JPH0441676A - Formation of thin metal film on heat resistant substrate - Google Patents

Formation of thin metal film on heat resistant substrate

Info

Publication number
JPH0441676A
JPH0441676A JP14933190A JP14933190A JPH0441676A JP H0441676 A JPH0441676 A JP H0441676A JP 14933190 A JP14933190 A JP 14933190A JP 14933190 A JP14933190 A JP 14933190A JP H0441676 A JPH0441676 A JP H0441676A
Authority
JP
Japan
Prior art keywords
metal
resinate
thin film
substrate
oxidation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14933190A
Other languages
Japanese (ja)
Other versions
JP2885886B2 (en
Inventor
Junichi Yanai
淳一 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP14933190A priority Critical patent/JP2885886B2/en
Publication of JPH0441676A publication Critical patent/JPH0441676A/en
Application granted granted Critical
Publication of JP2885886B2 publication Critical patent/JP2885886B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

PURPOSE:To very simply form a thin film having superior oxidation resistance by coating a metal having inferior oxidation resistance with a mixture of resinate of a metal, principally a noble metal with a small amt. of an org. solvent, drying and baking the resulting film. CONSTITUTION:An org. solvent such as terpineol is added to resinate of a metal selected from among Pt, Au, Ag, Pd, Rh, Ir, Ru, Cu and Ni, principally the noble metals having superior oxidation resistance by 5-30% of the amt. of the metal resinate so as to form a uniform thin film of about 0.1-0.5mum thickness by single coating, drying and baking. They are mixed, a metal substrate is coated with the mixture and the resulting film is dried, baked at 300-400 deg.C in the air and further baked at 500-900 deg.C in a reducing gas or in an inert gaseous atmosphere contg. a reducing gas.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、工業材料として特に耐熱材料として有用なタ
ングステンやモリブデン等の金属基村上に金属の薄膜を
形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming a thin metal film on a metal substrate such as tungsten or molybdenum, which is useful as an industrial material, particularly as a heat-resistant material.

(従来技術とその問題点) タングステンやモリブデン等の高温強度に優れる耐熱材
料は抵抗体や発熱体等に利用されているが、高温の酸化
雰囲気中で用いると、酸化して上記の抵抗体や発熱体と
しての性能が低下するだけでなく、該耐熱材料が薄い板
状や細い線状の場合では亀裂や断線等の原因となるため
、酸化雰囲気中で高温で使用する材料では貴金属が用い
られているが、該貴金属は高価であるためその改良とし
て、各種の複合材料が用いられている。
(Prior art and its problems) Heat-resistant materials such as tungsten and molybdenum, which have excellent high-temperature strength, are used for resistors, heating elements, etc., but when used in a high-temperature oxidizing atmosphere, they oxidize, causing the above-mentioned resistors and Not only does the performance as a heating element deteriorate, but if the heat-resistant material is in the form of a thin plate or thin wire, it may cause cracks or disconnections, so noble metals are not used in materials that will be used at high temperatures in an oxidizing atmosphere. However, since the precious metals are expensive, various composite materials have been used to improve them.

その複合材料の製法としては耐酸化性に優れた貴金属の
板状のものを張り合わせるものや、薄膜層を形成する方
法として、スパッタリング法、蒸着法、電気メツキ法、
ペースト法等があるが、薄膜(1,μ以下)を形成する
方法となるとスパッタリング法、蒸着法、電気メツキ法
、が行えるものであるが、スパッタリング法、蒸着法は
装置が高価であることと工業的な量産性に欠ける点かあ
り、電気メツキ法では細部へのメツキが困難であるのと
密着性に欠けることや電着させる金属を任意に選択する
にはメツキ液の種類が十分ではなく、開発をする必要と
する等の問題がある。
Methods for manufacturing such composite materials include laminating plates of precious metals with excellent oxidation resistance, and methods for forming thin film layers such as sputtering, vapor deposition, electroplating, etc.
There are paste methods, etc., but sputtering, vapor deposition, and electroplating methods can be used to form thin films (less than 1 μm), but sputtering and vapor deposition require expensive equipment. It is not suitable for industrial mass production, and the electroplating method has difficulty in plating fine details, lacks adhesion, and there are not enough types of plating liquid to arbitrarily select the metal to be electrodeposited. , there are problems such as the need for development.

