JPH0774368B2 - Iron ore fluidized bed reduction device - Google Patents

Iron ore fluidized bed reduction device

Info

Publication number
JPH0774368B2
JPH0774368B2 JP61286599A JP28659986A JPH0774368B2 JP H0774368 B2 JPH0774368 B2 JP H0774368B2 JP 61286599 A JP61286599 A JP 61286599A JP 28659986 A JP28659986 A JP 28659986A JP H0774368 B2 JPH0774368 B2 JP H0774368B2
Authority
JP
Japan
Prior art keywords
fluidized bed
furnace
reduction
gas
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61286599A
Other languages
Japanese (ja)
Other versions
JPS63140019A (en
Inventor
達彦 江頭
信義 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61286599A priority Critical patent/JPH0774368B2/en
Publication of JPS63140019A publication Critical patent/JPS63140019A/en
Publication of JPH0774368B2 publication Critical patent/JPH0774368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶融還元法・高炉法等に使用するための、鉄鉱
石を流動層還元炉で還元する鉄鉱石還元装置に関する。
TECHNICAL FIELD The present invention relates to an iron ore reducing apparatus for reducing iron ore in a fluidized bed reducing furnace for use in a smelting reduction method, a blast furnace method and the like.

(従来の技術) 鉄鉱石を還元して溶銑を製造するために、高炉を使用す
る方法、シャフト炉で還元した鉄鉱石を電気炉で溶解す
る方法が従来から採用されている。
(Prior Art) In order to reduce iron ore to produce hot metal, a method of using a blast furnace and a method of melting iron ore reduced in a shaft furnace in an electric furnace have been conventionally adopted.

高炉を使用する方法では,熱源及び還元剤として多量の
コークスを使用し、鉄源である鉄鉱石は炉内に於ける通
気性、還元性を向上させるために通常焼結され、焼結鉱
として高炉に装入されている。このようなことから、該
高炉法は、強粘結炭を乾溜するためのコークス炉設備及
び焼結鉱を製造する為の焼結設備を必要とする。従っ
て、該高炉法には、多大な設備費は勿論のこと、多くの
エネルギー及び労働が必要となる。こ為、高炉法には処
理コストが高くなるという欠点があった。更に、強粘結
炭は世界的に賦存量が少なく、しかもその分布が地域的
に偏っているため供給が不安定である。
In the method of using a blast furnace, a large amount of coke is used as a heat source and a reducing agent, and iron ore, which is an iron source, is usually sintered to improve the air permeability and reducing property in the furnace, and is used as a sintered ore. It is installed in the blast furnace. For this reason, the blast furnace method requires coke oven equipment for dry distillation of strongly caking coal and sintering equipment for producing sinter. Therefore, the blast furnace method requires a lot of energy and labor as well as a large amount of equipment cost. Therefore, the blast furnace method has a drawback that the processing cost becomes high. Furthermore, the supply of strong coking coal is unstable because the amount of endowment is small worldwide and the distribution is unevenly distributed locally.

一方、シャフト炉による鉄鉱石の還元法は鉄鉱石をペレ
ット化する前処理を行うことが必要となり、また還元
剤、熱源として高価な天然ガス等を大量に消費するとい
う欠点がある。
On the other hand, the iron ore reduction method using a shaft furnace requires a pretreatment for pelletizing the iron ore, and has a drawback that it consumes a large amount of a reducing agent, expensive natural gas as a heat source, and the like.

このような従来の溶銑製造技術に代わるものとして、溶
融還元精練法が注目を浴びている。この方法で使用する
溶融還元炉は使用する原料に制約を受けることなく、よ
り小規模な設備により鉄系合金の溶湯を製造することを
目的として開発されたものである。
As an alternative to such conventional hot metal production technology, the smelting reduction refining method has been drawing attention. The smelting reduction furnace used in this method was developed for the purpose of producing a molten iron-based alloy by a smaller-scale facility without being restricted by the raw material used.

上述する溶融還元法の一例として本発明者は先に第3図
に示すフローで構成される方法を特願昭59〜184056号と
して提案されている。
As an example of the above-mentioned smelting reduction method, the present inventor has previously proposed a method constituted by the flow shown in FIG. 3 as Japanese Patent Application No. 59-184056.

