JPS6132366B2 - - Google Patents

Info

Publication number
JPS6132366B2
JPS6132366B2 JP54121002A JP12100279A JPS6132366B2 JP S6132366 B2 JPS6132366 B2 JP S6132366B2 JP 54121002 A JP54121002 A JP 54121002A JP 12100279 A JP12100279 A JP 12100279A JP S6132366 B2 JPS6132366 B2 JP S6132366B2
Authority
JP
Japan
Prior art keywords
converter
iron ore
oxygen
ore
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54121002A
Other languages
Japanese (ja)
Other versions
JPS5644705A (en
Inventor
Shigeyuki Ono
Akya Ozeki
Tomoo Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP12100279A priority Critical patent/JPS5644705A/en
Publication of JPS5644705A publication Critical patent/JPS5644705A/en
Publication of JPS6132366B2 publication Critical patent/JPS6132366B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 この発明は転炉等反応炉における鉱石直接還元
方法に関し、反応炉内で鉄鉱石を直接鋼に変換す
ることを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for direct ore reduction in a reactor such as a converter, and its purpose is to directly convert iron ore into steel in the reactor.

大量生産に適した近代製鉄所では、高炉法によ
り溶銑をつくり、これを更に転炉等反応炉で溶鋼
に製銑するプロセスが採用されている。この高炉
法では焼結配分比の増加や高圧送風、重油吹込み
或いは高炉の大型化等により生産性の向上を図つ
ている。しかしながら、このための原料の事前処
理、焼結鉱及びコークス等の原料製造設備を必要
とし、原料上の制約や操業上の制約が大きく、設
備費の高騰、ランニングコストの増加、粉塵環境
の不可避性、製銑プロセスでの熱損失等の問題を
残している。
Modern steel plants, which are suitable for mass production, use a process in which hot metal is produced using a blast furnace method, and then this is further converted into molten steel in a reactor such as a converter. This blast furnace method aims to improve productivity by increasing the sintering distribution ratio, high-pressure air blowing, heavy oil injection, and increasing the size of the blast furnace. However, this requires pre-processing of raw materials and equipment for producing raw materials such as sintered ore and coke, resulting in significant raw material and operational constraints, soaring equipment costs, increased running costs, and an unavoidable dusty environment. However, there remain problems such as heat loss during the ironmaking process.

この発明は上記点に鑑みて創案されたもので、
転炉等反応炉吹錬中に鉄鉱石、炭素源、酸素を夫
夫比例して添加、吹込むことにより製銑プロセス
を経ずに直接鉄鉱石を転炉等の反応炉内で還元し
て鋼に変換しようとするものである。
This invention was created in view of the above points,
During blowing in a reactor such as a converter, iron ore, a carbon source, and oxygen are added and injected in proportion to each other, thereby reducing iron ore directly in a reactor such as a converter without going through the ironmaking process. It is intended to be converted into steel.

以下本発明の一例を転炉の場合につき説明す
る。まず通常の転炉操業において溶銑及びスクラ
ツプの装入量を通常能力より少くして装入し吹錬
を行う。この際溶銑として装入せずに、鉄鉱石、
炭素源のまま装入し、ここに酸素を吹いて炉内で
溶銑を生ぜしめても良い。また溶鋼と炭素を装入
しても良いし、更には溶鋼のみを装入することも
可能であり、種々の態様が可能である。吹錬開始
後、脱Si反応が進行して鋼浴温度が上昇し、脱炭
が若干進行し鋼浴〔C〕の過飽和状態を脱した時
点以降から鉄鉱石、石炭又はコークス或いは木炭
等の炭素源を一定の比率で定速添加する。この添
加速度に比例して純酸素を吹込み精錬する。第1
図は、このようなプロセスの状態図であつて、A
〜Bは吹錬開始領域、B′〜Cは転炉吹錬領域を示
しており、この発明においては領域B〜B′を維持
する様に鉄鉱石、炭素源酸素の装入、吹込みを比
例制御するものである。
An example of the present invention will be explained below using a converter. First, during normal converter operation, the amount of hot metal and scrap charged is smaller than the normal capacity, and blowing is performed. At this time, iron ore is not charged as hot metal,
Alternatively, the carbon source may be charged as is, and oxygen may be blown thereto to produce hot metal in the furnace. Further, molten steel and carbon may be charged, or even only molten steel may be charged, and various embodiments are possible. After the start of blowing, the deSi reaction progresses and the temperature of the steel bath rises, decarburization progresses slightly, and carbon such as iron ore, coal, coke, charcoal, etc. Sources are added at a constant rate and at a constant rate. Pure oxygen is blown in proportion to this addition rate for refining. 1st
The figure is a state diagram of such a process, where A
~B indicates the blowing start area, and B'~C indicates the converter blowing area. In this invention, iron ore and carbon source oxygen are charged and blown so as to maintain the areas B~B'. This is proportional control.

この間鉄鉱石は直接溶鋼へ還元され、この反応
は Fe2O3+3C→2Fe+3CO C+1/2O2→Co であり、吸熱反応と発熱反応とが同時に行われ
る。この反応を一様に行わせるために、鉱石、炭
素源、酸素の添加速度を一定比率にすることが重
要である。この比率は、たとえば鉄鉱石を1.0tと
した場合、石炭を0.3〜1.5t(又はコークス或い
は木炭を0.2〜1.0t)、酸素を10〜600Nm3としこの
比率で定速供給する。
During this time, the iron ore is directly reduced to molten steel, and the reaction is Fe 2 O 3 +3C→2Fe+3CO C+1/2O 2 →Co, and an endothermic reaction and an exothermic reaction occur simultaneously. In order to carry out this reaction uniformly, it is important to keep the addition rates of ore, carbon source, and oxygen at a constant ratio. This ratio is, for example, when iron ore is 1.0 t, coal is 0.3 to 1.5 t (or coke or charcoal is 0.2 to 1.0 t), and oxygen is 10 to 600 Nm 3 and is supplied at a constant rate at this ratio.

第2図は、上記本発明プロセスの一例を示すも
ので、主原料としての溶銑を92t、スクラツプを
8t及び副原料の焼石灰を5.5tを装入し、更に鉄鉱
石、石炭、純酸素を図に示すように一定比率で定
速供給した。鉄鉱石が直接還元されている間は鋼
浴中のC成分はほぼ一定であり、100tの溶鋼から
200tの溶鋼ができることがわかる。また直接還元
反応中は大量のCOガスが発生し、これはLDガス
として回収される。
Figure 2 shows an example of the above-mentioned process of the present invention, using 92 tons of hot metal as the main raw material and scrap.
8 tons and 5.5 tons of burnt lime as an auxiliary material were charged, and iron ore, coal, and pure oxygen were fed at a constant rate at a constant rate as shown in the figure. While the iron ore is directly reduced, the C content in the steel bath remains almost constant, and from 100 tons of molten steel
It can be seen that 200 tons of molten steel can be produced. Also, a large amount of CO gas is generated during the direct reduction reaction, which is recovered as LD gas.

なお、鉄鉱石と炭素源とを一定比率で供給する
ために、これらを一度粉状にしてから混合ペレツ
ト化しても良い。また鉄鉱石は炉上から装入し、
石炭粉やコークス粉等をサブランス或いは炉底の
羽口から添加しても良いし、更に鉄鉱石と石炭粉
等を供にサブランスから吹き込んでも良い等、
種々の態様が可能である。
Note that in order to supply the iron ore and the carbon source at a constant ratio, they may be powdered and then mixed into pellets. In addition, iron ore is charged from above the furnace,
Coal powder, coke powder, etc. may be added through the sublance or the tuyeres at the bottom of the furnace, or iron ore and coal powder, etc. may be blown in together from the sublance, etc.
Various embodiments are possible.

上記した鉄鉱石、炭素源及び酸素の一定比率、
連続定速供給は、第2図においてB′以降吹錬終了
まで原理的には実施可能である。しかし、実操業
上はいうまでもなくB″〜C間の所謂脱炭末期に
は実施できない。即ち脱炭末期には第1図及び第
2図に示すように溶鋼中〔C〕が減少し鋼浴温度
が高くなると共に、周知のようにスラグ中のFeO
も増加し活性炭の高いスラグとなり、このスラグ
も高温となる。このように高温でかつ反応性の高
いスラグがある状態で、鉄鉱石、炭素源を大量投
入し操業を継続すると、炉の損傷が大きく、現実
的には操業不能となる。また歩留りも低下する。
A certain ratio of the above iron ore, carbon source and oxygen,
In principle, continuous constant-speed supply can be carried out from B' onwards in FIG. 2 until the end of blowing. However, needless to say, in actual operation, it cannot be carried out at the so-called final stage of decarburization between B'' and C. That is, at the final stage of decarburization, [C] in the molten steel decreases as shown in Figures 1 and 2. As the steel bath temperature increases, as is well known, FeO in the slag
The amount of activated carbon increases, resulting in a slag with a high content of activated carbon, and this slag also becomes hot. If a large amount of iron ore and carbon sources are injected and operation continues under such high temperature and highly reactive slag conditions, the furnace will be seriously damaged and in reality it will become impossible to operate. Yield also decreases.

以上の理由から、本発明の実施時期は鋼浴
〔C〕が過飽和域を脱した後、脱炭末期までの適
宜時期と限定する。
For the above reasons, the timing of implementing the present invention is limited to an appropriate period after the steel bath [C] leaves the supersaturation region and until the final stage of decarburization.

次に実施例を示す。 Next, examples will be shown.

実施例 1 溶銑(C=4.5%、Si=0.5%、Mn=0.5%、P
=0.110%、S=0.030%)を100t転炉へ装入し
20000Nm3/hrの速度で酸素を吹き付け吹錬した。
吹錬開始2分後に鉄鉱石を4.8t/minの速度で炉上
から添加し、同時にコークスを2.7t/minの速度で
転炉炉底の羽口から吹込むと共に酸素吹込み速度
を2300Nm3/hrに上げ40分間吹錬した。その結果
220tの溶鋼(C=0.10%、Mn=0.30%、P=
0.020%、S=0.040%)が得られ、更に吹錬中に
206000Nm3のLDガス(CO=90%)が回収され
た。
Example 1 Hot metal (C=4.5%, Si=0.5%, Mn=0.5%, P
= 0.110%, S = 0.030%) was charged into a 100t converter.
Oxygen was blown at a rate of 20000Nm 3 /hr.
Two minutes after the start of blowing, iron ore was added from above the furnace at a rate of 4.8 t/min, and at the same time coke was blown in from the tuyere at the bottom of the converter at a rate of 2.7 t/min, and the oxygen injection rate was increased to 2300 Nm3. /hr and blew for 40 minutes. the result
220t of molten steel (C=0.10%, Mn=0.30%, P=
0.020%, S = 0.040%), and further during blowing
206000Nm3 of LD gas (CO=90%) was recovered.

実施例 2 鉄鉱石粉と石炭粉を10:3の比率で混合し、タ
ール等のバインダーを添加して約10mmφのペレツ
ト状に固めた。実施例1の場合と同様に100tの溶
銑に20000Nm3/hrの速度で酸素を吹付け吹錬し、
吹錬開始2分後に、該ペレツトを10t/minの一定
速度で添加し、同時に酸素を1800Nm3/minの速度
で20分間吹錬した。その結果190tの溶鋼(C=
0.68%、Mn=0.15%、P=0.20%、S=0.050
%)が得られ、更に吹錬中に80000Nm3のLDガス
(CO=90%)が回収された。
Example 2 Iron ore powder and coal powder were mixed at a ratio of 10:3, and a binder such as tar was added to solidify the mixture into pellets of approximately 10 mm diameter. As in Example 1, 100 tons of hot metal was blown with oxygen at a rate of 20,000 Nm 3 /hr,
Two minutes after the start of blowing, the pellets were added at a constant rate of 10 t/min, and at the same time oxygen was blown at a rate of 1800 Nm 3 /min for 20 minutes. As a result, 190 tons of molten steel (C=
0.68%, Mn=0.15%, P=0.20%, S=0.050
%) was obtained, and 80000 Nm 3 of LD gas (CO = 90%) was recovered during blowing.

以上説明したように、この発明によれば製銑プ
ロセスを経ずに、鉄鉱石を直接還元して鋼を生産
することが可能であり、更にLDガスを大量に回
収出来る等の効果がある。
As explained above, according to the present invention, it is possible to directly reduce iron ore to produce steel without going through the ironmaking process, and there are also effects such as the ability to recover a large amount of LD gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明方法による直接還元吹錬の状
態図、第2図はこの発明方法の一例を示すグラフ
である。
FIG. 1 is a state diagram of direct reduction blowing according to the method of this invention, and FIG. 2 is a graph showing an example of the method of this invention.

Claims (1)

【特許請求の範囲】 1 転炉等反応炉において、溶銑等を装入して通
常の吹錬を行ない、溶鋼温度が上昇して鋼浴
〔C〕が過飽和域を脱した後、脱炭末期までの適
宜時期に鉄鉱石と炭素源及び酸素を一定比率で連
続して転炉内へ定速供給することにより該鉱石を
直接還元せしめることを特徴とする転炉等反応炉
における鉱石直接還元方法。
[Claims] 1. In a reactor such as a converter, hot metal etc. are charged and normal blowing is performed, and after the temperature of the molten steel rises and the steel bath [C] leaves the supersaturation region, the final stage of decarburization occurs. A method for directly reducing ore in a reactor such as a converter, which is characterized by directly reducing the ore by continuously supplying iron ore, a carbon source, and oxygen at a constant rate into the converter at an appropriate time. .
JP12100279A 1979-09-20 1979-09-20 Direct reducing method of ore in converter Granted JPS5644705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12100279A JPS5644705A (en) 1979-09-20 1979-09-20 Direct reducing method of ore in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12100279A JPS5644705A (en) 1979-09-20 1979-09-20 Direct reducing method of ore in converter

Publications (2)

Publication Number Publication Date
JPS5644705A JPS5644705A (en) 1981-04-24
JPS6132366B2 true JPS6132366B2 (en) 1986-07-26

Family

ID=14800343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12100279A Granted JPS5644705A (en) 1979-09-20 1979-09-20 Direct reducing method of ore in converter

Country Status (1)

Country Link
JP (1) JPS5644705A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA827820B (en) * 1981-10-30 1983-08-31 British Steel Corp Production of steel
JPS62167811A (en) * 1986-01-20 1987-07-24 Nippon Kokan Kk <Nkk> Melt reduction steel making method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522821A (en) * 1975-06-25 1977-01-10 Nippon Steel Corp Converter steel making process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522821A (en) * 1975-06-25 1977-01-10 Nippon Steel Corp Converter steel making process

Also Published As

Publication number Publication date
JPS5644705A (en) 1981-04-24

Similar Documents

Publication Publication Date Title
US4053301A (en) Process for the direct production of steel
KR940008926B1 (en) Mill arrangement and a process of operating the same using off gases to refine pig iron
US4340420A (en) Method of manufacturing stainless steel
US3169055A (en) Process for producing pig iron in rotary furnace
US4526612A (en) Method of manufacturing ferrosilicon
EP0222397B1 (en) Method for melting and reducing chrome ore
US4111687A (en) Process for the production of intermediate hot metal
US4707183A (en) Method of operating a blast furnace with plasma heating
JPS6132366B2 (en)
WO1991005879A1 (en) Smelting of nickel laterite and other iron containing nickel oxide materials
US2581597A (en) Process for the reduction of iron ores and the like by carbon
JPS6250544B2 (en)
EP0950117B1 (en) A method for producing metals and metal alloys
US1507214A (en) Process for purification of pig iron in blast furnaces
US3511644A (en) Process for reducing and carburizing melting of metallic material in a rotary furnace
JPH0778250B2 (en) Method for producing crude iron and gas from refined iron ore and plant apparatus for implementing the method
JPH0471965B2 (en)
JPS6169944A (en) Manufacture by melting and reducing of ferrochrome
JPH01252709A (en) Method for operating iron bath type smelting reduction furnace
SU729251A1 (en) Method of steel casting in hearth steel-melting set
GB1178853A (en) Improvements in or relating to Processes and Apparatus for Producing Metallurgical Products
JP2600229B2 (en) Smelting reduction method and equipment
JPH0149776B2 (en)
JPH032922B2 (en)
JPH01195214A (en) Operation of iron bath type melting and reducing furnace