(発明の目的) 本発明は上記従来法の欠点を解決するために成されたも
ので、高温強度に優れる耐熱材料で抵抗体や発熱体等に
利用されているタングステンやモリブデン等の基材上に
耐酸化性を向上させるための金属薄膜を形成する方法を
提供するものである。
(Purpose of the Invention) The present invention has been made to solve the drawbacks of the above-mentioned conventional methods. The present invention provides a method for forming a thin metal film to improve oxidation resistance.

(問題点を解決するための手段) 本発明は、金属基材に耐酸化性の金属または金属合金の
薄膜を形成する方法において、金属レジネートと有機溶
媒の混合物を該金属基材に塗布、乾燥したのち、300
〜400℃大気中で焼成し、次いで還元性ガスまたは還
元性ガスを含む不活性ガス雰囲気中で500〜900℃
焼成することを特徴とする耐熱基材への金属薄膜形成方
法である。
(Means for Solving the Problems) The present invention provides a method for forming a thin film of an oxidation-resistant metal or metal alloy on a metal substrate, in which a mixture of a metal resinate and an organic solvent is applied to the metal substrate, and then dried. After that, 300
Calcinate in the air at ~400°C, then at 500-900°C in a reducing gas or an inert gas atmosphere containing a reducing gas.
This is a method for forming a metal thin film on a heat-resistant base material, which is characterized by firing.

本発明の詳細について説明する。The details of the present invention will be explained.

耐酸化性の金属または金属合金の薄膜を形成する方法は
、金属として耐酸化性に優れた性能を持つ貴金属を基と
するもので、白金、金、銀、パラジウム、ロジウム、イ
リジウム、ルテニウム、銅およびニッケルより選ばれた
金属のレジネートを用いるものである。
The method for forming thin films of oxidation-resistant metals or metal alloys is based on noble metals that have excellent oxidation resistance as metals, such as platinum, gold, silver, palladium, rhodium, iridium, ruthenium, and copper. and nickel.

該金属レジネートは350℃以下で熱分解して金属とな
るものでなくてはならない。
The metal resinate must be thermally decomposed to metal at 350° C. or lower.

上記の350℃以下で熱分解する金属レジネートであれ
ば市販品を用いても良いが、有機酸をアンモニアまたは
トリエチルアミンで中和した溶液に、数%程度の金属の
塩化物または硝酸塩の水溶液を攪拌下でゆっくり加えて
油状のレジネートを生成させ、ついで、クロロホルムに
該油状のレジネートを抽出し水洗浄したのち、エバポレ
ーションすると金属のレジネートが得られる。
Commercially available metal resinates that thermally decompose at temperatures below 350°C may be used, but a few percent of a metal chloride or nitrate aqueous solution is stirred into a solution prepared by neutralizing an organic acid with ammonia or triethylamine. The resin is added slowly at the bottom to form an oily resinate, and then the oily resinate is extracted into chloroform, washed with water, and then evaporated to obtain a metal resinate.

前記の有機酸には、ネオペンタン酸、ネオヘプタン酸、
ネオノナン酸、ネオデカン酸、n−へブタン酸、2−エ
チルヘキサン酸のうちから選んで用いられる。
The organic acids mentioned above include neopentanoic acid, neoheptanoic acid,
It is selected from neononanoic acid, neodecanoic acid, n-hebutanoic acid, and 2-ethylhexanoic acid.

上記で得られた金属レジネートであれば350℃以下の
熱分解で金属となるものが得られるばかりでなく、形成
した薄膜に有害となるような不純物が残らないのでより
好ましいものである。
The metal resinate obtained above is more preferable because not only can it be turned into a metal by thermal decomposition at 350° C. or lower, but it also does not leave any harmful impurities in the formed thin film.

有機溶媒としてはターピネオール等で良く、その加える
量は薄膜形成の厚みと塗布操作等を考慮して変えること
ができるが、−回の塗布、乾燥、焼成してO,1〜0.
5μm程度の厚みが得られ均一な薄膜を得やすいのは金
属レジネートに対して5〜30%である。
The organic solvent may be terpineol or the like, and the amount added can be changed depending on the thickness of the thin film to be formed and the coating operation.
It is easy to obtain a uniform thin film with a thickness of about 5 μm at a ratio of 5 to 30% of the metal resinate.