この方法によるとき、次のようにして溶銑が製造され
る。即ち鉄鉱石1及び石灰石2は流動層予熱炉3内で石
炭4と空気5との燃焼反応で生じた熱によって加熱され
る。その結果、石灰石2(CaCO3)は生石灰(CaO)とな
って流動層還元炉6に供給される。
According to this method, hot metal is manufactured as follows. That is, the iron ore 1 and the limestone 2 are heated in the fluidized bed preheating furnace 3 by the heat generated by the combustion reaction of the coal 4 and the air 5. As a result, limestone 2 (CaCO 3 ) becomes quicklime (CaO) and is supplied to the fluidized bed reduction furnace 6.

流動層還元炉6内では流動状態の予熱鉱石及び生石灰に
石炭7及び酸素又は酸素含有ガスが吹き込まれる。この
石炭7は、流動層還元炉6内で予熱鉱石と熱交換し、ま
た酸素との反応による部分燃焼によって熱分解する。こ
れにより、石炭7は、還元性のガスを発生すると共に、
チャー9となる。
In the fluidized bed reduction furnace 6, coal 7 and oxygen or oxygen-containing gas are blown into the preheated ore and quicklime in a fluidized state. The coal 7 exchanges heat with the preheated ore in the fluidized bed reduction furnace 6 and is thermally decomposed by partial combustion due to reaction with oxygen. Thereby, the coal 7 generates a reducing gas and
It becomes Char 9.

他方、溶融還元炉10で発生したガス又はそのガスを脱炭
酸処理して得られる還元ガス11は、流動層還元炉6から
の燃料ガス12との熱交換によって700〜900℃に昇温され
た後、流動層還元炉6に吹き込まれる。流動層還元炉6
に吹き込まれた還元ガス11は石炭7の熱分解により生成
した還元ガスと混合され、流動状態にある高温の粉粒状
鉄鉱石を還元し、還元鉱13を生成する。
On the other hand, the gas generated in the smelting reduction furnace 10 or the reducing gas 11 obtained by decarbonating the gas was heated to 700 to 900 ° C. by heat exchange with the fuel gas 12 from the fluidized bed reduction furnace 6. Then, it is blown into the fluidized bed reduction furnace 6. Fluidized bed reduction furnace 6
The reducing gas 11 blown into is mixed with the reducing gas produced by the thermal decomposition of the coal 7, and reduces the high temperature powdery granular iron ore in a fluidized state to produce the reduced ore 13.

また、流動層予熱炉3内に生成した生石灰14は、予熱鉱
石と共に流動層還元炉6に装入されて、流動層還元炉6
内にあるガスの脱硫を行う。次いで、該生石灰14は、還
元鉱13及びチャー9と共に流動層還元炉6から排出され
る。
The quicklime 14 produced in the fluidized bed preheating furnace 3 is charged into the fluidized bed reduction furnace 6 together with the preheated ore, so that the fluidized bed reduction furnace 6
Desulfurize the gas inside. Next, the quicklime 14 is discharged from the fluidized bed reduction furnace 6 together with the reduction ore 13 and the char 9.

このようにして得られた還元鉱13、チャー9及び生石灰
14に対して、溶融還元炉10に於ける熱バランス上必要な
石炭、コークス等の炭材が外部から加えられ、混練され
る。次いで、混合物は、ブリッケットマシン等の塊成化
装置15によってブリケット16に成型された後、装入装置
17によって溶融還元炉10に装入される。
Reduced ore 13, char 9 and quicklime thus obtained
Carbon materials such as coal and coke necessary for heat balance in the smelting reduction furnace 10 are externally added to 14, and kneaded. Next, the mixture is molded into a briquette 16 by an agglomerating device 15 such as a briquette machine, and then a charging device.
The smelting reduction furnace 10 is charged by 17.

この溶融還元炉10には、上吹きランス18から酸素19が浴
に向かって吹き付けられると共に、底吹き羽口20から浴
中に酸素及び炭材が吹き込まれている。そして、ブリケ
ット16に含まれている炭材、底吹き羽口20から酸素と共
に吹き込まれている炭材、装入装置17から供給されたコ
ークス21等の炭材は、上吹きランス18から供給された酸
素と反応し、溶融還元炉10内に大量の熱を発生する。こ
の発生熱によって、ブリケット16中の還元鉱13が溶解
し、還元が進行して溶銑となる。
In this smelting reduction furnace 10, oxygen 19 is blown toward the bath from a top blowing lance 18, and oxygen and carbonaceous material are blown into the bath from a bottom blowing tuyere 20. Then, the carbonaceous material contained in the briquette 16, the carbonaceous material blown together with oxygen from the bottom blowing tuyere 20, the carbonaceous material such as the coke 21 supplied from the charging device 17 is supplied from the top blowing lance 18. And reacts with oxygen to generate a large amount of heat in the smelting reduction furnace 10. Due to this heat generated, the reduction ore 13 in the briquette 16 is melted and the reduction proceeds to form hot metal.

