JPH0437776B2 - - Google Patents

Info

Publication number
JPH0437776B2
JPH0437776B2 JP60016078A JP1607885A JPH0437776B2 JP H0437776 B2 JPH0437776 B2 JP H0437776B2 JP 60016078 A JP60016078 A JP 60016078A JP 1607885 A JP1607885 A JP 1607885A JP H0437776 B2 JPH0437776 B2 JP H0437776B2
Authority
JP
Japan
Prior art keywords
laminate
punching
shield layer
hole
reliability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60016078A
Other languages
Japanese (ja)
Other versions
JPS61173930A (en
Inventor
Akio Kurahashi
Masayuki Noda
Kyoshi Oosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP60016078A priority Critical patent/JPS61173930A/en
Publication of JPS61173930A publication Critical patent/JPS61173930A/en
Publication of JPH0437776B2 publication Critical patent/JPH0437776B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、打抜きによるスルホールの形成が可
能な、シールド層を有する積層板の製造法に関す
る。 従来の技術 通常のシールド層入り積層板としては、ガラス
布基材エポキシ樹脂積層板が使用されている。こ
の積層板は、片面または両面銅張積層板の金属箔
を所定の模様にエツチングしてシールド層とし、
その両面に数枚のプリプレグ(ガラス布基材エポ
キシ樹脂)を重ね合わせ、表面に所定の厚さの銅
箔を合わせ、熱圧着によつて形成される。基材と
してガラス布が用いられるのは、スルホールメツ
キの信頼性向上、層間のボイド発生の防止、層間
剥離の防止を図るためである。このシールド層入
り積層板の両表面の銅箔をスルホールメツキによ
つて導通させるために、ドリル穴あけ加工によつ
て穴あけした後スルホールメツキ加工を行なつて
いる。 発明が解決しようとする問題点 このようなドリルによる穴あけ作業は、スルホ
ール数の多いパターンにおいては作業時間がかか
るため、加工費がかさみシールド層入り積層板を
使用する価値がうすれてしまう。これらの欠点を
カバーするため、穴あけ方法をドリル加工法から
金型による打抜加工法に改善することが考えられ
るが、ガラス布基材エポキシ樹脂では、穴あけ加
工性が悪いため穴部の剥離が生じ、打抜加工法を
適用することが出来ない。 本発明は、所定の特性を保持しながらスルホー
ルの打抜加工が可能なシールド層を有する積層板
を提供することを目的とする。 問題点を解決するための手段 すなわち、本発明は、内層にシールド層を設け
た多層の積層板の製造において、基材として30〜
150g/m2のガラス不織布を用い積層板の厚さを
1.2mm以下にすることを特徴とする。 作 用 これにより、ガラス布基材の場合と電気的信頼
性を大きく変えることなく、厚さ1.2mm以下であ
れば、打抜加工によつてスルホールが形成でき、
通常のスルホールメツキ加工工程により高品位の
スルホール信頼性が得られる。また、この基材は
半透明であるから、層内に亀裂、剥離、ボイドが
あつたときは、表面から検知でき、事前に不良を
発見できる。 なお、ガラス不織布は、30g/m2〜150g/m2
の範囲のものを用いる必要があり、30g/m2未満
であると、基材の引張り強度が弱く、樹脂の塗工
工程で基材切れが生じ塗工できない。また、150
g/m2を越える場合には、塗工乾燥工程で基材内
部に含浸された溶剤が十分飛散せず除去できない
ため、シールド層入り積層板とした時にボイドを
生じる。 実施例 本発明に用いる樹脂としては、打抜加工を一層
有利に行なう上から、可撓性のエポキシ樹脂を含
むものが望ましい。本発明では、打抜きピンの材
質としてハイス鋼、金型材質としてSKD−12程
度を用いれば、1.2mmまでは打抜加工が可能であ
る。また、ガラス不織布は、ガラス繊維のみから
なるもののほか、セルローズ繊維等を混合したも
のである。 次に、本発明の実施例について述べる。 実施例 1 (1) ビスフエノール型エポキシ樹脂(住友化学
製、商品名ESA−001)を80重量部、可撓性エ
ポキシ樹脂(シエル化学製、商品名EP−872)
を20重量部に対し、ジシアンジアミド4重量
部、2−エチル4−メチルイミダゾール0.3重
量部の混合物にアセトンを加えてワニスとし
た。 (2) このワニスを、セルローズ繊維混抄ガラス不
織布(100g/m2)をポリメチロール化フエノ
ールで前処理してから含浸し、加熱乾燥してプ
リプレグA(樹脂量55%)を得た。 (3) このプリプレグ2枚の片面に3.5μ厚銅箔1枚
を重ね、加熱加圧して内層となる積層板を製作
した。次に、この積層板の銅箔をエツチング
し、後工程で形成するスルホールのパターンと
重ならないようにシールド層を形成した。 (4) 上記(3)で得た内層板の一方の面に3枚、他方
の面に1枚、前述のプリプレグAを重ね、両表
面に35μ厚の銅箔を配し、加熱加圧によりシー
ルド層入りの1.2mm厚積層板を得た。 上記積層板のスルホールメツキ信頼性を確認す
るため、スルホール部を一度に打抜くことの出来
る金型(ピン材質はハイス鋼、金型材質はSKD
−12)を用い、打抜温度50℃において80〓油圧プ
レスで打抜いた。これに、通常の方法でスルホー
ルメツキし(メツキ厚25〜35μ)、スルホールメ
ツキ信頼性試験用パターン(110×115mm、穴数
293個)を得た。 比較例 1 実施例1と同様の内層板の一方の面に5枚、他
方の面に3枚、前述のプリプレグAを重ね、両表
面に35μ厚の銅箔を配し、加熱加圧によりシール
ド層入りの1.8mm厚積層板を得た。これを用い、
実施例1と同様に、スルホールメツキ信頼性試験
用パターンの作製を試みた。 比較例 2 実施例1と同じエポキシ樹脂ワニスを、エポキ
シシランで前処理した厚さ0.19mmのガラスクロス
に含浸し、加熱乾燥してプリプレグB(樹脂量48
%)を得た。プリプレグBを用い、実施例1と同
様にしてシールド層入りの1.2mm厚積層板を作製
し、さらに実施例1と同じ金型で打抜き、同様に
してスルホールメツキ信頼性試験用パターンの作
製を試みた。 上記各積層板の打抜加工性を第1表に示す。ま
た、第1図に、実施例1のスルホールメツキ信頼
性の試験結果を示す。この信頼性試験は、260℃
シリコン油浸漬5秒−20℃雰囲気20秒を1サイク
ルとして繰返し、スルホール導通抵抗の経時変化
を測定した。スルホール径は1mmである。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a laminate having a shield layer, in which through-holes can be formed by punching. BACKGROUND OF THE INVENTION Glass cloth-based epoxy resin laminates are commonly used as shield layer-containing laminates. This laminate is made by etching the metal foil of a single-sided or double-sided copper-clad laminate into a predetermined pattern to form a shield layer.
Several sheets of prepreg (glass fabric base epoxy resin) are superimposed on both sides, copper foil of a predetermined thickness is placed on the surface, and it is formed by thermocompression bonding. The reason why glass cloth is used as the base material is to improve the reliability of through-hole plating, prevent the generation of voids between layers, and prevent delamination between layers. In order to make the copper foils on both surfaces of this shield layer-containing laminate electrically conductive by through-hole plating, holes are drilled and then through-hole plating is performed. Problems to be Solved by the Invention The drilling operation using a drill as described above takes a lot of time in patterns with a large number of through holes, which increases the processing cost and reduces the value of using a laminate with a shield layer. In order to overcome these drawbacks, it may be possible to improve the hole-drilling method from a drilling method to a die-cutting method, but the glass fabric base epoxy resin has poor drilling processability and may cause peeling of the hole. Therefore, the punching method cannot be applied. An object of the present invention is to provide a laminate having a shield layer that allows punching of through holes while maintaining predetermined characteristics. Means for Solving the Problems That is, the present invention provides a method for manufacturing a multilayer laminate having a shield layer as an inner layer.