以上で調製した金属レジネートと有機溶媒の混合したも
のを耐熱基材上に塗布する方法は、筆塗り法、スクリー
ン印刷法、スタンプ法、スプレー法、ディッピング法、
スピンコーティング法から基材の形状や薄膜形成のさせ
かた(部分的か全体的か等)により選択できる。
Methods for applying the mixture of metal resinate and organic solvent prepared above onto a heat-resistant substrate include brush coating method, screen printing method, stamping method, spraying method, dipping method,
The spin coating method can be selected depending on the shape of the base material and the method of thin film formation (partial or total, etc.).

該塗布したのち室温で約10分間乾燥したのち、350
℃で約10分間焼成する。
After applying the coating and drying it at room temperature for about 10 minutes,
Bake at ℃ for about 10 minutes.

ついで、水素等の還元性ガス雰囲気中で500〜900
℃で約10分間加熱して完全に金属化させると目的とす
る耐酸化性金属薄膜層が基材上に密着力の優れたもので
得られる。
Then, in an atmosphere of reducing gas such as hydrogen, 500 to 900
By heating for about 10 minutes at .degree. C. for complete metallization, the desired oxidation-resistant metal thin film layer with excellent adhesion can be obtained on the substrate.

以下、本発明に係わる実施例を記載するが、該実施例は
本発明を限定するものではない。
Examples related to the present invention will be described below, but the examples are not intended to limit the present invention.

(実施例1) タングステン基板(25,4mmX 25. 4+nm
X厚さ1.2mm)上に2−エチルヘキサン酸とトリエ
チルアミンの中和した溶液に塩化白金酸カリウム溶液を
40℃でゆっくり反応させクロロポルムに抽出したのち
、水洗浄し、エバポレーションして得た白金レジネート
に対し7%のターピネオールを加えて混合したものを、
スクリーン印刷法で塗布シ、室温(20’C)で10分
間乾燥したのち、350℃大気中で10分間焼成し、つ
いで水素カス雰囲気中の電気炉で7000(:IQ分間
焼成したところ、タンクステン基板上に白金の0. 5
μmの厚さの均一な薄膜を形成できた。
(Example 1) Tungsten substrate (25.4mm x 25.4+nm
A potassium chloroplatinate solution was slowly reacted with a neutralized solution of 2-ethylhexanoic acid and triethylamine at 40°C, extracted with chloroporm, washed with water, and evaporated onto a 1.2 mm thick A mixture of platinum resinate and 7% terpineol,
It was coated using a screen printing method, dried at room temperature (20'C) for 10 minutes, then fired at 350°C for 10 minutes in the air, and then fired for 7000 (IQ) minutes in an electric furnace in a hydrogen scum atmosphere. 0.5 of platinum on the substrate
A uniform thin film with a thickness of μm could be formed.

ここで得た、タンクステン基板上に形成した白金薄膜を
テーピング法により密着強度を確認したところ全く剥が
れることがなかった。
When the adhesion strength of the platinum thin film formed on the tanksten substrate obtained here was checked by the taping method, no peeling was found.

また、大気中で1000’c30分間加熱したところ、
白金の薄膜を形成させた面は酸化することがなかったが
、白金の薄膜を形成させながった面はタングステンが酸
化してしまった。
Also, when heated in the air at 1000'C for 30 minutes,
The surface on which the platinum thin film was formed was not oxidized, but the tungsten on the surface on which the platinum thin film was not formed was oxidized.

(実施例2) タングステン基板に変えてモリブデン基板(25,4−
mmX 25. 4mmX厚さ1.2mm)を用いたほ
かは実施例1と同様に操作して白金の薄膜を形成させた
ところ、実施例Iと同様の結果が得られた。
(Example 2) Molybdenum substrate (25,4-
mmX 25. When a platinum thin film was formed in the same manner as in Example 1 except that a platinum material (4 mm x 1.2 mm thick) was used, the same results as in Example I were obtained.

