D is an example in which hot metal C is unsaturated, but carbonaceous material is added at 14 minutes. Curve 1 is an example when carbon material is supplied to the hot spot. Curve 2 is an example where charcoal material is supplied to a location other than the fire point. Figure 1 701! 1 Rin j addition 徨 α facing M (to) Figure 2 0 10 2θ Jθ Hosin Tokitomo (to) Procedural amendment (voluntary) 1988 May 8th, Commissioner of the Japan Patent Office, Kuro 1) Mr. Akihiro 1, Indication of the case, Patent Application No. 29362 of 1988, 2, Name of the invention, Method for dissolving and reducing chromium oxide 3, Person making the amendment, Relationship with the case, Patent application Person: 2-6-3 Otemachi, Chiyoda-ku, Tokyo (665) Representative Takeshi, Nippon Steel Corporation 1) Amount: 4, Agent: 2-4-1 Marunouchi, Chiyoda-ku, Tokyo, 100 (no changes to the content) )

Claims (1)

【特許請求の範囲】[Claims] 上方から酸化性ガスを吹込みつつ、炉底羽口を介して酸
素あるいは不活性ガスを供給して溶鉄にクロム鉱石と炭
材を添加して溶融還元する上底吹転炉精錬において、5
〜50mmの直径を有する塊状炭材を上吹酸素ジェット
の火点部以外の場所に添加するとともに、該塊状炭材を
全酸素供給速度F(Nm^3/(ton・Hr))に対
して0.1F〜0.5F(kg/(ton・Hr))の
速度で添加することを特徴とするクロム酸化物の溶解還
元方法。
In top-bottom blown converter refining, chromium ore and carbonaceous materials are added to molten iron and melted and reduced by blowing oxidizing gas from above and supplying oxygen or inert gas through the bottom tuyere.
A lumpy carbonaceous material having a diameter of ~50 mm is added to a location other than the fire point of the top-blown oxygen jet, and the lumpy carbonaceous material is added to the total oxygen supply rate F (Nm^3/(ton Hr)). A method for dissolving and reducing chromium oxide, the method comprising adding at a rate of 0.1F to 0.5F (kg/(ton·Hr)).
JP2936287A 1987-02-10 1987-02-10 Melting reduction method for chromium oxide Pending JPS63195206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2936287A JPS63195206A (en) 1987-02-10 1987-02-10 Melting reduction method for chromium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2936287A JPS63195206A (en) 1987-02-10 1987-02-10 Melting reduction method for chromium oxide

Publications (1)

Publication Number Publication Date
JPS63195206A true JPS63195206A (en) 1988-08-12

Family

ID=12274068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2936287A Pending JPS63195206A (en) 1987-02-10 1987-02-10 Melting reduction method for chromium oxide

Country Status (1)

Country Link
JP (1) JPS63195206A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195229A (en) * 1988-01-29 1989-08-07 Nkk Corp Method for charging raw material in smelting reduction of iron ore
JP2007177295A (en) * 2005-12-28 2007-07-12 Nippon Steel Corp Method for producing molten iron
US8015721B2 (en) 2006-11-20 2011-09-13 Hexagon Metrology Ab Coordinate measurement machine with improved joint

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195229A (en) * 1988-01-29 1989-08-07 Nkk Corp Method for charging raw material in smelting reduction of iron ore
JP2007177295A (en) * 2005-12-28 2007-07-12 Nippon Steel Corp Method for producing molten iron
US8015721B2 (en) 2006-11-20 2011-09-13 Hexagon Metrology Ab Coordinate measurement machine with improved joint
US8336220B2 (en) 2006-11-20 2012-12-25 Hexagon Metrology Ab Coordinate measurement machine with improved joint

Similar Documents

Publication Publication Date Title
JPH02221336A (en) Smelting reduction method of ni ore
JPS63195206A (en) Melting reduction method for chromium oxide
JP2020125541A (en) Converter refining method
JPH0244887B2 (en)
JPH0437135B2 (en)
JPH02221310A (en) Production of ni-and cr-containing molten metal
JP2842185B2 (en) Method for producing molten stainless steel by smelting reduction
JPS61279608A (en) Production of high-chromium alloy by melt reduction
JPH0435529B2 (en)
JPS59159963A (en) Production of high chromium molten metal
JP2758056B2 (en) Melting method of high chromium low P steel
JPS63259010A (en) Smelting reduction method for metallic oxide and smelting reduction furnace
SU729251A1 (en) Method of steel casting in hearth steel-melting set
JPH02125807A (en) Smelting reduction method for ore
JPS62222014A (en) Method for refining steel with molten slag
JP3718263B2 (en) Hot metal pretreatment method
JPH0260723B2 (en)
JPS6123244B2 (en)
JPS62192520A (en) Manufacture of low carbon steel
JPS609814A (en) Production of high chromium alloy unsaturated with carbon by melt reduction
JPH02285017A (en) Production of molten stainless steel
JPS61139614A (en) Manufacture of steel
JPH01123015A (en) Method for promoting secondary combustion in converter
JPS59150060A (en) Method and device for producing stainless steel by melt reduction of chromium ore
JPH02138409A (en) Method for refining stainless steel