一方、還元鉱13中の脈石と炭材及び生石灰14とが反応し
て、スラグ23が生成する。このスラグ23は溶融還元炉10
内に貯留し、時間が経過するにつれてその量を増してい
く。そこで、該スラグ23を間欠的または連続的に炉外に
排出する。
On the other hand, the gangue in the reduced ore 13 reacts with the carbonaceous material and the quick lime 14 to generate the slag 23. This slag 23 is a smelting reduction furnace 10
It is stored inside and increases in quantity over time. Therefore, the slag 23 is discharged out of the furnace intermittently or continuously.

(発明が解決しようとする問題点) このような溶融還元法においては、特にその開発過程か
らしても明らかなように、使用可能な原料の範囲の拡
大、熱回収の効率化、溶融還元炉に於ける精練反応の促
進を如何にして達成するかが今後の課題である。
(Problems to be Solved by the Invention) In such a smelting reduction method, as is clear from the development process, the range of usable raw materials is expanded, the efficiency of heat recovery is improved, and the smelting reduction furnace is used. How to achieve the promotion of the refining reaction in the future is a future task.

しかし、粒度分布の広い粉鉱石・石炭等の原料を使用す
ると流動層還元炉6での流動性確保が非常に難しく操業
性に問題があった。つまり安定状態を得る為には、粗粒
子が飛散するまで還元ガスの空塔速度を大とすると良い
のであるが、この場合にあっても流動層還元炉内の粒子
濃度が薄くなりすぎて、反応効率即ちガス利用率が低下
する。一方還元ガスの空筒速度を小とすると流動層還元
炉の下部に粗粒子が滞留し、いわゆるスラッギング流動
が生じ流動層還元炉のヘッダ圧の変動が大となって操業
が不可能になる。
However, when raw materials such as powdered ore and coal having a wide particle size distribution are used, it is very difficult to secure fluidity in the fluidized bed reduction furnace 6 and there is a problem in operability. That is, in order to obtain a stable state, it is good to increase the superficial velocity of the reducing gas until coarse particles are scattered, but even in this case, the particle concentration in the fluidized bed reduction furnace becomes too thin, The reaction efficiency, that is, the gas utilization rate decreases. On the other hand, when the empty velocity of the reducing gas is reduced, coarse particles are retained in the lower part of the fluidized bed reduction furnace, so-called slugging flow occurs, and fluctuations in the header pressure of the fluidized bed reduction furnace become large, making operation impossible.

また一般に粒度の大きさが還元速度に影響を及ぼし、
細、粗粒子のそれぞれに適した還元ガスの空筒速度があ
る。従って粒度分布の広い粉鉱石を還元する場合に、細
粒の粉鉱石の方が粗粒の粉鉱石より還元が進み高還元度
となり、還元鉱同志の付着性が増し細粒同志による凝
集、或いは粗粒への凝集が生じ、流動性の悪化、更に流
動化停止のトラブルが発生する危険もあった。
In addition, the size of the particle generally affects the reduction rate,
There is an empty space velocity of reducing gas suitable for each of fine and coarse particles. Therefore, when reducing fine ore with a wide particle size distribution, fine grain ore is reduced more than coarse grain ore and has a higher degree of reduction, resulting in increased adhesion of the reduced ores and aggregation by fine grains or There is a risk that aggregation into coarse particles may occur, the fluidity may be deteriorated, and a trouble of stopping fluidization may occur.

そこで本発明では流動層還元炉内に還元を行う為の還元
ガスの吹込みノズルを炉高方向に数段に配設し、各吹込
みノズルの還元ガス吹出し流量をかえ高速化が困難な粗
粒子の鉄鉱石或いは還元工程で生成した凝粒子は炉下部
のバブリング流動層で細粒と分離して沈降させその下部
に位置する充填層で還元し下部より排出するものであ
る。
Therefore, in the present invention, reducing gas blowing nozzles for performing reduction in the fluidized bed reduction furnace are arranged in several stages in the furnace height direction, and it is difficult to increase the speed by changing the blowing rate of the reducing gas from each blowing nozzle. Particles of iron ore or coagulated particles produced in the reduction step are separated from fine particles in a bubbling fluidized bed in the lower part of the furnace, settled, reduced in a packed bed located under the same, and discharged from the lower part.

(問題点を解決するための手段) 本発明の鉄鉱石流動層還元装置は、溶融還元法に使用す
る還元鉱石を製造する設備に於いて、流動層還元炉に外
部粒子循環装置を付設し、かつ流動層還元炉の炉内にガ
ス吹込みノズルを炉高方向に数段に配設してなるもので
ある。
(Means for Solving Problems) The iron ore fluidized bed reducing apparatus of the present invention is an apparatus for producing reduced ore used in a smelting reduction method, wherein an external particle circulation device is attached to a fluidized bed reducing furnace, Moreover, the gas injection nozzles are arranged in several stages in the furnace height direction in the furnace of the fluidized bed reduction furnace.

(作用) 本発明は上述のように構成し、流動層還元炉に粒度分布
の広い粉鉱石・石炭等の原料を装入し還元ガスをガス吹
込みノズルから吹き出すと、最上部のガス吹込みノズル
の上方は全てのガス吹込みノズルの吹き出し量が加わ
り、細粒状の原料粒子の終末速度Ut以上となり、細粒状
の原料粒子は還元ガスと反応しながら流動層還元炉の上
方へ飛散上昇する。すなわち高速流動層を形成する。こ
の場合終末速度Utに達していない粗粒状の原料の一部に
は細粒による同伴効果により上方へ飛散するものもある
が、大半は流動層に滞留する。炉下部に位置するガス吹
き込みノズルから還元ガス11を吹き込み、流動層を形成
する。この流動層で粒度分布の広い原料を流動化させる
が、粗粒状の原料は細粒状の原料に比べ流動開始速度Um
fが大で流動性が悪いため、流動しながら流動層下部に
沈降し細粒と分離される。一方細粒状の原料は前述した
上部の吹き込みノズルにより流動層還元炉6上部へ飛散
される。流動層還元炉6下部に沈降した粗粒状の原料は
充填層を形成する。即ち炉高方向に数段に配設してなる
ガス吹込みノズルにより充填層、流動層、高速流動層と
原料の流動状態を形成させることにより、高速流動層域
のスラッギング発生を防止し、安定流動状態の確保が得
られ、かつ流動層還元炉内の粒子濃度を適当な濃度にコ
ントロールすることが出来、反応効率及びガス利用率の
向上が得られる 一方粗粒子は充填層内に充填されながら炉底部に有する
炉底吹き込みノズルからの適正な流量の還元ガスにより
還元が確実になされる。従って細、粗粒子に整粒して還
元を行うことにより還元の均一性が向上し、高還元度へ
の進行による鉄鉱石の凝集トラブルを回避することが可
能となる。
(Function) The present invention is configured as described above, and when raw materials such as powdered ore and coal having a wide particle size distribution are charged into the fluidized bed reduction furnace and the reducing gas is blown from the gas blowing nozzle, the uppermost gas is blown. Above the nozzle, the amount of air blown out from all the gas injection nozzles is added, and the final velocity Ut of the fine-grained raw material particles is exceeded, and the fine-grained raw material particles fly upward in the fluidized bed reduction reactor while reacting with the reducing gas. . That is, a high-speed fluidized bed is formed. In this case, some of the coarse-grained raw material that has not reached the terminal velocity Ut may be scattered upward due to the entrainment effect of the fine grains, but most of it stays in the fluidized bed. A reducing gas 11 is blown from a gas blowing nozzle located in the lower part of the furnace to form a fluidized bed. In this fluidized bed, raw materials with a wide particle size distribution are fluidized.
Since f is large and the fluidity is poor, it settles in the lower part of the fluidized bed while flowing, and is separated from fine particles. On the other hand, the fine-grained raw material is scattered to the upper part of the fluidized bed reduction furnace 6 by the above-mentioned upper blowing nozzle. The coarse-grained raw material settled in the lower part of the fluidized bed reduction furnace 6 forms a packed bed. That is, the gas injection nozzles arranged in several stages in the furnace height direction form a fluidized state of the packed bed, fluidized bed, high-speed fluidized bed and raw material to prevent slugging in the high-speed fluidized bed region and stabilize The fluidized state can be secured, and the particle concentration in the fluidized bed reduction furnace can be controlled to an appropriate concentration, so that the reaction efficiency and the gas utilization rate can be improved, while the coarse particles are packed in the packed bed. Reduction is surely performed by an appropriate flow rate of reducing gas from a furnace bottom blowing nozzle provided at the bottom of the furnace. Therefore, the uniformity of the reduction is improved by sizing the particles into fine and coarse particles and performing the reduction, and it becomes possible to avoid the aggregation trouble of the iron ore due to the progress to the high reduction degree.