(実施例3) ネオデカン酸をトリエチルアミンまたはアンモニアで中
和した溶液にそれぞれの金属の塩化物または硝酸塩溶液
として塩化金酸カリウム溶液、塩化金(I[)溶液、硝
酸銀溶液、塩化パラジウム酸カリウム溶液、塩化パラジ
ウム溶液、塩化ロジウム酸カリウム溶液、硝酸ロジウム
溶液、塩化ロジウム溶液、塩化イリジウム酸カリウム溶
液、塩化イリジウム溶液、塩化ルテニウム酸カリウム溶
液、塩化ルテニウム溶液、硝酸銅溶液、塩化銅溶液、硝
酸ニッケル溶液、塩化ニッケル溶液をそれぞれ40℃で
ゆっ(り反応させクロロホルムに抽出したのち、水洗浄
し、エバポレーションして、金レジネート、銀レジネー
ト、パラジウムレジネート、ロジウムレジネート、イリ
ジウムレジネート、ルテニウムレジネート、銅レジネー
ト、ニッケルレジネートを得た。
(Example 3) Potassium chloroaurate solution, gold(I[) chloride solution, silver nitrate solution, potassium chloropalladate solution, Palladium chloride solution, potassium chloride rhodate solution, rhodium nitrate solution, rhodium chloride solution, potassium chloriridate solution, iridium chloride solution, potassium chlororuthenate solution, ruthenium chloride solution, copper nitrate solution, copper chloride solution, nickel nitrate solution, The nickel chloride solutions were slowly reacted at 40°C and extracted into chloroform, washed with water, and evaporated to produce gold resinate, silver resinate, palladium resinate, rhodium resinate, iridium resinate, ruthenium resinate, copper resinate, and nickel. Got resinate.

上記で得たそれぞれの金属レジネートを熱分析して分解
温度を測定したところ下記表−1のような結果であった
When each of the metal resinates obtained above was thermally analyzed to measure the decomposition temperature, the results were as shown in Table 1 below.

また、上記の金属レジネートを有機溶媒としてターピネ
オール、メンタノール、ジブチルカルピトールを用いて
それぞれ溶解したところ均一な溶液状となった。
Further, when the above metal resinate was dissolved using terpineol, menthanol, and dibutylcarpitol as organic solvents, a uniform solution was obtained.

(実施例4) タングステン基板(25,4mmX 25. 4mmX
厚さ1.2mm)上に実施例3で得た金レジネート、銀
レジネートおよび銅レジネートを重量比で92:5:3
のものに対し10%のターピネオールを加えて混合した
ものを、スクリーン印刷法で塗布し、室温(208C)
で10分間乾燥したのち、350℃大気中で10分間焼
成し、ついで水素ガス(窒素ガス50%含む)雰囲気中
の電気炉で600℃IO分間焼成したところ、タングス
テン基板上に金、銀、銅の合金の0.5μmの厚さの均
一な薄膜を形成できた。
(Example 4) Tungsten substrate (25.4mmX 25.4mmX
The gold resinate, silver resinate, and copper resinate obtained in Example 3 were placed on top of the resin (thickness 1.2 mm) in a weight ratio of 92:5:3.
A mixture of 10% terpineol was applied by screen printing, and the temperature was kept at room temperature (208C).
After drying for 10 minutes at 350°C, it was fired for 10 minutes in the air at 350°C, and then fired at 600°C for IO minutes in an electric furnace in a hydrogen gas (containing 50% nitrogen gas) atmosphere. A uniform thin film of 0.5 μm thick could be formed of the alloy.

ここで得た、タングステン基板上に形成した金、銀、銅
の合金薄膜をテーピング法により密着強度を確認したと
ころ全く剥がれることがなかった。
When the adhesion strength of the gold, silver, and copper alloy thin film formed on the tungsten substrate thus obtained was checked by a taping method, no peeling was found.

また、大気中で600℃30分間加熱したところ、金、
銀、銅の合金の薄膜を形成させた面は酸化することがな
かったが、金、銀、銅の合金の薄膜を形成させなかった
面はタングステンが酸化してしまった。
In addition, when heated in the atmosphere at 600°C for 30 minutes, gold,
The surface on which the thin film of silver and copper alloy was formed did not oxidize, but the tungsten oxidized on the surface on which the thin film of gold, silver, and copper alloy was not formed.

(実施例5) タングステン基板に変えてモリブデン基板(25,4m
mX 25. 4n+mX厚さ1.2n+m)を用いた
ほかは実施例4と同様に操作して金、銀、銅の合金の薄
膜を形成させたところ、実施例4と同様の結果が得られ
た。
(Example 5) Molybdenum substrate (25.4 m
mX 25. When a thin film of an alloy of gold, silver, and copper was formed in the same manner as in Example 4, except that 4n+m×1.2n+m in thickness was used, the same results as in Example 4 were obtained.

(実施例6) 実施例1と同様に金属レジネートを下記のような割合と
したものを用いて塗布、乾燥、焼成したところ実施例1
と同様の結果であった。
(Example 6) In the same manner as in Example 1, metal resinate was applied in the following proportions, dried, and fired. Example 1
The results were similar.

なお、密着強度、耐酸化温度試験も下記表−2のような
結果であった。
In addition, the results of the adhesion strength and oxidation resistance temperature tests were as shown in Table 2 below.

〔金属レジネートの種類と割合〕[Type and proportion of metal resinate]

■白金レジネート90wt%−ロジウムレジネー)10
wt% ■白金レジネート85wt%−金レジネート15wt% ■白金レジネート90wt%−パラジウムレジネート1
0wt% ■白金レジネート90wt%−イリジウムレジネート1
0wt% ■白金レジネート85wt%−パラジウムレジネ−ト1
0wt%−ルテニウムレジネート5wt%■金レジネー
)90wt%−ニッケルレジネートi 0wt% ■金しジネート90wt%−パラジウムレジネー)1.
0wt% ■白金レジネート85wt%−パラジウムレジネート1
0wt%−銅しジネート5wt%■白金レジネート90
wt%−ニツケルレジネー)10wt% (実施例7) アルミナ基板上にタングステン1.0μmの膜が形成さ
れている基板(25,4mmX 25. 4mm×厚さ
1.2mm)に変えたほかは実施例1と同様に白金レジ
ネートを塗布、乾燥、焼成して口金の薄膜を形成して密
着試験と耐酸化性試験として酸素雰囲気中900℃で3
0分間加熱したところ、密着性も良く耐酸化性試験でも
まった(異常は見られなかった。
■Platinum resinate 90wt%-Rhodium resinate) 10
wt% ■Platinum resinate 85wt% - Gold resinate 15wt% ■Platinum resinate 90wt% - Palladium resinate 1
0wt% ■Platinum resinate 90wt% - Iridium resinate 1
0wt% ■Platinum resinate 85wt% - Palladium resinate 1
0wt% - Ruthenium resinate 5wt% ■ Gold resinate) 90wt% - Nickel resinate i 0wt% ■ Gold resinate 90wt% - Palladium resinate) 1.
0wt% ■Platinum resinate 85wt% - Palladium resinate 1
0wt%-Copper resinate 5wt% ■Platinum resinate 90
(wt% - Nickel Resinane) 10wt% (Example 7) The same procedure was carried out except that the substrate was changed to a substrate (25.4 mm x 25.4 mm x thickness 1.2 mm) in which a 1.0 μm tungsten film was formed on an alumina substrate. In the same manner as in Example 1, platinum resinate was applied, dried, and fired to form a thin film for the cap, and then tested at 900°C in an oxygen atmosphere for adhesion tests and oxidation resistance tests.
When heated for 0 minutes, the adhesion was good and it passed the oxidation resistance test (no abnormality was observed).

(発明の効果) 本発明は、上記結果からも明確のように耐酸化性の金属
または金属合金である貴金属を基とする金属レジネート
を用いて、少量の有機溶媒で酸化しやすい金属上に塗布
、乾燥、焼成するという極めて簡便な方法で耐酸化性に
優れた薄膜を形成することができ、従来高温の還元性雰
囲気においてのみ使用されてきた比較的酸化しやすいタ
ングステンやモリブデンを酸化から保護するという目的
から、技術の発展と信頼性の向上に大いに貢献するもの
である。
(Effects of the Invention) As is clear from the above results, the present invention uses a metal resinate based on a noble metal that is an oxidation-resistant metal or metal alloy, and coats it onto a metal that is easily oxidized with a small amount of an organic solvent. It is possible to form a thin film with excellent oxidation resistance using an extremely simple method of drying and firing, and protects tungsten and molybdenum, which are relatively easily oxidized, from oxidation, and which have traditionally been used only in high-temperature reducing atmospheres. For this purpose, it will greatly contribute to the development of technology and the improvement of reliability.

Claims (1)

【特許請求の範囲】[Claims] (1)金属基材に耐酸化性の金属または金属合金の薄膜
を形成する方法において、金属レジネートと有機溶媒の
混合物を該金属基材に塗布、乾燥したのち、300〜4
00℃大気中で焼成し、次いで還元性ガスまたは還元性
ガスを含む不活性ガス雰囲気中で500〜900℃焼成
することを特徴とする耐熱基材への金属薄膜形成方法。
(1) In a method of forming a thin film of an oxidation-resistant metal or metal alloy on a metal substrate, a mixture of a metal resinate and an organic solvent is applied to the metal substrate, dried, and then coated with a
1. A method for forming a metal thin film on a heat-resistant substrate, which comprises firing in the atmosphere at 00°C, and then firing at 500 to 900°C in a reducing gas or an inert gas atmosphere containing a reducing gas.
JP14933190A 1990-06-07 1990-06-07 Method for forming metal thin film on heat-resistant substrate Expired - Lifetime JP2885886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14933190A JP2885886B2 (en) 1990-06-07 1990-06-07 Method for forming metal thin film on heat-resistant substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14933190A JP2885886B2 (en) 1990-06-07 1990-06-07 Method for forming metal thin film on heat-resistant substrate

Publications (2)

Publication Number Publication Date
JPH0441676A true JPH0441676A (en) 1992-02-12
JP2885886B2 JP2885886B2 (en) 1999-04-26

Family

ID=15472775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14933190A Expired - Lifetime JP2885886B2 (en) 1990-06-07 1990-06-07 Method for forming metal thin film on heat-resistant substrate

Country Status (1)

Country Link
JP (1) JP2885886B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129341A (en) * 2000-10-24 2002-05-09 Huei-Tarng Liou Method for coating gold on quartz tube or high alumina- content tube with durability under high temperature and high voltage, and gold coated quartz tube and high alumina-content tube for ozonizer
WO2002077306A1 (en) * 2001-03-21 2002-10-03 Vishay Intertechnology, Inc. Method of suppressing the oxidation characteristics of nickel
US6723280B2 (en) 2001-04-02 2004-04-20 Vishay Vitramon Incorporated Method of suppressing the oxidation characteristics of nickel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129341A (en) * 2000-10-24 2002-05-09 Huei-Tarng Liou Method for coating gold on quartz tube or high alumina- content tube with durability under high temperature and high voltage, and gold coated quartz tube and high alumina-content tube for ozonizer
WO2002077306A1 (en) * 2001-03-21 2002-10-03 Vishay Intertechnology, Inc. Method of suppressing the oxidation characteristics of nickel
US7208218B2 (en) 2001-03-21 2007-04-24 Vishay Vitramon Incorporated Method of suppressing the oxidation characteristics of nickel
US6723280B2 (en) 2001-04-02 2004-04-20 Vishay Vitramon Incorporated Method of suppressing the oxidation characteristics of nickel

Also Published As

Publication number Publication date
JP2885886B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
JPS60500837A (en) thick film resistor circuit
JPH0441676A (en) Formation of thin metal film on heat resistant substrate
US4806159A (en) Electro-nickel plating activator composition, a method for using and a capacitor made therewith
JPS5926662B2 (en) Electroless plating active metal material paste and plating method using the same
EP3335224B1 (en) Paste and process for forming a solderable polyimide based polymer thick film conductor
JPS6372895A (en) Production of parts for electronic and electrical equipment
JPH0266101A (en) Electric conductive particles and manufacture thereof
JPH03115966A (en) Production of solid electrolyte type oxygen sensor
JPH02284497A (en) Manufacture of electric connection member
JPS5819746B2 (en) Method of forming ruthenium film
DE2524573C3 (en) Process for the manufacture of ceramic capacitors
JPH0466670A (en) Production of thin noble metal film laminated material
JPS58107605A (en) Method of producing chip resistor
JPH0238964A (en) Production of thin film oxygen sensor
JPH01313818A (en) Manufacture of electrical contact
JPH01312079A (en) Method for coating inside of cylinder with thin metal film
JPS5831075A (en) Local electroless plating method
JP2553658B2 (en) Electrode material for electronic parts
JPH05144318A (en) Organic gold paste
JPS62199796A (en) Parts for electronic and electrical appliances
JP2001270790A (en) Method for producing ceramic substrate and metallizing substrate
JPS5926661B2 (en) Electroless plating active metal material paste and plating method using the same
JPH05330958A (en) Glass composition for forming metallizing primer layer
JPS60149670A (en) Electrically conductive paste
JPH01259176A (en) Production of thin metal film type composite material