The thickness of the laminate using 150g/ m2 glass non-woven fabric
It is characterized by being 1.2mm or less. Effect: As a result, through-holes can be formed by punching as long as the thickness is 1.2 mm or less, without significantly changing the electrical reliability compared to the case of glass cloth substrates.
High-quality through-hole reliability can be obtained through the normal through-hole plating process. Furthermore, since this base material is translucent, any cracks, peeling, or voids in the layer can be detected from the surface, allowing defects to be discovered in advance. In addition, the glass nonwoven fabric is 30g/m 2 to 150g/m 2
If it is less than 30 g/m 2 , the tensile strength of the base material will be weak and the base material will break during the resin coating process, making coating impossible. Also, 150
If it exceeds g/m 2 , the solvent impregnated inside the base material during the coating and drying process is not sufficiently scattered and cannot be removed, resulting in voids when a laminate with a shield layer is formed. Examples It is desirable that the resin used in the present invention contains a flexible epoxy resin in order to make the punching process more advantageous. In the present invention, if high-speed steel is used as the punching pin material and SKD-12 is used as the mold material, punching up to 1.2 mm is possible. Furthermore, the glass nonwoven fabric is not only made of glass fibers, but also contains a mixture of cellulose fibers and the like. Next, examples of the present invention will be described. Example 1 (1) 80 parts by weight of bisphenol epoxy resin (manufactured by Sumitomo Chemical, trade name ESA-001), flexible epoxy resin (manufactured by Ciel Chemical, trade name EP-872)
A varnish was prepared by adding acetone to a mixture of 20 parts by weight, 4 parts by weight of dicyandiamide, and 0.3 parts by weight of 2-ethyl-4-methylimidazole. (2) A glass nonwoven fabric (100 g/m 2 ) mixed with cellulose fibers was pretreated with polymethylolated phenol and then impregnated with this varnish, followed by heating and drying to obtain prepreg A (resin content: 55%). (3) One sheet of 3.5μ thick copper foil was placed on one side of these two sheets of prepreg and heated and pressed to produce a laminate that would serve as the inner layer. Next, the copper foil of this laminate was etched to form a shield layer so as not to overlap with the through-hole pattern to be formed in a later process. (4) Three sheets of the prepreg A described above are stacked on one side of the inner layer board obtained in (3) above, and one sheet is placed on the other side, and 35 μ thick copper foil is placed on both surfaces, and heated and pressed. A 1.2 mm thick laminate with a shield layer was obtained. In order to confirm the reliability of through-hole plating of the above laminate, we used a mold that can punch out the through-holes at once (pin material is high-speed steel, mold material is SKD).
-12), and was punched with an 80 mm hydraulic press at a punching temperature of 50°C. This was plated with through holes using the usual method (plating thickness 25 to 35μ), and a pattern for through hole plating reliability testing (110 x 115 mm, number of holes) was applied.
293 pieces) were obtained. Comparative Example 1 The prepreg A described above was stacked on one side of the same inner layer board as in Example 1, 5 sheets on the other side, and 3 sheets on the other side, and a 35μ thick copper foil was placed on both surfaces, and a shield was formed by heating and pressing. A 1.8 mm thick laminate with layers was obtained. Using this,
As in Example 1, an attempt was made to create a pattern for throughhole plating reliability testing. Comparative Example 2 A 0.19 mm thick glass cloth pretreated with epoxy silane was impregnated with the same epoxy resin varnish as in Example 1, and heated and dried to prepare prepreg B (resin amount 48
%) was obtained. Using prepreg B, a 1.2 mm thick laminate with a shield layer was produced in the same manner as in Example 1, and further punched using the same mold as in Example 1, and in the same manner, an attempt was made to create a pattern for through-hole plating reliability testing. Ta. Table 1 shows the punching workability of each of the above laminates. Further, FIG. 1 shows the test results of throughhole plating reliability of Example 1. This reliability test is performed at 260℃
One cycle of immersion in silicone oil for 5 seconds and 20 seconds in an atmosphere at 20° C. was repeated, and the change in through-hole conduction resistance over time was measured. The through hole diameter is 1 mm.

【表】 発明の効果 第1表から明らかなように、従来品では打抜加
工時に亀裂が入り使用不能となるが、本発明では
外観良好であり、その効果は顕著である。また、
スルホールメツキ信頼性は、第1図に示すごとく
所期の良好な状態がヒートサイクル繰り返し後も
保持され、高品位回路板として使用可能である。 尚、積層板の板厚は、1.2mmを越えると打抜時
に剥離を発生するので制約が必要である。
[Table] Effect of the Invention As is clear from Table 1, the conventional product cracks during punching and becomes unusable, but the present invention has a good appearance and its effects are remarkable. Also,
As shown in FIG. 1, the reliability of through-hole plating is maintained in the expected good state even after repeated heat cycles, and it can be used as a high-quality circuit board. Note that the thickness of the laminate needs to be limited because if it exceeds 1.2 mm, peeling will occur during punching.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、スルホール導通抵抗の信頼性試験に
おける導通抵抗の変化を示す曲線図である。
FIG. 1 is a curve diagram showing changes in conduction resistance in a reliability test of through-hole conduction resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 内層にシールド層を設けた多層の積層板の製
造において、基材として30〜150g/m2のガラス
不織布を用い板厚を1.2mm以下とすることを特徴
とする積層板の製造法。
1. A method for producing a multi-layered laminate with a shield layer provided as an inner layer, characterized in that a glass nonwoven fabric of 30 to 150 g/m 2 is used as the base material and the thickness of the laminate is 1.2 mm or less.
JP60016078A 1985-01-30 1985-01-30 Manufacture of laminated board Granted JPS61173930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60016078A JPS61173930A (en) 1985-01-30 1985-01-30 Manufacture of laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60016078A JPS61173930A (en) 1985-01-30 1985-01-30 Manufacture of laminated board

Publications (2)

Publication Number Publication Date
JPS61173930A JPS61173930A (en) 1986-08-05
JPH0437776B2 true JPH0437776B2 (en) 1992-06-22

Family

ID=11906519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60016078A Granted JPS61173930A (en) 1985-01-30 1985-01-30 Manufacture of laminated board

Country Status (1)

Country Link
JP (1) JPS61173930A (en)

Also Published As

Publication number Publication date
JPS61173930A (en) 1986-08-05

Similar Documents

Publication Publication Date Title
JPH0437776B2 (en)
JP4433651B2 (en) High laser processability insulating resin material, high laser processability prepreg, and high laser processability metal-clad laminate
JPH0240234B2 (en)
JPH05327227A (en) Blind hole and its production
JP3288290B2 (en) Multilayer printed wiring board
JP2004072125A (en) Manufacturing method of printed wiring board, and printed wiring board
JPH0510840B2 (en)
JP3750147B2 (en) Laminate manufacturing method
JP2776202B2 (en) Manufacturing method of super multilayer laminate
JPH0570953B2 (en)
JPS61103934A (en) Production of laminated sheet
JPH05251867A (en) Manufacture of multi-layered circuit board
JPH0497838A (en) Copper plated laminated sheet
JPH06244561A (en) Flex/rigid compound wiring board
JPH0682900B2 (en) Printed wiring board
JPH05259643A (en) Manufacture of multilayer wiring board
JPH05251866A (en) Manufacture of laminate for multi-layered printed-circuit board
JPS62285491A (en) Printed wiring board
JPH0744341B2 (en) Blind through-hole printed wiring board manufacturing method
JPH02303190A (en) Manufacture of printed wiring board
JPH01265594A (en) Multilayer printed wiring board
JPS60236293A (en) Metal base circuit board
JPH04170084A (en) Manufacture of printed wiring board
JPH09326565A (en) Multilayer printed wiring board and manufacture thereof
JPH02277289A (en) Manufacture of printed wiring board