(実施例) 以下本発明の一実施例を第1図に示す基本的構成の概略
図で詳述する。
(Embodiment) An embodiment of the present invention will be described in detail below with reference to the schematic diagram of the basic configuration shown in FIG.

流動層還元炉に外部粒子循環装置を付設する。この外部
粒子循環装置の構成は流動層還元炉6の上部に設けられ
ている出口にサイクロン31を接続し還元ガス11と同伴し
飛散してきた細粒子を捕捉している。そしてサイクロン
31の下部には捕捉して粒子を一時溜めるホッパ32が接続
され、このホッパ32で一時貯え所定量を循環切出装置33
で流動層還元炉6に戻すものである。
An external particle circulation device is attached to the fluidized bed reduction furnace. In the structure of this external particle circulation device, a cyclone 31 is connected to the outlet provided in the upper part of the fluidized bed reduction furnace 6 to capture fine particles entrained with the reducing gas 11 and scattered. And cyclone
A hopper 32 for trapping and temporarily storing particles is connected to the lower part of the 31 and the hopper 32 temporarily stores and circulates a predetermined amount of a circulating cutting device 33.
And is returned to the fluidized bed reduction furnace 6.

一方流動層還元炉6の炉内には複数のガス吹出し口34、
35が形成されている。このガス吹出し口34、35の中間部
にバブリング流動層36を形成し、このバブリング流動層
36内に前記外部粒子循環装置の循環出口が設けられてい
る。また流動層還元炉6の炉底部に充填層37が形成さ
れ、充填層37内に炉底吹き込みノズル38が設けられてい
る。図中39は粉鉱石、石灰石等の原料25を流動層還元炉
6に装入する為の切出弁、40,41,42は還元ガスの吹き出
し量を調整するための流量調節弁、43は細粒状の還元鉱
の切出弁、44は粗粒状の還元鉱の切出弁である。
On the other hand, in the furnace of the fluidized bed reduction furnace 6, a plurality of gas outlets 34,
35 are formed. A bubbling fluidized bed 36 is formed in the middle of the gas outlets 34, 35.
A circulation outlet of the external particle circulation device is provided in the inside of 36. Further, a packed bed 37 is formed at the bottom of the fluidized bed reduction furnace 6, and a furnace bottom blowing nozzle 38 is provided in the packed bed 37. In the figure, 39 is a cutoff valve for charging the raw material 25 such as powdered ore and limestone into the fluidized bed reduction furnace 6, 40, 41, 42 are flow rate control valves for adjusting the amount of reducing gas blown out, and 43 is A fine-grained reduction ore cutoff valve, and 44 is a coarse-grained reduction ore cutout valve.

次に切出弁から粉鉱石、石灰石等の原料25を流動層還元
炉6に装入し還元ガス11を流量調節弁40,41,42を介して
ガス吹出し口34、35,38より吹込むと、最上部のガス吹
込みノズル34の上方は全てのガス吹込みノズルの吹き出
し量が加わり、細粒状の原料粒子の終末速度Utより大き
い速度となり、細粒状の原料粒子は還元ガスと反応しな
がら流動層還元炉の上方へ飛散する、他方粗粒状の原料
は細粒状の原料に比べ終末速度Utが大きい為、ガス吹出
し口34で飛散せず、二ケ所のガス吹出し口34、35間に位
置するバブリング流動層36で更に風ふるいされ、粗粒子
は炉下部の流動層37まで下降する。充填層37内の粗粒子
は炉下部に位置する炉底吹き込みノズル38により適正な
流量の還元ガスにより還元が確実になされ、切出弁44か
ら粗粒状の還元鉱が排出され次工程へ送られる。第2図
はノズル34、35の炉水平断面図方向の配置を示す。ノズ
ルヘッダ34′、35′を炉を貫通して配設している。
Next, the raw material 25 such as powdered ore and limestone is charged into the fluidized bed reduction furnace 6 from the cut-out valve, and the reducing gas 11 is blown from the gas blow-out ports 34, 35, 38 through the flow rate control valves 40, 41, 42. And, above the uppermost gas blowing nozzle 34, the blowing amount of all the gas blowing nozzles is added, and the speed becomes higher than the terminal velocity Ut of the fine granular raw material particles, and the fine granular raw material particles react with the reducing gas. However, since the coarse-grained raw material has a higher terminal velocity Ut than the fine-grained raw material, the coarse-grained raw material does not scatter at the gas outlet 34, but between the two gas outlets 34, 35. Further sieving is performed in the bubbling fluidized bed 36 located, and the coarse particles descend to the fluidized bed 37 in the lower part of the furnace. Coarse particles in the packed bed 37 are reliably reduced by a reducing gas at a proper flow rate by a furnace bottom blowing nozzle 38 located in the lower part of the furnace, and coarse particles of reducing ore are discharged from the cut-out valve 44 and sent to the next step. . FIG. 2 shows the arrangement of the nozzles 34, 35 in the horizontal sectional view of the furnace. Nozzle headers 34 ', 35' are located through the furnace.

一方細粒子は流動層還元炉6内で飛散され、炉上部の出
口からサイクロ31で捕捉され、ホッパ32、循環切出装置
33を介し、バブリング流動層36に循環させ、再び還元が
行われる。そして所望の還元を得られた細粒子の還元鉱
は切出弁43から排出され次工程へ送られる。
On the other hand, the fine particles are scattered in the fluidized bed reduction furnace 6, captured by the cyclone 31 from the outlet at the upper part of the furnace, the hopper 32, the circulation cutting device.
It is circulated to the bubbling fluidized bed 36 via 33, and reduction is performed again. Then, the fine-particle reduction ore from which the desired reduction has been obtained is discharged from the cutoff valve 43 and sent to the next step.

なお本設備は溶融還元用還元鉱石の製造に用いられるも
のに限ったものでなく、例えば還元ガス11を転炉ガスや
コークス炉ガス等の還元ガス或いは、改良した還元ガス
を用いて、本設備で鉄鉱石を還元し、高炉へ供給使用す
ることも可能である。
Note that this equipment is not limited to that used for the production of reduced ore for smelting reduction, and for example, reducing gas 11 such as converter gas or coke oven gas or an improved reducing gas is used. It is also possible to reduce the iron ore with and supply it to the blast furnace for use.

(発明の効果) 上述したように、本発明においては、流動層還元炉内に
吹出される還元ガスにより高速流動層、バブリング流動
層、充填層の三層が形成されることにより、安定した高
速循環流動特性が得られ、粒度分布の広い原料でも還元
の均一性が向上し効率的な還元反応の促進が図れる。ま
た粒度分布の広い粉鉱石を積極的に処理することが出来
る為、粉鉱石及び一般炭を原料として使用することが可
能となり、溶銑のコストダウンを図ることが出来る。さ
らに、高反応率、ガス利用率向上によりコンパクトな還
元設備を提供出来る等優れた効果を有する。
(Effects of the Invention) As described above, in the present invention, a stable high-speed fluidized bed, a bubbling fluidized bed, and a packed bed are formed by the reducing gas blown into the fluidized bed reduction furnace. Circulating flow characteristics can be obtained, and even in a raw material having a wide particle size distribution, the uniformity of reduction can be improved and an efficient reduction reaction can be promoted. Further, since the powdered ore having a wide particle size distribution can be positively treated, the powdered ore and steam coal can be used as raw materials, and the cost of hot metal can be reduced. Further, it has an excellent effect such that a compact reduction facility can be provided by a high reaction rate and an improvement in gas utilization rate.

また高炉法に利用した場合、高炉の生産性向上および焼
結設備・コークス炉設備等の付帯設備の小型化が図れ
る。
When used in the blast furnace method, it is possible to improve productivity of the blast furnace and downsize auxiliary equipment such as sintering equipment and coke oven equipment.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の基本的構成を示す説明図、第2図はノ
ズルの配置を示す説明図、第3図は本発明者等が先に提
案した溶融還元法の概略を示した説明図である。 1は鉄鉱石、2は石灰石、6は流動層還元炉、11は還元
ガス、25は原料、31はサイクロン、32はホッパ、33は循
環切出装置、34,35はガス吹出し口、36はバブリング流
動層、37は充填層、38は炉底吹き込みノズル、39は切出
弁、40,41,42は流動調節弁、43,44は切出弁。
FIG. 1 is an explanatory diagram showing the basic configuration of the present invention, FIG. 2 is an explanatory diagram showing the arrangement of nozzles, and FIG. 3 is an explanatory diagram showing the outline of the smelting reduction method previously proposed by the present inventors. Is. 1 is iron ore, 2 is limestone, 6 is fluidized bed reduction furnace, 11 is reducing gas, 25 is raw material, 31 is cyclone, 32 is hopper, 33 is circulating cutting device, 34 and 35 are gas outlets, 36 is Bubbling fluidized bed, 37 packed bed, 38 furnace bottom injection nozzle, 39 cutout valve, 40, 41 and 42 flow control valves, and 43 and 44 cutout valves.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】還元鉱石を製造する設備に於いて、流動層
還元炉の炉内にガス吹込みノズルを炉高方向に数段に配
設してなることを特徴とする鉄鉱石流動層還元装置。
1. An iron ore fluidized bed reduction, wherein in a facility for producing reduced ore, gas injection nozzles are arranged in several stages in the furnace height direction in the fluidized bed reduction furnace. apparatus.
JP61286599A 1986-12-03 1986-12-03 Iron ore fluidized bed reduction device Expired - Lifetime JPH0774368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61286599A JPH0774368B2 (en) 1986-12-03 1986-12-03 Iron ore fluidized bed reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61286599A JPH0774368B2 (en) 1986-12-03 1986-12-03 Iron ore fluidized bed reduction device

Publications (2)

Publication Number Publication Date
JPS63140019A JPS63140019A (en) 1988-06-11
JPH0774368B2 true JPH0774368B2 (en) 1995-08-09

Family

ID=17706500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61286599A Expired - Lifetime JPH0774368B2 (en) 1986-12-03 1986-12-03 Iron ore fluidized bed reduction device

Country Status (1)

Country Link
JP (1) JPH0774368B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449666B1 (en) * 2000-12-23 2004-09-21 주식회사 포스코 Method For Manufacturing Molten Pig Iron By COREX Process
JP4883689B2 (en) * 2006-08-22 2012-02-22 ドーコ株式会社 pants

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550411A (en) * 1978-10-03 1980-04-12 Ishikawajima Harima Heavy Ind Co Ltd Direct iron manufacturing method

Also Published As

Publication number Publication date
JPS63140019A (en) 1988-06-11

Similar Documents

Publication Publication Date Title
US9181594B2 (en) Process and device for producing pig iron or liquid steel precursors
JPH0348245B2 (en)
CA1205636A (en) Method of converting iron ore into molten iron
RU2294967C2 (en) Melt cast iron producing plant providing drying and transporting iron ores and additives, melt cast iron production method with use of such plant
JPH0774368B2 (en) Iron ore fluidized bed reduction device
JP2562172B2 (en) Iron ore fluidized bed reduction device
JPS6311609A (en) Prereduction device for iron ore
JPH0723493B2 (en) How to shut down the iron ore fluidized bed reduction unit
JP2502976B2 (en) Iron ore preliminary reduction device
JPS62227022A (en) Preheating and reducing device for iron ore
US2784078A (en) Process of smelting finely divided metallic ore
JPS62228870A (en) Out-of-core circulator for fluidized-bed spare reducing furnace
JPH0637659B2 (en) Iron ore fluidized bed reduction device
JPS6311610A (en) Prereduction device for iron ore
JPH0689389B2 (en) Fluidized bed reduction method for ores
JPH0637660B2 (en) Iron ore fluidized bed reduction device
JPS62228879A (en) Iron ore spare reducing device
JPS6311611A (en) Prereduction device for iron ore
JPS62228889A (en) Preheater in iron-ore spare reduction facility
JPS62228868A (en) Fluidized bed furnace with out-of-core circulating mechanism
JPH0676610B2 (en) Iron ore fluidized bed reduction device
JPH01129917A (en) Device for preheating and charging material in reduction furnace
JPH0635614B2 (en) Fluidized bed reduction method for ores
JPS62228883A (en) Out-of-core circulation-quantity controller in fluidized-bedspare reducing furnace
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace