JPH0250165B2 - - Google Patents

Info

Publication number
JPH0250165B2
JPH0250165B2 JP16057082A JP16057082A JPH0250165B2 JP H0250165 B2 JPH0250165 B2 JP H0250165B2 JP 16057082 A JP16057082 A JP 16057082A JP 16057082 A JP16057082 A JP 16057082A JP H0250165 B2 JPH0250165 B2 JP H0250165B2
Authority
JP
Japan
Prior art keywords
decarburization
slag
refining
steel
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16057082A
Other languages
Japanese (ja)
Other versions
JPS5950113A (en
Inventor
Yasumasa Ikehara
Haruki Aryoshi
Tooru Hino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16057082A priority Critical patent/JPS5950113A/en
Publication of JPS5950113A publication Critical patent/JPS5950113A/en
Publication of JPH0250165B2 publication Critical patent/JPH0250165B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、含クロム鋼の脱炭・還元精錬法に関
するものである。 含クロム鋼の脱炭精錬法には、耐火物で内張り
された精錬炉内の溶鋼中に底部から酸素又は酸素
及びアルゴン等の不活性ガスを吹込むAOD法
(Argon Oxygen Decarburization)、同様の炉
内の溶鋼中に上方又は炉の底部から酸素又は酸素
及びアルゴン等の不活性ガスを吹込む転炉法、及
び減圧下で同様の炉内の溶鋼中に上方から酸素、
下方からアルゴン等の不活性ガスを吹込むVOD
法(Vacuum Oxygen Decarburization)等があ
るが、いずれの方法においても、最大の課題は耐
火物コスト及び不活性ガスコストを如何にして下
げるかである。 以下に、本発明の詳細を、AOD法を例にあげ
て説明する。 AOD法は第1図に示す如く溶鋼1を収容した
転炉2の炉底部側壁に取付けられた羽口3から酸
素ガスと不活性ガスの混合気体を吹込むため、溶
鋼の撹拌エネルギーは極めて大きい。このため溶
鋼と接触する耐火物は高温の溶鋼により激しく表
面を洗われるのでその損耗速度は極めて大きい。
近年耐火物の品質が改善され、又AOD法の操業
方法も著しい進歩を遂げたが、普通鋼転炉の炉体
寿命レベルである1000回以上にはほど遠いレベル
である。 炉体寿命を極力延長させるにはワン・ヒートの
精錬時間を出来るだけ短くしかつワン・ヒート精
錬過程で最も耐火物を溶損する時期を極力短縮す
ることである。 ステンレス鋼の精錬時におけるレンガ溶損速度
をMgO−Cr2O3系レンガを使用した場合を例とし
て第2図に示す。図中の各プロツトは1炉代の平
均値である。精錬時間とレンガ溶損率には強い相
関が認められ、例えばレンガ溶損率が2.5mm/ch
で、時間が10%短縮されれば、レンガ溶損率は約
1.9mm/chとなることが推定され、600mm長のレン
ガを用いた場合、寿命は240回から300回以上と大
幅な向上が期待出来る。 また、溶損された耐火物の量を知るための方法
として、例えばAOD炉に於いては一般的には
MgO−Cr2O3又はMgO−CaO系の耐火物を使用
しているので精錬の各過程におけるスラグ中の
MgOの増加量を求めればよい。この方法を用い
て精錬の各過程における耐火物溶損量を求めたの
が第3図である。この図からも明らかな如く、脱
炭終了後の還元期、脱硫期にスラグ中のMgO量
が著しく増加し、耐火物溶損量の著しい増加が認
められる。従つて耐火物の溶損は、還元脱硫期を
極力短縮すれば格段に少なくなることが予想さ
れ、同時に還元脱硫期の短縮によりこの間に吹込
まれる不活性ガスの大幅な削減が期待出来る。 以上のような考えから本発明者は種々の実験を
繰返した結果、還元脱硫期を大幅に短縮し、炉体
寿命の大幅な延長、即ち耐火物コストの大幅な削
減、還元脱硫時間短縮による能率向上及び吹込み
ガスの大幅な削減を可能とする含クロム鋼の精錬
方法を開発した。 なお、この目的を達成するため、本発明者は先
に、脱炭終了後還元剤および造滓剤を添加すると
ともに不活性ガスを吹込み、還元剤添加後3分以
内に出鋼することを主たる要旨とする発明をな
し、特願昭56−120069号(特公昭63−54045号公
報参照)として出願したが、本発明はそれをさら
に改善し、能率向上、コスト削減効果をより大き
くしようとするものである。 本発明は、含クロム鋼の脱炭・還元精錬におい
て、脱炭最終期に造滓剤の50%以上を添加し、脱
炭終了後に残りの造滓剤および還元剤を添加する
とともに不活性ガスを吹込み、還元剤添加後3分
以内に出鋼することを要旨とするものである。 以下に本発明をAOD法に適用した例に基づい
て詳細に説明する。第4図は本発明法をAOD法
に適用した例を従来のAOD精錬法と比較して示
したものである。 第4図aは従来のAOD精錬法を示し、装入炭
素含有量1.8%から脱炭を4期に分けて行う方法
を示している。AOD法においては鋼中の炭素を
クロムを酸化させずに効率よく脱炭するために、
鋼中炭素濃度に応じて、吹込む酸素とアルゴンの
比率を変化させている。第4図aの例では脱炭第
1期として、鋼中炭素濃度1.8〜0.5%の範囲を酸
素アルゴン比O2/Ar=4/1、第2期として炭
素濃度0.5〜0.25%の範囲をO2/Ar=2/1、第
3期として炭素濃度0.25〜0.12%の範囲をO2/Ar
=1/2、第4期(脱炭最終期)として炭素濃度
0.12〜0.06%の範囲をO2/Ar=1/3として脱炭
する例を示している。また、脱炭終了後脱炭過程
で酸化したクロムを回収しかつ脱硫を行うために
不活性ガスを吹込みつつ直ちに還元剤及び造滓剤
を添加し、十分撹拌し、還元反応を終了させた後
に必要であれば、排滓し、再度脱硫を行い、又成
分調整し、出鋼している。なお、脱炭期におい
て、酸素がCrと反応してCr2O3を生成し、その一
部がスラグ中へ移行する。この過程で溶鋼温度が
上昇するので、必要以上の高温とならないように
冷却材を添加する。冷却材としては普通鋼屑およ
び同系のステンレス鋼屑が用いられる。また、原
料中のSiが酸化しSiO2となるため脱炭過程中の
スラグ塩基度を適正に保つためCaOを添加する。
還元期に添加する還元剤としてはFe−Siが、造
滓剤としてはCaO、CaF2が用いられる。このよ
うな従来法の例では、酸化期に約45分、還元・脱
硫期に10〜15分要している。 第4図bは、先に出願した特願昭56−120069号
の方法の概要を示したものであり、脱炭期は従来
法と同一であるが、還元・脱硫期において還元剤
及び造滓剤の添加開始から3分以内に出鋼するこ
とを特徴としている。一般的に還元・脱硫に必要
な時間は明確な論拠はないが通常AOD法の場合、
5分以上の時間が作用されているが、本発明者
は、出鋼時の撹拌を利用することによつて、炉内
における還元・脱硫時間は3分で充分であること
を確認している。このように、脱炭終了後3分以
内に出鋼することにより、従来、10〜15分要して
いた還元脱硫期が大幅に短縮可能となり、すでに
述べた如く、レンガ原単位、ガス原単位、生産能
力の大幅な改善が可能となる。しかし、この方法
は、造滓剤添加後短時間の撹拌で出鋼するため、
造滓剤のCaO、CaF2と共に水分が持ち込まれた
場合それが水素として鋼中に残存するので、事前
に造滓剤を十分乾燥させておく必要がある。造滓
剤は非常に吸湿性が高いので、生産現場での水分
管理には難がある。 第4図cは本発明法を示すものである。すなわ
ち、添加する造滓剤の50%以上を脱炭最終期、即
ち第4期に分割投入する方法である。第4期に投
入された造滓剤は溶鋼の熱によつて乾燥脱水され
るので、脱炭終了後還元剤と残りの造滓剤を添加
し3分以内に出鋼しても出鋼後の溶鋼に水素が残
存して問題となることがない。 しかし、脱炭最終期に添加する造滓剤の量が多
すぎると、本発明法のような短時間の還元ではク
ロムの回収率が低下することが判明した。この原
因は、脱炭最終期に大量の造滓剤を添加すると、
脱炭終了時のスラグの塩基度が高くなるためスラ
グの融点が高くなり、還元剤投入後の還元速度が
遅くなるためであることが判明した。脱炭終了時
のスラグ塩基度とクロム歩留との関係を第5図に
示す。同図から脱炭終了時のスラグの塩基度を5
以下とすることによりクロムの回収率を高位安定
させ得ることがわかる。 第4図dはこれらの知見に基づく本発明の好ま
しい態様を示すものである。即ち脱炭最終期(第
4期)に酸素ガスを吹込まず不活性ガスのみを吹
込み、同時に、還元に必要な量を上限として、塩
基度を5以下とするために必要な還元剤(Fe−
Si)を添加することを特徴とした方法である。 先ず不活性ガスのみを吹込む脱炭法について簡
単に説明する。第4図dの例では、脱炭最終期
(第4期)の酸素吹込量を零として不活性ガスの
みを吹込み、脱炭を行うものである。このときの
脱炭に必要な酸素源としては、すでに脱炭第1期
から第3期に至る過程で、酸化し、スラグ中に多
量に存在するクロム酸(Cr2O3)、酸化鉄
(FeO)、酸化マンガン(MnO)等が用いられる。
不活性ガス吹込みによる強力な撹拌によつてこれ
ら酸化物を鋼中の炭素によつて還元する。これを
化学式で示すと以下の如くとなる (Cr2O3)+3〔C〕→3CO↑+2〔Cr〕
……(1) (FeO)+〔C〕→CO↑+〔Fe〕……(2) (MnO)+〔C〕→CO↑+〔Mn〕 ……(3) この還元反応の時にFe−Siを添加し(1)、(2)、
(3)の反応と同時進行的に以下の反応を起させる。 2(Cr2O3)+3〔Si〕→3(SiO2)+4Cr ……(4) 2(FeO)+〔Si〕→(SiO2)+2Fe ……(5) 2(MnO)+〔Si〕→(SiO2)+2Mn ……(6) 式(4)、(5)、(6)によつて生じた(SiO2)が脱炭
最終期(第4期、この場合は不活性ガス脱炭期)
に添加された造滓剤に対して塩基度を低下させる
作用をし、高塩基の状態が回避され還元脱硫が容
易に行える。またスラグの融点が低下し流動性が
増大し、スラグと溶鋼との撹拌が効率的となり脱
炭効率がより一層向上する。 又本発明法は第4図aに示す如く、出鋼前に排
滓することなく、全スラグを取鍋中に出鋼するこ
とを特徴としているので、スラグを取鍋に全量収
容しなければならない。このためにはスラグの量
を極力減少させることが望ましい。 このための方法として、先ず第一に還元後のス
ラグ中の(Al2O3)が5〜40%となるように
Al2O3源(例えば金属アルミニウム)を添加する
ことが望ましい。これによりCaO・SiO2・Al2O3
(MgO)系のスラグでより極めて流動性が向上
し、短時間の撹拌によりスラグの還元が十分に行
える状態となるとともに流動性確保のために添加
する蛍石(CaF2)の添加量が低減出来る。同時
に金属Alを添加した場合、 (Cr2O3)+2〔Al〕→(Al2O3)+2〔Cr〕 ……(7) の如き還元反応を生じ、一方金属Siを添加した場
合には (Cr2O3)+3/2Si→3/2(SiO2)+2〔Cr〕……(
8) の還元反応を生じる。このとき生成するスラグ量
は(Al2O3)1モルに対して(SiO2)1.5モルとな
り金属アルミによる還元の方が金属Siによる還元
よりもスラグ量は少なくなる。 以上の如く金属Alを添加することによりスラ
グの流動性が十分確保出来るとともにスラグ量の
低減を計れるものでこの例を第4図dに示す。 つぎに、脱炭期におけるクロムの酸化を極力少
なくすることが望ましく、そのために第4図eに
示すように脱炭中期(図では3期のうち0.25%C
から0.18%Cまでの間)に不活性ガスのみの吹込
みによる脱炭を行うのが望ましい。脱炭初期(第
2期)末迄にはすでにスラグ中には十分な酸化物
(Cr2O3)(FeO)(MnO)が存在するため、脱炭
中期の0.25%C〜0.18%Cの間の不活性ガス脱炭
による脱炭速度は通常のO2/Ar=1/2の吹錬
時とほとんど変らず効率よく脱炭することが可能
である。 この方法を用いることによつて脱炭最終期(第
4期)に添加すべき造滓剤(CaO)の量を減ずる
ことが可能となり、脱炭終了時のスラグの塩基度
を5以下にコントロールすることが容易となる。
同時に、還元すべきクロム酸の量を低減すること
も可能となり還元も短時間で十分に行うことが出
来る。第4図eの例では脱炭中期における不活性
ガス脱炭時の温度降下を回避するために0.18%C
から0.12%CまでO2/Ar=1/2で酸素吹錬脱
炭を行つている。 このように、脱炭中期において不活性ガスのみ
を吹込んで脱炭することは、特に極低炭素材(例
えばC≦0.03%のSUS304L)を精錬する際に好適
である。即ち極低炭材の場合には第4図fに示す
如く鋼中炭素を0.03%以下に迄脱炭しなければな
らず第4図aのような0.06%迄の脱炭に較べて脱
炭期でのクロム酸発生量は格段に多くなり、脱炭
最終期に添加すべき造滓剤の量が多量となり又還
元すべきクロム酸の量が多く、第4図fの方法を
用いても本発明の特徴である短時間撹拌による還
元脱硫を十分に行うことが困難となる。このよう
な問題を解決するために、脱炭中期において不活
性ガスのみを吹込む脱炭を行い、クロム酸の生成
量を極力抑え、かつ脱炭最終期にFe−Siを添加
して塩基度コントロールを行うことが望ましい。
また、還元後のスラグ中の(Al2O3)%が5〜40
%となるように脱炭後Alを添加するのが望まし
い。この方法を第4図gに示す。もちろん溶鋼温
度に余裕があればさらに高炭域でアルゴン脱炭を
行うことも可能でありよい結果をもたらす。 以上説明した第4図a〜gの各方法をSUS304
ステンレス鋼のAOD精錬に適用した実施例を表
1および表2に示す。
The present invention relates to a decarburization/reduction refining method for chromium-containing steel. Decarburization refining methods for chromium-containing steel include the AOD method (Argon Oxygen Decarburization), in which oxygen or an inert gas such as oxygen and argon is injected from the bottom into molten steel in a refractory-lined refining furnace, and similar furnaces. The converter method involves blowing oxygen or an inert gas such as oxygen and argon into the molten steel from above or from the bottom of the furnace;
VOD that blows inert gas such as argon from below
(Vacuum Oxygen Decarburization), etc., but the biggest challenge with any of these methods is how to reduce the cost of refractories and inert gas. The details of the present invention will be explained below using the AOD method as an example. As shown in Figure 1, in the AOD method, a mixture of oxygen gas and inert gas is blown into the tuyere 3 attached to the bottom side wall of the converter 2 containing the molten steel 1, so the energy for stirring the molten steel is extremely large. . For this reason, the surface of the refractories that come into contact with the molten steel is violently washed by the high-temperature molten steel, so that the rate of wear and tear is extremely high.
Although the quality of refractories has improved in recent years and the operating method of the AOD method has made significant progress, it is still far from reaching the 1,000-cycle lifespan of ordinary steel converters. In order to extend the life of the furnace as much as possible, it is necessary to shorten the one-heat refining time as much as possible, and to shorten the period during which refractories are most likely to be eroded during the one-heat refining process. Figure 2 shows the brick erosion rate during refining of stainless steel, taking as an example the case where MgO-Cr 2 O 3 based bricks are used. Each plot in the figure is an average value for one furnace. There is a strong correlation between refining time and brick erosion rate. For example, when the brick erosion rate is 2.5mm/ch
So, if the time is reduced by 10%, the brick erosion rate will be approximately
It is estimated that it will be 1.9 mm/ch, and if a 600 mm long brick is used, the service life can be expected to be significantly improved from 240 times to more than 300 times. In addition, as a method to know the amount of refractories that have been eroded, for example, in AOD furnaces,
Since MgO-Cr 2 O 3 or MgO-CaO-based refractories are used, the slag in each process of refining is
All you have to do is find the amount of increase in MgO. Figure 3 shows the amount of refractory erosion in each refining process using this method. As is clear from this figure, the amount of MgO in the slag increases significantly during the reduction period and desulfurization period after the completion of decarburization, and a significant increase in the amount of refractory erosion is observed. Therefore, it is expected that the erosion of refractories will be significantly reduced if the reductive desulfurization period is shortened as much as possible, and at the same time, by shortening the reductive desulfurization period, it can be expected that the amount of inert gas blown into the refractory will be significantly reduced. Based on the above idea, the inventor has repeatedly conducted various experiments, and as a result, the reductive desulfurization period can be significantly shortened, the life of the furnace body can be significantly extended, the refractory cost can be significantly reduced, and the efficiency can be improved by shortening the reductive desulfurization time. We have developed a method for refining chromium-containing steel that allows for improved performance and a significant reduction in the amount of blown gas. In order to achieve this objective, the present inventor first added a reducing agent and a slag forming agent after the decarburization was completed, and at the same time, inert gas was blown into the steel, and the steel was tapped within 3 minutes after the addition of the reducing agent. The main subject of the invention was made and filed as Japanese Patent Application No. 56-120069 (see Japanese Patent Publication No. 63-54045), but the present invention aims to further improve the invention and further increase efficiency and reduce costs. It is something to do. In the decarburization and reduction refining of chromium-containing steel, the present invention involves adding 50% or more of the slag forming agent in the final stage of decarburization, adding the remaining slag forming agent and reducing agent after the decarburization is completed, and adding an inert gas. The gist is to inject steel into the steel and tap the steel within 3 minutes after adding the reducing agent. The present invention will be explained in detail below based on an example in which the present invention is applied to the AOD method. FIG. 4 shows an example in which the method of the present invention is applied to an AOD method in comparison with a conventional AOD refining method. Figure 4a shows the conventional AOD refining method, in which decarburization is performed in four stages starting from a charging carbon content of 1.8%. In the AOD method, in order to efficiently decarburize the carbon in steel without oxidizing chromium,
The ratio of oxygen and argon injected is changed depending on the carbon concentration in the steel. In the example shown in Fig. 4a, the first stage of decarburization is a range of carbon concentration in the steel of 1.8 to 0.5%, and the oxygen-argon ratio O 2 /Ar = 4/1, and the second stage is a range of carbon concentration of 0.5 to 0.25%. O 2 /Ar = 2/1, O 2 /Ar in the range of 0.25 to 0.12% carbon concentration as the third stage
= 1/2, carbon concentration as the 4th stage (final stage of decarburization)
An example of decarburizing the range of 0.12 to 0.06% with O 2 /Ar=1/3 is shown. In addition, after the decarburization was completed, a reducing agent and a slag-forming agent were added immediately while blowing inert gas to recover the chromium oxidized during the decarburization process and to perform desulfurization, and the mixture was sufficiently stirred to complete the reduction reaction. Later, if necessary, the slag is removed, desulfurized again, the composition is adjusted, and the steel is tapped. Note that during the decarburization period, oxygen reacts with Cr to generate Cr 2 O 3 , a part of which migrates into the slag. Since the temperature of the molten steel rises during this process, a coolant is added to prevent the temperature from becoming higher than necessary. Ordinary steel scraps and stainless steel scraps of the same type are used as coolants. In addition, since Si in the raw material oxidizes to become SiO 2 , CaO is added to maintain appropriate slag basicity during the decarburization process.
Fe-Si is used as the reducing agent added during the reduction period, and CaO and CaF 2 are used as the slag forming agent. In an example of such a conventional method, it takes about 45 minutes for the oxidation stage and 10 to 15 minutes for the reduction/desulfurization stage. Figure 4b shows the outline of the method of the previously filed Japanese Patent Application No. 120069/1986.The decarburization period is the same as the conventional method, but the reducing agent and slag are added during the reduction and desulfurization period. The steel is characterized by being tapped within 3 minutes from the start of addition of the additive. Generally, there is no clear evidence regarding the time required for reduction and desulfurization, but in the case of the AOD method,
Although a time of 5 minutes or more is required, the present inventor has confirmed that 3 minutes is sufficient for the reduction and desulfurization time in the furnace by using stirring during tapping. . In this way, by tapping the steel within 3 minutes after the completion of decarburization, the reductive desulfurization period, which conventionally required 10 to 15 minutes, can be significantly shortened. , it becomes possible to significantly improve production capacity. However, in this method, the steel is tapped after a short period of stirring after adding the slag-forming agent.
If moisture is brought in together with the slag-forming agents CaO and CaF 2 , it will remain in the steel as hydrogen, so it is necessary to dry the slag-forming agent sufficiently beforehand. Slag forming agents are highly hygroscopic, making it difficult to control moisture at production sites. Figure 4c shows the method of the invention. That is, this is a method in which 50% or more of the slag forming agent to be added is divided into the final stage of decarburization, that is, the fourth stage. The slag forming agent added in the fourth stage is dried and dehydrated by the heat of the molten steel, so even if the reducing agent and the remaining slag forming agent are added after decarburization and the steel is tapped within 3 minutes, the slag forming agent is There is no problem with hydrogen remaining in the molten steel. However, it has been found that if the amount of slag-forming agent added in the final stage of decarburization is too large, the recovery rate of chromium decreases in short-time reduction as in the method of the present invention. The reason for this is that when a large amount of slag forming agent is added in the final stage of decarburization,
It was found that this is because the basicity of the slag at the end of decarburization becomes high, so the melting point of the slag becomes high, and the reduction rate after adding the reducing agent becomes slow. Figure 5 shows the relationship between slag basicity and chromium yield at the end of decarburization. From the same figure, the basicity of the slag at the end of decarburization is 5.
It can be seen that the recovery rate of chromium can be stabilized at a high level by setting the following conditions. FIG. 4d shows a preferred embodiment of the present invention based on these findings. That is, in the final stage of decarburization (fourth stage), only inert gas is blown in without oxygen gas, and at the same time, the reducing agent (Fe −
This method is characterized by adding Si). First, the decarburization method in which only inert gas is blown will be briefly explained. In the example shown in FIG. 4d, the amount of oxygen blown in the final stage (fourth stage) of decarburization is set to zero, and only inert gas is blown in to perform decarburization. Oxygen sources necessary for decarburization at this time include chromic acid (Cr 2 O 3 ), iron oxide ( FeO), manganese oxide (MnO), etc. are used.
These oxides are reduced by the carbon in the steel by vigorous stirring with inert gas injection. The chemical formula for this is as follows: (Cr 2 O 3 ) + 3 [C] → 3CO↑ + 2 [Cr]
...(1) (FeO) + [C] → CO↑+ [Fe] ... (2) (MnO) + [C] → CO↑ + [Mn] ... (3) During this reduction reaction, Fe− Adding Si (1), (2),
The following reaction is caused simultaneously with reaction (3). 2 (Cr 2 O 3 ) + 3 [Si] → 3 (SiO 2 ) + 4Cr ... (4) 2 (FeO) + [Si] → (SiO 2 ) + 2Fe ... (5) 2 (MnO) + [Si] → (SiO 2 ) + 2Mn ...(6) (SiO 2 ) generated by equations (4), (5), and (6) is removed from the final stage of decarburization (fourth stage, in this case, inert gas decarburization). period)
It has the effect of lowering the basicity of the slag-forming agent added to it, avoiding a highly basic state and facilitating reductive desulfurization. In addition, the melting point of the slag is lowered and its fluidity is increased, making stirring of the slag and molten steel more efficient, further improving the decarburization efficiency. Furthermore, as shown in Figure 4a, the method of the present invention is characterized in that all the slag is tapped in the ladle without being discharged before tapping, so the entire amount of slag must be stored in the ladle. No. For this purpose, it is desirable to reduce the amount of slag as much as possible. As a method for this, first of all, the amount of (Al 2 O 3 ) in the slag after reduction is 5 to 40%.
It is desirable to add a source of Al 2 O 3 (eg metallic aluminum). This results in CaO・SiO 2・Al 2 O 3
(MgO)-based slag has significantly improved fluidity, and short-time stirring makes it possible to sufficiently reduce the slag, while reducing the amount of fluorite (CaF 2 ) added to ensure fluidity. I can do it. When metal Al is added at the same time, a reduction reaction occurs as follows: (Cr 2 O 3 ) + 2 [Al] → (Al 2 O 3 ) + 2 [Cr] ... (7), while when metal Si is added, (Cr 2 O 3 ) + 3/2Si → 3/2 (SiO 2 ) + 2 [Cr]...(
8) causes the reduction reaction. The amount of slag produced at this time is 1.5 moles of (SiO 2 ) per 1 mole of (Al 2 O 3 ), and the amount of slag produced in the reduction with metallic aluminum is smaller than that in the reduction with metallic Si. By adding metal Al as described above, sufficient fluidity of the slag can be ensured and the amount of slag can be reduced, an example of which is shown in FIG. 4d. Next, it is desirable to minimize the oxidation of chromium during the decarburization stage, and for this purpose, as shown in Figure 4e, 0.25% of chromium is
to 0.18% C), it is desirable to perform decarburization by blowing only inert gas. By the end of the early stage of decarburization (second stage), there are already sufficient oxides (Cr 2 O 3 ) (FeO) (MnO) in the slag, so the The decarburization rate due to inert gas decarburization during this period is almost the same as that during normal O 2 /Ar = 1/2 blowing, and it is possible to decarburize efficiently. By using this method, it is possible to reduce the amount of slag forming agent (CaO) that needs to be added in the final stage (fourth stage) of decarburization, and the basicity of slag at the end of decarburization can be controlled to 5 or less. It becomes easier to do so.
At the same time, it is also possible to reduce the amount of chromic acid to be reduced, and the reduction can be carried out sufficiently in a short time. In the example in Figure 4e, 0.18%C is used to avoid the temperature drop during inert gas decarburization in the middle stage of decarburization.
Oxygen blowing decarburization is performed from 0.12%C to 0.12%C using O 2 /Ar=1/2. In this way, decarburizing by injecting only inert gas in the middle stage of decarburization is particularly suitable when refining extremely low carbon materials (for example, SUS304L with C≦0.03%). In other words, in the case of extremely low carbon materials, it is necessary to decarburize the carbon in the steel to 0.03% or less as shown in Figure 4f, and the carbon content in the steel must be decarburized to 0.06% or less as shown in Figure 4a. The amount of chromic acid generated in the final stage of decarburization increases significantly, the amount of slag forming agent that must be added in the final stage of decarburization is large, and the amount of chromic acid that must be reduced is large. It becomes difficult to sufficiently perform reductive desulfurization by short-time stirring, which is a feature of the present invention. In order to solve these problems, decarburization is carried out by injecting only inert gas in the middle stage of decarburization to minimize the amount of chromic acid produced, and Fe-Si is added in the final stage of decarburization to increase basicity. Control is desirable.
In addition, the (Al 2 O 3 )% in the slag after reduction is 5 to 40%.
% after decarburization. This method is illustrated in Figure 4g. Of course, if there is enough room in the molten steel temperature, argon decarburization can be carried out even further in the high coal region, and good results can be obtained. Each of the methods explained above in Figure 4 a to g is applied to SUS304
Examples applied to AOD refining of stainless steel are shown in Tables 1 and 2.

【表】【table】

【表】 以上の如く本発明者は、脱炭終了後のスラグの
塩基度を種々の方法でコントロールすることによ
つて還元脱硫期を大幅に短縮することの出来る脱
炭・精錬法を提供するものである。 本発明を工業的に活用することにより以下の如
き顕著な効果が奏される。即ち、耐火物原単位で
50%、能率で15%、ガス原単位で20%の従来法に
対する改善が可能となるものである。 なおいずれの方法においても成分の微調整を行
うことの出来る装置をAOD出鋼後に保持するこ
とは本発明を一層効果的かつ経済的に実施するこ
とを可能とするものであることをつけ加えてお
く。
[Table] As described above, the present inventor provides a decarburization/refining method that can significantly shorten the reductive desulfurization period by controlling the basicity of slag after decarburization using various methods. It is something. Industrial application of the present invention brings about the following remarkable effects. In other words, per unit of refractory material
It is possible to improve the conventional method by 50%, efficiency by 15%, and gas consumption by 20%. It should be added that in either method, maintaining a device that can finely adjust the composition after AOD tapping makes it possible to carry out the present invention even more effectively and economically. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はAOD法の説明図、第2図はステンレ
ス鋼の精錬時におけるレンガ溶損度をMgO−
Cr2O3系レンガを使用した場合を例として示す
図、第3図はステンレス鋼製錬過程における耐火
物溶損量を示す図、第4図は本発明をAOD法に
適用した例を従来のAOD精錬法と比較して示す
図でaは従来のAOD精錬法、bは特願昭56−
120069号の方法の概要を示す図、cは本発明方法
を示す図、d〜gは本発明の他の実施態様を示す
図、第5図は脱炭終了時のスラグ塩基度とクロム
歩留との関係を示す図である。
Figure 1 is an explanatory diagram of the AOD method, and Figure 2 shows the degree of brick erosion during stainless steel refining with MgO−
Figure 3 shows the amount of refractory erosion in the stainless steel smelting process. Figure 4 shows an example of applying the present invention to the AOD method. In the diagram shown in comparison with the AOD refining method of
A diagram showing an overview of the method of No. 120069, c is a diagram showing the method of the present invention, d to g are diagrams showing other embodiments of the present invention, and Figure 5 is a diagram showing the slag basicity and chromium yield at the end of decarburization. FIG.

Claims (1)

【特許請求の範囲】 1 耐火物で内張りされた精錬炉内の溶鋼中に酸
素又は酸素及び不活性ガスを吹込んで行う含クロ
ム鋼の精錬法において、脱炭最終期に造滓剤の50
%以上を添加し、脱炭終了後に残りの造滓剤およ
び還元剤を添加するとともに不活性ガスを吹込
み、還元剤添加後3分以内に出鋼することを特徴
とする含クロム鋼の精錬方法。 2 脱炭終了時のスラグの塩基度を5以下とする
ことを特徴とする特許請求の範囲第1項記載の含
クロム鋼の精錬方法。 3 脱炭最終期に酸素ガスを吹込まず、不活性ガ
スのみを吹込んで溶鋼を撹拌し、かつ還元剤の一
部を添加することを特徴とする特許請求の範囲第
2項記載の含クロム鋼の精錬方法。 4 脱炭終了後、還元後のスラグ中のAl2O3が5
〜40%となるようにAl2O3源を添加することを特
徴とする特許請求の範囲第3項記載の含クロム鋼
の精錬方法。 5 脱炭中期に酸素ガスを吹込まず、不活性ガス
のみを吹込んで溶鋼を撹拌することを特徴とする
特許請求の範囲第4項記載の含クロム鋼の精錬方
法。
[Claims] 1. In a refining method for chromium-containing steel that involves blowing oxygen or oxygen and an inert gas into molten steel in a refractory-lined refining furnace, 50% of the slag-forming agent is added during the final stage of decarburization.
% or more, and after the completion of decarburization, the remaining slag forming agent and reducing agent are added and inert gas is blown in, and the steel is tapped within 3 minutes after adding the reducing agent. Method. 2. The method for refining chromium-containing steel according to claim 1, characterized in that the basicity of the slag at the end of decarburization is set to 5 or less. 3. The chromium-containing steel according to claim 2, characterized in that in the final stage of decarburization, the molten steel is stirred by injecting only an inert gas without injecting oxygen gas, and a part of a reducing agent is added. Refining method. 4 After decarburization, Al 2 O 3 in the reduced slag becomes 5
4. The method for refining chromium-containing steel according to claim 3, characterized in that the Al 2 O 3 source is added so that the Al 2 O 3 source becomes 40%. 5. The method for refining chromium-containing steel according to claim 4, characterized in that the molten steel is stirred by injecting only an inert gas without injecting oxygen gas during the middle stage of decarburization.
JP16057082A 1982-09-14 1982-09-14 Refining method of chromium steel Granted JPS5950113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16057082A JPS5950113A (en) 1982-09-14 1982-09-14 Refining method of chromium steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16057082A JPS5950113A (en) 1982-09-14 1982-09-14 Refining method of chromium steel

Publications (2)

Publication Number Publication Date
JPS5950113A JPS5950113A (en) 1984-03-23
JPH0250165B2 true JPH0250165B2 (en) 1990-11-01

Family

ID=15717821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16057082A Granted JPS5950113A (en) 1982-09-14 1982-09-14 Refining method of chromium steel

Country Status (1)

Country Link
JP (1) JPS5950113A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2795513B2 (en) * 1990-02-27 1998-09-10 新日本製鐵株式会社 Decarburization refining method of chromium-containing molten steel
JP3840096B2 (en) * 2001-11-12 2006-11-01 日本冶金工業株式会社 Method for producing Fe-Ni alloy for low thermal expansion shadow mask with excellent rust resistance
EP2843063B1 (en) * 2013-09-02 2016-07-13 Loesche GmbH A method for treating a steel slag and a hydraulic mineral binder

Also Published As

Publication number Publication date
JPS5950113A (en) 1984-03-23

Similar Documents

Publication Publication Date Title
JP3428628B2 (en) Stainless steel desulfurization refining method
JPH0250165B2 (en)
JPS6250545B2 (en)
JP3854482B2 (en) Hot metal pretreatment method and refining method
CA1230974A (en) Process for refining of chromium-containing molten steel
JPH07310110A (en) Production of stainless steel
JPH0141681B2 (en)
WO2019102705A1 (en) Low/medium-carbon ferromanganese production method
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
JP3158912B2 (en) Stainless steel refining method
JPH06228626A (en) Method for reforming slag as pretreatment of desulfurization
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JP2000212623A (en) Dephosphorization of molten iron low in lime
JP2842185B2 (en) Method for producing molten stainless steel by smelting reduction
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JPH0557327B2 (en)
JPH11343514A (en) Method for melting high carbon steel using bottom-blown converter
JPS60152610A (en) Method for modifying slag in ladle by reduction
JP2959368B2 (en) Manufacturing method of Ni-Cr containing hot metal
JPS61139614A (en) Manufacture of steel
JPH06330138A (en) Method for reforming slag
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
JPH0154409B2 (en)
JPH0437137B2 (en)
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace