JPH0260723B2 - - Google Patents

Info

Publication number
JPH0260723B2
JPH0260723B2 JP21207582A JP21207582A JPH0260723B2 JP H0260723 B2 JPH0260723 B2 JP H0260723B2 JP 21207582 A JP21207582 A JP 21207582A JP 21207582 A JP21207582 A JP 21207582A JP H0260723 B2 JPH0260723 B2 JP H0260723B2
Authority
JP
Japan
Prior art keywords
decarburization
molten steel
gas
oxygen
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21207582A
Other languages
Japanese (ja)
Other versions
JPS59104420A (en
Inventor
Yasumasa Ikehara
Haruki Aryoshi
Hiroaki Morishige
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21207582A priority Critical patent/JPS59104420A/en
Publication of JPS59104420A publication Critical patent/JPS59104420A/en
Publication of JPH0260723B2 publication Critical patent/JPH0260723B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • C21C7/0685Decarburising of stainless steel

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、含クロム溶鋼の脱炭方法に関するも
のである。 含クロム溶鋼の脱炭において、一般に溶鋼中の
〔C〕濃度は鋼浴温度が高いほど又鋼浴中のCOガ
ス分圧が低いほどその平衡値は低くなるので効率
的な脱炭を行うためには浴鋼温度を高く、CO分
圧を低くすればよいことは明らかである。しかし
あまり高い鋼溶温度は耐火物の溶損を助長し、耐
化物コストの観点から好ましくなく、1700℃以下
の温度で脱炭するのが通常作業となつている。又
CO分圧を低くし効率よく脱炭するための方法と
しては真空中で脱炭したり、CO分圧を低下させ
る希釈ガスを酸素ガスと同時に吹込む希釈脱炭法
が広く用いられている。前者は一般にVOD、後
者はAODと呼ばれている。 AOD法では脱炭の進行とともに鋼中〔C〕濃
度に応じて希釈ガス富化となるように希釈ガスと
酸素ガスの比率を段階的に切換えていく方法が一
般に行われている。これは鋼中〔C〕濃度が低く
なるに従い脱炭酸素効率(吹込酸素ガスの脱炭に
消費される酸素の比率)が低下してくるため、希
釈ガスを富化してCO分圧を低下させ、脱炭酸素
効率を高値に維持し、鋼中〔Cr〕の酸化量を迎
え、高価な還元剤の低減を図つている。 以上述べたAOD法の脱炭のメカニズムを希釈
ガスとしてArガスを用いた場合を第1図に示す。
即ち、羽口1から溶鋼2中に吹込まれた、希釈ガ
スと酸素ガスの混合ガスのうち、酸素ガスは直ち
に溶鋼中〔Cr〕と反応し〔Cr2O3〕を生成し希釈
ガスバブルの周辺に凝集し、この〔Cr2O3〕と溶
鋼中〔C〕とが反応し、COガスを生成する。生
成したCOガスはCO分圧の低いアルゴン希釈ガス
バブルに吸収され、反応ガスとして炉外に排出さ
れる。これを化学反応式で示すと(1)、(2)式のごと
くなる。 3/202+2〔Cr〕→〔Cr2O3〕 ………(1) 〔Cr2O3〕+3〔C〕→3CO+2〔Cr) ………(2) AOD法の原理は溶鋼中〔C〕濃度が低くなる
に従つて(2)式の反応が遅くなので希釈ガス富化に
よつてCO分圧を低下させ(2)式への反応を右方向
へ促進させてやるものである。 この脱炭のメカニズムから考えて、AOD法の
脱炭中期以降の吹込まれた酸素ガスは直接溶鋼中
〔C〕と反応することはほとんどなく大部分の酸
素ガスが〔Cr2O3〕を生成し、しかる後に浴鋼中
〔C〕と反応するものと考えられている。そして
(2)式の反応速度が遅いために(1)式で生成した
〔Cr2O3〕の一部はスラグ中へ移行する。 これを化学式で示すと(3)式の如くとなる。 3/202+2〔Cr〕→α〔Cr2O3〕+β〔Cr2O3
………(3) α+β=1、〔 〕は溶鋼中、〔 〕はスラグ中
を示す。そしてこの〔Cr2O3〕を生成する過程に
おいて溶鋼の温度は上昇するので必要以上の高温
とならないように多量の冷却材を必要とする。通
常冷却材に普通鋼及び同系の鋼種の屑が用いられ
るが、理想的には、小片のものが多量に手に入
り、炉を立てた状態で、脱炭を行いながら連続的
に添加することである。しかるに現状では形状の
良い小片の冷却材を手に入れるには加工をほどこ
さなければならず、著しく高価となるので止む得
ず脱炭を中断しサイズの大きい冷却材を炉口より
一括装入している。このため、中断による時間ロ
ス、傾炉時のガスのロスが生じるとともに、一度
に溶鋼の温度が低下するので、脱炭酸素効率が大
幅に低下し還元用のsi消費量の増大という結果を
もたらし、操業上の大きな問題となつている。 本発明は安価な形状の良好な小片冷却材の利用
を可能とし、これらの欠点を排除するとともに脱
炭に必要な吹込み酸素ガスの低減、更には安価な
鉄、クロム、Ni源の有効活用を可能とする脱炭
法を提供するものである。 即ち本発明は脱炭中期以降で金属酸化物、例え
ばクロム鉱石、NiO、スケール又は鉄鉱石を添加
し、脱炭に必要な酸素源をCr2O3、NiO、FeO、
Fe2O3、Fe3O4の形で与えることを特徴とする。
本発明で脱炭中期以降とは溶鋼中〔C〕%が0.25
%程度以下の段階をいう。このときそれぞれの金
属酸化物は(4)〜(6)式により、溶鋼中〔Cr〕によ
つて還元され、生成した〔Cr2O3〕が(2)式によつ
て脱炭に寄与するものと推定される。 3(NiO)+2〔Cr〕→3〔Ni〕+〔Cr2O3〕 ………(4) 3(FeO)+2〔Cr〕→3〔Fe〕+〔Cr2O3〕 ………(5) (Fe2O3)+2〔Cr〕→2〔Fe〕+〔Cr2O3
………(6) Cr2O3を添加したときはスラグメタル間の分配
によつて (Cr2O3)→〔Cr2O3〕 ………(7) のように溶鋼中にCr2O3が移行するものと推定さ
れる。 以上のように添加した金属酸化物によつて溶鋼
中の酸素温度(〔Cr2O3〕濃度)が高く維持され
るので酸素ガスを吹込まず酸素ガスのみを吹込む
攪拌によつて従来法と同じ脱炭速度で脱炭が可能
である。この状況は後述のように第6図に示され
る。但し、(4)、(5)、(6)式はいずれも吸熱反応であ
るから溶鋼の温度が降下する。従つて金属酸化物
を添加しつつ脱炭を行う溶鋼中〔C〕濃度範囲に
おいて温度的に余裕のない場には少量の酸素ガス
を希釈ガスとともに吹込んでやる必要がある。又
添加した金属酸化物を完全に脱炭に利用し切るた
めに、又脱炭初期〜中期に生成した(Cr2O3)を
有効に脱炭に利用するために、引続く脱炭末期に
スラグ中に脱炭に必要要な酸素源を残留させるこ
とを制限として還元剤を添加しつつ不活性ガスの
みを吹込み、攪拌脱炭を行うこことは還元期にお
ける還元用のSi消費量の低下を確実にするのに有
効な脱炭法であり、金属酸化物を添加しつつ行う
脱炭に引き続いて用いる。脱炭末期とは、溶鋼中
の〔C〕量が0.1%程度以下の段階をいう。 不活性ガスの吹込みと同時に還元剤を投入する
ことにより、スラグの流動性が向上する。これに
より該スラグと溶鋼ととの接触の機会が増大し、
金属酸化物中の酸素が溶鋼中に積極的に移行する
ため溶鋼中酸素と該溶鋼中〔C〕が効率よく反応
し還元と脱炭が著しく進行する。 脱炭終了時点では既に還元反能が進行中であり
還元期に移行しても還元に不足した分の還元剤あ
るいは必要に応じて該還元剤と造滓剤を投入すれ
ばよく、従来法の如く還元期で全量の還元剤又は
該還元剤と造滓剤を投入する方法に比べ、還元剤
の溶解が容易となるため大幅な還元時間の短縮が
可能であり、耐火物溶損防止、精錬能率向上効果
が得られる。 投入する還元剤の量は該スラグ中に脱炭に必要
な酸素源としての金属酸化物を残留させることが
必要であり、投入する還元剤の量が多過ぎると脱
炭の進行が悪くなる。また酸素ガスの吹込を止め
る時期は上記の作用効果を充分に得る目的から溶
鋼中〔C〕0.25%以下である。また下限は当然の
ことながら最終〔C〕値超であることが必要であ
る。 このように本発明の含クロム溶鋼の脱炭法にお
いて、その脱炭中以降のある溶鋼中〔C〕濃度範
囲で脱炭に必要な酸素源を金属酸化物の形で添加
し、引続く脱炭末期に還元剤を添加しつつ不活性
ガスのみを吹込み攪拌脱炭することにより、 安価な形状の良好な冷材を使用出来るため、
投入時に炉を傾斜させる必要がないのでAOD
操業が安定する、 安価な固体酸化物を利用することにより、吹
込酸素ガスの低減ができる、 安価な鉄、ニツケル、クロム源を有効成分と
して活用出来る、 添加金属酸化物中の酸素源を溶鋼中〔C〕で
効率的に還元するために還元期で添加する還元
剤の消費量が低減できるとともに、還元期の時
間が短縮できる、 等の利点があり、AOD操業に多大の利益をもた
らすものである。 以下AOD法に本発明を適用した具体例を用い
て更に詳細に説明する。 第2図にSUS−340の精錬に関する従来のAOD
法を示す。溶鋼中〔C〕濃度に応じてアルゴンガ
スを段階的に富化し、溶鋼中〔C〕を0.06%迄脱
炭している。この間、溶鋼中〔Cr〕の酸化によ
つて発生する反応熱を普通鋼屑おびSUS304屑を
冷却材として添加するとにより冷却し、又耐化物
の保護に必要なCaOを添加し、スラグ塩基度を適
正に保ち脱炭終了後に還元剤としてFe−Siを媒
溶剤としてCaO,CaF2を添加し、酸化したクロ
ムを還元し、その後、生成したスラグを除滓し、
脱硫及び成分温度調整を行い、精錬を完了してい
る。 第3図は還元期以降を大幅に短縮した場合の
AOD法に本発明を適用した例を示す。本例の特
徴は還元期以降が大幅に短縮されているために脱
炭終了時における鋼浴温度は著しく低くてよいこ
とである。従つて通常の冷却材を用いる場合であ
れば、炭素含有量の低い形状の良好な良質の冷却
材が多量に必要となるのに対し、本発明による金
属酸化物の添加であれば比較的形状の良い、低炭
素含有量のものが容易に入手可能であり、AOD
操業上極めて好都合である。第3図は、鉄鉱石を
用いた例であるが、鋼中〔C〕0.25%から0.12%
迄脱炭する必要な酸素量は鉄鉱石に換算して約
6Kg/T−Sとなる。このときの温度降下量を計
算すると鉄鉱石の熱容量及びFe2O3の還元反応に
よる吸熱量を併せて約50〜60℃/T−Sとなる。
従つて鋼中〔C〕0.25%から0.12%の範囲を希釈
ガスのみの吹込による攪拌で脱炭しても温度バラ
ンスが取れることとなる。従つて第3図の場合は
鋼中〔C〕が0.25%となつた時点から鉄鉱石を
0.12%迄順次添加しつつ希釈ガスのみの攪拌で脱
炭し、鋼中〔C〕0.12%で鉄鉱石の添加を完了す
るとともに、還元に必要な媒容剤の一部と、脱炭
に必要な酸素源スラグ中に残すことを限度として
スラグの流動性を向上させスラグ中の(Cr2O3
を鋼中へ移行させる分配反応を促進するために還
元剤(Fe−Si又はAl)を添加し希釈ガスの攪拌
を継続し脱炭を完了する。 第4図は、本発明の別の例を示し、脱炭末期に
金属酸化物として鉄鉱石を添加し希釈ガスのみを
吹込んだ。 本発明に従い金属酸化物を添加して、不活性ガ
スによる攪拌脱炭を行つた場合の脱炭速度を従来
の酸素吹込法と比較して第5図に示す。 希釈ガスの攪拌脱炭の場合、酸化物の供給がな
いと、不活性ガス400Nm3近辺で脱炭量に大きな
差が出るが、本発明に従い金属酸化物を添加した
場合には〔C〕0.06%近辺迄は通常脱炭法とほと
んど差がなく、本発明によつて、懸念された脱炭
時間に及ぼす影響は全くないと言つてよい。又希
釈ガスのみを吹込んだ場合の吹込前の鋼中〔O〕
量と鋼中〔C〕減少量の関係を第6図に示す(希
釈ガス吹込量200Nm3、酸化物供給なし)。 以上説明した実施例はいずれも鉄鉱石を用いた
例のみであるが、金属酸化物はすでに述べた如く
種々あり、いずれも脱炭条件及びそのときの入手
の状況によつて最適のものを使用することが出来
る。表−1にこれらの金属酸化物の鋼中〔C〕と
の反応による吸熱量をまとめて示す。表−1から
明らかな如く、鉄鉱石に較べて、クロム鉱石の方
が炭素Kg当り脱炭に要する冷却効果が大きく、使
用量が制約される。又スケール(FeO)及び酸化
Ni等は鉄鉱石に較べて吸熱量が少なく冷却効果
が少ないので比較的多量に使用出来て入手が可能
であれば比較的使いやすい。いずれの場合にも、
どの金属酸化物を添加するかで酸素バランス、温
度バランスを計算することが可能であり、希釈ガ
ス攪拌のみで脱炭するか、又は吹込酸素ガスが必
要かを求めることができる。 以上の本発明の利点をまとめて表−2に示す。
The present invention relates to a method for decarburizing chromium-containing molten steel. In decarburizing chromium-containing molten steel, the higher the steel bath temperature and the lower the CO gas partial pressure in the steel bath, the lower the equilibrium value of the [C] concentration in the molten steel. It is clear that the temperature of the bath steel should be increased and the CO partial pressure should be reduced. However, too high a steel melting temperature promotes melting and loss of refractories, which is undesirable from the viewpoint of refractory cost, and it is common practice to decarburize at temperatures below 1700°C. or
Widely used methods for efficiently decarburizing by lowering the CO partial pressure include decarburizing in a vacuum or diluting decarburization, in which a diluent gas that lowers the CO partial pressure is simultaneously injected with oxygen gas. The former is generally referred to as VOD, and the latter as AOD. In the AOD method, the ratio of diluent gas and oxygen gas is generally changed in stages so that the diluent gas becomes enriched according to the [C] concentration in the steel as decarburization progresses. This is because as the [C] concentration in steel decreases, the decarburization oxygen efficiency (ratio of oxygen consumed for decarburization of blown oxygen gas) decreases, so it is necessary to enrich the diluent gas and lower the CO partial pressure. The decarburization oxygen efficiency is maintained at a high value, the amount of oxidation of [Cr] in the steel is reached, and the use of expensive reducing agents is reduced. Figure 1 shows the decarburization mechanism of the AOD method described above when Ar gas is used as the diluent gas.
That is, among the mixed gas of diluent gas and oxygen gas injected into the molten steel 2 from the tuyere 1, the oxygen gas immediately reacts with [Cr] in the molten steel to generate [Cr 2 O 3 ] and the surrounding area of the dilution gas bubble. This [Cr 2 O 3 ] and [C] in the molten steel react to produce CO gas. The generated CO gas is absorbed by an argon dilution gas bubble with a low CO partial pressure and is discharged outside the furnace as a reaction gas. This can be expressed as chemical reaction equations (1) and (2). 3/20 2 +2 [Cr] → [Cr 2 O 3 ] ………(1) [Cr 2 O 3 ] + 3 [C] → 3CO + 2 [Cr) ……… (2) The principle of the AOD method is that in molten steel [ C] As the concentration decreases, the reaction of equation (2) slows down, so the CO partial pressure is lowered by enriching the diluent gas and the reaction of equation (2) is promoted in the right direction. Considering this decarburization mechanism, the oxygen gas injected after the middle stage of decarburization in the AOD method hardly reacts directly with [C] in molten steel, and most of the oxygen gas forms [Cr 2 O 3 ]. However, it is thought that it then reacts with [C] in the bath steel. and
Since the reaction rate of equation (2) is slow, a part of [Cr 2 O 3 ] generated in equation (1) migrates into the slag. This can be expressed as a chemical formula as shown in equation (3). 3/20 2 +2 [Cr] → α [Cr 2 O 3 ] + β [Cr 2 O 3 ]
......(3) α+β=1, [ ] indicates in molten steel, [ ] indicates in slag. Since the temperature of the molten steel rises in the process of generating this [Cr 2 O 3 ], a large amount of coolant is required to prevent the temperature from becoming higher than necessary. Common steel and similar steel scraps are usually used as a coolant, but ideally small pieces are available in large quantities and are added continuously while decarburizing with the furnace upright. It is. However, currently, in order to obtain small pieces of coolant with a good shape, it is necessary to process it, which is extremely expensive, so decarburization has to be interrupted and large-sized coolant is charged all at once from the furnace mouth. are doing. As a result, there is a loss of time due to interruptions, a loss of gas during the tilting furnace, and the temperature of the molten steel decreases all at once, resulting in a significant decrease in decarburization oxygen efficiency and an increase in Si consumption for reduction. This has become a major operational problem. The present invention makes it possible to use small pieces of coolant with a good shape at low cost, eliminates these drawbacks, reduces the amount of blown oxygen gas required for decarburization, and makes effective use of inexpensive sources of iron, chromium, and Ni. This provides a decarburization method that makes it possible to That is, the present invention adds metal oxides such as chromium ore, NiO, scale, or iron ore after the middle stage of decarburization, and converts the oxygen source necessary for decarburization into Cr 2 O 3 , NiO, FeO,
It is characterized by being given in the form of Fe 2 O 3 and Fe 3 O 4 .
In the present invention, after the middle stage of decarburization, the [C]% in molten steel is 0.25
% or less. At this time, each metal oxide is reduced by [Cr] in the molten steel according to equations (4) to (6), and the generated [Cr 2 O 3 ] contributes to decarburization according to equation (2). It is estimated that 3 (NiO) + 2 [Cr] → 3 [Ni] + [Cr 2 O 3 ] ………(4) 3 (FeO) + 2 [Cr] → 3 [Fe] + [Cr 2 O 3 ] ………( 5) (Fe 2 O 3 ) + 2 [Cr] → 2 [Fe] + [Cr 2 O 3 ]
………(6) When Cr 2 O 3 is added, Cr 2 is distributed in the molten steel as shown in (Cr 2 O 3 ) → [Cr 2 O 3 ] ………(7) due to the distribution among the slag metals. It is estimated that O 3 is transferred. As mentioned above, the added metal oxide maintains the oxygen temperature ([Cr 2 O 3 ] concentration) in the molten steel at a high level, so stirring that only oxygen gas is injected without injecting oxygen gas can be used instead of the conventional method. Decarburization is possible at the same decarburization rate. This situation is illustrated in FIG. 6 as described below. However, since equations (4), (5), and (6) are all endothermic reactions, the temperature of the molten steel decreases. Therefore, in places where there is no temperature margin in the concentration range of [C] in molten steel in which decarburization is performed while adding metal oxides, it is necessary to inject a small amount of oxygen gas together with diluent gas. In addition, in order to completely utilize the added metal oxides for decarburization, and to effectively utilize (Cr 2 O 3 ) generated in the early to middle stages of decarburization, it is necessary to Stirring decarburization is performed by injecting only inert gas while adding a reducing agent to limit the residual oxygen source necessary for decarburization in the slag. This is an effective decarburization method to ensure a reduction in carburization, and is used following decarburization with the addition of metal oxides. The final stage of decarburization refers to the stage where the amount of [C] in molten steel is approximately 0.1% or less. The fluidity of the slag is improved by introducing the reducing agent at the same time as the inert gas is blown into the slag. This increases the chance of contact between the slag and molten steel,
Since the oxygen in the metal oxide actively migrates into the molten steel, the oxygen in the molten steel reacts efficiently with [C] in the molten steel, and reduction and decarburization progress significantly. At the end of decarburization, the reduction reaction is already in progress, and even if the reduction stage begins, it is sufficient to add the reducing agent and slag-forming agent to compensate for the insufficient amount of reduction, or as necessary. Compared to methods in which the entire amount of reducing agent or the reducing agent and slag-forming agent are added during the reduction period, the reducing agent can be dissolved easily, making it possible to significantly shorten the reduction time, preventing corrosion of refractories, and refining. Efficiency improvement effect can be obtained. The amount of reducing agent to be added is necessary to leave metal oxides as an oxygen source necessary for decarburization in the slag, and if the amount of reducing agent to be added is too large, decarburization will not progress. In addition, the time to stop blowing oxygen gas is set to 0.25% or less [C] in the molten steel in order to obtain the above-mentioned effects sufficiently. Also, the lower limit needs to be above the final [C] value. As described above, in the decarburization method of chromium-containing molten steel of the present invention, an oxygen source necessary for decarburization is added in the form of metal oxide in the [C] concentration range in the molten steel after the decarburization, and the oxygen source is added in the form of a metal oxide. By adding a reducing agent at the final stage of coal and injecting only inert gas for stirring and decarburizing, it is possible to use inexpensive cold material with a good shape.
AOD because there is no need to tilt the furnace when charging
Operation is stable. By using inexpensive solid oxides, blown oxygen gas can be reduced. Inexpensive iron, nickel, and chromium sources can be used as active ingredients. Oxygen sources in added metal oxides can be used in molten steel. In order to achieve efficient reduction in [C], the amount of reducing agent added during the reduction period can be reduced, and the time required for the reduction period can be shortened. be. A more detailed explanation will be given below using a specific example in which the present invention is applied to the AOD method. Figure 2 shows the conventional AOD for refining SUS-340.
Show the law. Argon gas is gradually enriched according to the [C] concentration in the molten steel, and the [C] in the molten steel is decarburized to 0.06%. During this time, the reaction heat generated by the oxidation of [Cr] in the molten steel is cooled by adding ordinary steel scraps and SUS304 scraps as a coolant, and CaO, which is necessary to protect the resistant materials, is added to reduce the slag basicity. After proper maintenance and completion of decarburization, CaO and CaF 2 are added using Fe-Si as a reducing agent and a solvent to reduce the oxidized chromium, and then the generated slag is removed.
Refining has been completed after desulfurization and component temperature adjustment. Figure 3 shows the case where the period after the repayment period is significantly shortened.
An example in which the present invention is applied to the AOD method will be shown. A feature of this example is that the period after the reduction period is significantly shortened, so the steel bath temperature at the end of decarburization can be extremely low. Therefore, if a normal coolant is used, a large amount of high-quality coolant with a low carbon content and a good shape is required, whereas with the addition of metal oxides according to the present invention, a relatively small shape is required. Good, low carbon content is readily available and AOD
This is extremely convenient for operation. Figure 3 shows an example using iron ore, which has a carbon content of 0.25% to 0.12% in steel.
The amount of oxygen required to decarburize is approximately equivalent to iron ore.
It becomes 6Kg/T-S. If the amount of temperature drop at this time is calculated, the total heat capacity of the iron ore and the amount of heat absorbed by the reduction reaction of Fe 2 O 3 will be approximately 50 to 60° C./TS.
Therefore, even if a range of 0.25% to 0.12% [C] in steel is decarburized by stirring by blowing only diluent gas, the temperature can be balanced. Therefore, in the case of Figure 3, iron ore should be added from the point when [C] in the steel reaches 0.25%.
Decarburization is carried out by stirring only diluent gas while sequentially adding up to 0.12%, completes the addition of iron ore at 0.12% [C] in the steel, and a part of the medium necessary for reduction and part of the medium necessary for decarburization. (Cr 2 O 3 ) in the slag improves the fluidity of the slag by limiting the oxygen source left in the slag.
A reducing agent (Fe-Si or Al) is added to promote the distribution reaction that causes the carbon to migrate into the steel, and the diluent gas is continued to be stirred to complete decarburization. FIG. 4 shows another example of the present invention, in which iron ore was added as a metal oxide at the final stage of decarburization and only diluent gas was blown. FIG. 5 shows a comparison of the decarburization speed when a metal oxide is added according to the present invention and stirring decarburization is performed using an inert gas, compared with a conventional oxygen blowing method. In the case of stirring decarburization using diluent gas, if no oxide is supplied, there will be a large difference in the amount of decarburization around 400 Nm 3 of inert gas, but when metal oxide is added according to the present invention, [C] 0.06 %, there is almost no difference from the normal decarburization method, and it can be said that the present invention has no effect on the decarburization time, which was a concern. In addition, when only dilution gas is blown into the steel before blowing [O]
The relationship between the amount and the amount of [C] reduction in steel is shown in FIG. 6 (dilution gas injection amount 200 Nm 3 , no oxide supply). All of the examples explained above are only examples using iron ore, but as mentioned above, there are various metal oxides, and the most suitable one is used depending on the decarburization conditions and availability at the time. You can. Table 1 summarizes the amount of heat absorbed by the reaction of these metal oxides with [C] in steel. As is clear from Table 1, compared to iron ore, chromium ore has a greater cooling effect per kilogram of carbon required for decarburization, which limits the amount of chromium ore used. Also scale (FeO) and oxidation
Compared to iron ore, Ni etc. absorb less heat and have less cooling effect, so they can be used in relatively large quantities and are relatively easy to use if available. In either case,
It is possible to calculate the oxygen balance and temperature balance depending on which metal oxide is added, and it is possible to determine whether decarburization is performed only by stirring the diluted gas or whether blown oxygen gas is required. The above advantages of the present invention are summarized in Table-2.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図はAODのメカニズムを示す図、第2図
は従来法、第3図〜第4図は本発明法の例を示す
図、第5図〜第6図は本発明法の効果を示す図で
ある。
Figure 1 shows the mechanism of AOD, Figure 2 shows the conventional method, Figures 3 to 4 show examples of the method of the present invention, and Figures 5 to 6 show the effects of the method of the present invention. It is a diagram.

Claims (1)

【特許請求の範囲】 1 溶鋼中に酸素ガス及び希釈ガスを吹込む脱炭
法において、脱炭中期以降で金属酸化物を添加し
つつ該酸化物を酸素源の主体として脱炭を行うと
ともに、該脱炭中期に続く脱炭末期に、スラグ中
に脱炭に必要な酸素源を残留させることを限度と
して還元剤を添加しつつ不活性ガスの吹込みによ
り脱炭を行うことを特徴とする含クロム溶鋼の脱
炭方法。 2 脱炭中期に続く脱炭末端に、希釈ガスのみを
吹込む攪拌による脱炭期を設けることを特徴とす
る特許請求の範囲第1項記載の含クロム溶鋼の脱
炭方法。 3 脱炭中期以降で希釈ガスのみを吹込むことを
特徴とする特許請求の範囲第1項又は第2項記載
の含クロム溶鋼の脱炭方法。
[Scope of Claims] 1 In a decarburization method in which oxygen gas and diluent gas are injected into molten steel, a metal oxide is added after the middle stage of decarburization and decarburization is performed using the oxide as the main oxygen source, In the final stage of decarburization following the middle stage of decarburization, decarburization is carried out by blowing inert gas while adding a reducing agent to the extent that an oxygen source necessary for decarburization remains in the slag. A method for decarburizing chromium-containing molten steel. 2. The method for decarburizing chromium-containing molten steel according to claim 1, characterized in that a decarburization period by stirring in which only diluent gas is blown is provided at the end of decarburization following the middle period of decarburization. 3. A method for decarburizing chromium-containing molten steel according to claim 1 or 2, characterized in that only diluent gas is blown in after the middle stage of decarburization.
JP21207582A 1982-12-04 1982-12-04 Method for decarburizing chromium-containing molten steel Granted JPS59104420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21207582A JPS59104420A (en) 1982-12-04 1982-12-04 Method for decarburizing chromium-containing molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21207582A JPS59104420A (en) 1982-12-04 1982-12-04 Method for decarburizing chromium-containing molten steel

Publications (2)

Publication Number Publication Date
JPS59104420A JPS59104420A (en) 1984-06-16
JPH0260723B2 true JPH0260723B2 (en) 1990-12-18

Family

ID=16616445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21207582A Granted JPS59104420A (en) 1982-12-04 1982-12-04 Method for decarburizing chromium-containing molten steel

Country Status (1)

Country Link
JP (1) JPS59104420A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652306A (en) * 1984-10-12 1987-03-24 Nippon Kokan Kabushiki Kaisha Method of refining molten steel by arc process
JPS61136611A (en) * 1984-12-05 1986-06-24 Nippon Steel Corp Refining method of molten chrome steel

Also Published As

Publication number Publication date
JPS59104420A (en) 1984-06-16

Similar Documents

Publication Publication Date Title
JPS6150122B2 (en)
US3282679A (en) Production of alloy steel
JP3854482B2 (en) Hot metal pretreatment method and refining method
JP2002020816A (en) Method for producing low nitrogen-containing chromium steel
JPH0260723B2 (en)
JPS6138248B2 (en)
JPH0437135B2 (en)
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JP2842185B2 (en) Method for producing molten stainless steel by smelting reduction
JP2959368B2 (en) Manufacturing method of Ni-Cr containing hot metal
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
JPH0250165B2 (en)
JPH02221310A (en) Production of ni-and cr-containing molten metal
JPH01147012A (en) Steelmaking method
JP3511685B2 (en) Bottom blow converter steelmaking
JPS6159366B2 (en)
JP2755027B2 (en) Steelmaking method
JPS61139614A (en) Manufacture of steel
JPH0841519A (en) Steelmaking method
JPH0696729B2 (en) Steelmaking process with smelting reduction of manganese ore
JPH11158525A (en) Method for melting nickel-contining steel
JPS5854171B2 (en) High chromium steel refining method
JPH11193411A (en) Refining method of molten low carbon iron
JPH07138628A (en) Method for refining steel enabling addition of large quantity of cold material