JP2004072125A - Manufacturing method of printed wiring board, and printed wiring board - Google Patents

Manufacturing method of printed wiring board, and printed wiring board Download PDF

Info

Publication number
JP2004072125A
JP2004072125A JP2003380309A JP2003380309A JP2004072125A JP 2004072125 A JP2004072125 A JP 2004072125A JP 2003380309 A JP2003380309 A JP 2003380309A JP 2003380309 A JP2003380309 A JP 2003380309A JP 2004072125 A JP2004072125 A JP 2004072125A
Authority
JP
Japan
Prior art keywords
metal layer
conductive
wiring board
conductive metal
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003380309A
Other languages
Japanese (ja)
Other versions
JP3694708B2 (en
Inventor
Yuichi Yamamoto
山本 勇一
Tomohisa Motomura
本村 知久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003380309A priority Critical patent/JP3694708B2/en
Publication of JP2004072125A publication Critical patent/JP2004072125A/en
Application granted granted Critical
Publication of JP3694708B2 publication Critical patent/JP3694708B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a printed wiring board with high yield ratio by using a simple process, which can realize higher interconnection and packaging and high reliability, and a printed wiring board manufactured thereby. <P>SOLUTION: The method comprises: a step for laminating and arranging a piece of synthetic resin based sheet without holes, of which principal plane is mutually brought into contact with a first conductive metal layer on which a group of conductive bumps is formed at a predetermined position using curable conductive paste, and a piece of synthetic resin based sheet of which second principal plane is mutually brought into contact with a second conductive metal layer; and a step for forming a multi-layer interconnection board which is electrically connected to the first and second conductive metal layers through the group of bumps by heating and pressurizing the laminate to insert the group of conductive bumps of the first conductive metal layer into the thickness direction of the synthetic resin based sheet so that the group of bumps is brought into contact with the second conductive metal layer to be plastically deformed. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は印刷配線板の製造方法に係り、特に配線パターン層間を接続する導体配線部および部品ピン挿入用などのスルーホールを備え、かつ高密度な配線および実装が可能な信頼性の高い印刷配線板を、工数の低減を図りながら、歩留まり良好に製造し得る方法に関する。 The present invention relates to a method for manufacturing a printed wiring board, and more particularly to a highly reliable printed wiring having a conductor wiring portion for connecting wiring pattern layers and a through hole for inserting component pins, and capable of high-density wiring and mounting. The present invention relates to a method for manufacturing a plate with good yield while reducing the number of steps.

 配線回路の高機能化、もしくはコンパクト化などを目的として、配線パターンの多層化が図られている。そして、この種の多層型印刷配線板においては、内層配線パターン層間同士、内層配線パターン層と表面配線パターン層との間の電気的な接続が必然的に要求され、一般的に、次のようにして行っている。たとえば、基板両面に張られた銅箔をそれぞれパターニングした後、要すればIVHと呼称される両面間の電気的な接続部を形成してから、前記パターニング面上に絶縁シート(たとえばプリプレグ)を介して銅箔を積層・配置し、加熱加圧により一体化する。なお、前記IVHと呼称される両面間の電気的な接続は、基板の所定位置に穴明け加工し、この穴内壁面にメッキ処理によって導電層を被着形成することにより行っており、また前記加熱加圧により一体化した後、前述の両面型のときと同様に、穴明け加工およびメッキ処理によって、配線パターン層間の電気的なスルーホール接続、および部品ピン挿入用の半田付け可能なスルーホールを形設し、さらに表面銅箔についてパターニングすることにより、所要の配線パターン層間接続部および部品ピン挿入用のスルーホールを備えた多層型印刷配線板を得ている。なお、より配線パターン層の多い多層型印刷配線板の場合は、中間に介挿させる両面型板の数を増やす方式で製造できる。 (4) Multi-layer wiring patterns are being used for the purpose of enhancing the functionality and reducing the size of wiring circuits. In this type of multilayer printed wiring board, electrical connection between the inner wiring pattern layers and between the inner wiring pattern layer and the surface wiring pattern layer is inevitably required. To go. For example, after patterning a copper foil stretched on both sides of a substrate, an electrical connection between both sides is formed if necessary, and then an insulating sheet (for example, a prepreg) is formed on the patterning surface. The copper foils are laminated and arranged via a vial, and integrated by heating and pressing. The electrical connection between the two surfaces, referred to as the IVH, is made by forming a hole in a predetermined position of the substrate and forming a conductive layer on the inner wall surface of the hole by plating. After pressurizing, as in the case of the double-sided type described above, by drilling and plating, electrical through-hole connections between wiring pattern layers and solderable through-holes for inserting component pins are made. By forming and patterning the surface copper foil, a multilayer printed wiring board having a required wiring pattern interlayer connection portion and through holes for inserting component pins is obtained. In the case of a multilayer printed wiring board having more wiring pattern layers, it can be manufactured by a method of increasing the number of double-sided boards to be interposed.

 前記印刷配線板の製造方法において、配線パターン層間の電気的な接続をメッキ方法によらずに行う方法として、両面銅箔張り基板の所定位置に穴明けし、この穴内に導電性ペーストを印刷法などにより流し込み、穴内に流し込んだ導電性ペーストの樹脂分を硬化させて、配線層間を電気的に接続する方法も行われている。 In the method of manufacturing a printed wiring board, as a method of performing an electrical connection between wiring pattern layers without depending on a plating method, a method of forming a hole in a predetermined position on a double-sided copper foil-clad board and printing a conductive paste in the hole is used. For example, a method is also used in which the conductive paste is poured into the holes and the resin of the conductive paste is hardened to electrically connect the wiring layers.

 上記で説明したように、配線パターン層間の電気的な接続にメッキ法を利用する印刷配線板の製造方法においては、基板に配線パターン層間の電気的な接続用の穴明け(穿穴)加工、穿設した穴内壁面を含めたメッキ処理工程などを要し、印刷配線板の製造工程が冗長であるとともに、工程管理も繁雑であるという欠点がある。一方、配線パターン層間の電気的な接続用の穴に、導電性ペーストを印刷などにより埋め込む方法の場合も、前記メッキ法の場合と同様に穴明け工程を必要とする。しかも、穿設した穴内に、均一(一様)に導体性ペーストを流し込み埋め込むことが難しく、電気的な接続の信頼性に問題があった。いずれにしても、高機能化などに伴い配線パターン層間の接続部が多数化する傾向を考慮すると、前記穴明け工程(穴明け箇所が増大する)などを要することは、印刷配線板のコストや歩留まりなどに反映し、低コスト化などへの要望に対応し得ないという欠点がある。 As described above, in a method for manufacturing a printed wiring board using a plating method for electrical connection between wiring pattern layers, a hole is formed on a substrate for electrical connection between wiring pattern layers. A plating process including the inner wall surface of the hole is required, so that the manufacturing process of the printed wiring board is redundant and the process management is complicated. On the other hand, a method of embedding a conductive paste in a hole for electrical connection between the wiring pattern layers by printing or the like also requires a drilling step as in the case of the plating method. In addition, it is difficult to uniformly (uniformly) pour and embed the conductive paste into the formed hole, and there is a problem in reliability of electrical connection. In any case, in view of the tendency that the number of connection portions between wiring pattern layers increases with the enhancement of functions and the like, the necessity of the perforation step (increased number of perforated portions) and the like necessitate the cost of the printed wiring board and the like. There is a drawback that it is not possible to respond to demands for cost reduction, etc., reflecting on the yield and the like.

 また、前記配線パターン層間の電気的な接続構成の場合は、印刷配線板の表裏面に、配線パターン層間接続用の導電体穴が設置ざれているため、その導電体穴の領域に配線を形成・配置し得ない。さらに、電子部品を搭載することもできないので、配線密度の向上が制約されるとともに、電子部品の実装密度向上も阻害されるという問題がある。つまり、従来の製造方法によって得られる印刷配線板は、高密度配線や高密度実装による回路装置のコンパクト化、ひいては電子機器類の小形化などの要望に、十分応え得るものといえず、前記コスト面を含め、実用的により有効な印刷配線板の製造方法が望まれている。 Further, in the case of the electrical connection configuration between the wiring pattern layers, since a conductor hole for wiring pattern layer connection is provided on the front and back surfaces of the printed wiring board, wiring is formed in the region of the conductor hole. -Cannot be placed. Furthermore, since it is not possible to mount electronic components, there is a problem that the improvement of the wiring density is restricted and the improvement of the mounting density of the electronic components is hindered. In other words, the printed wiring board obtained by the conventional manufacturing method cannot sufficiently meet the demands for downsizing of the circuit device by high-density wiring and high-density mounting, and furthermore, downsizing of the electronic devices, and the cost cannot be reduced. There is a need for a practically more effective method of manufacturing a printed wiring board, including a surface.

 本発明は上記事情に対処してなされたもので、簡易なプロセスで、より高密度の配線および実装が可能で、信頼性の高い印刷配線板を歩留まりよく製造し得る方法の提供を目的とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method capable of manufacturing a highly reliable printed wiring board with a high yield in a simple process, with higher density wiring and mounting. .

 本発明に係る第1の印刷配線板の製造方法は、無穴の合成樹脂系シートの第1の主面に所定位置に硬化性の導電性ペーストにより導体バンプ群を形設した第1の導電性金属層を対接させ、前記合成樹脂系シートの第2の主面に第2の導電性金属層を対接させて積層配置する工程と、前記積層体を加熱、加圧し、前記第1の導体金属層の導体バンプ群を、前記合成樹脂系シートの厚さ方向に貫挿させて前記第2の導電性金属層に当接、塑性変形させて第1および第2の導電性金属層が前記バンプ群によって電気的に接続された多層配線板を形成する工程と、前記多層配線板の所定位置に両面間に貫通するスルーホールを穿設する工程と、前記スルーホール内壁面にメツキ法によって金属層を被着形成する工程とを具備して成ることを特徴とする。
 本発明に係る第2の印刷配線板の製造方法は、硬化性の導電性ペーストにより導体バンプを導電性金属層の主面の所定位置に形成する工程と、前記導電性金属層の主面に無穴の合成樹脂系シート主面を対向させて、配線パターンを内層に含む複数層からなる積層体を形成する工程と、前記積層体を加熱する工程と、前記合成樹脂系シートを加熱、加圧し、前記導体バンプを前記導電性金属層内の配線パターンと接続し、多層配線板を形成する工程と、前記多層配線板の所定位置を貫通し、リード端子を受け入れるためのスルーホールを形成する工程と、メッキ処理により、前記スルーホールの内壁に金属層を形成する工程とを具備してなることを特徴とする。
 本発明に係る第3の印刷配線板の製造方法は、第1又は第2の印刷配線板の製造方法において、前記合成樹脂系シートは繊維強化熱硬化性樹脂であることを特徴とする。
 本発明に係る印刷配線板は、合成樹脂系シートを介して配置された2層以上の導電性金属層を備えた印刷配線板において、合成樹脂系シートを貫通し、導電性金属層の前記合成樹脂系シートと接する面と同一の面で導電性金属層面と接続する導電性ペーストの硬化物からなる第1の層間接続部と、合成樹脂系シートと導電性金属層を貫通する穴を有する貫通型の第2の層間接続部とを有することを特徴とする。
The first method of manufacturing a printed wiring board according to the present invention is directed to a method of manufacturing a printed wiring board, comprising forming a conductive bump group at a predetermined position on a first main surface of a non-perforated synthetic resin sheet using a curable conductive paste. Contacting a conductive metal layer, placing a second conductive metal layer on the second main surface of the synthetic resin-based sheet in a stacked manner, and heating and pressing the stacked body to form the first conductive metal layer. The first and second conductive metal layers are formed by penetrating a conductive bump group of the conductive metal layer in the thickness direction of the synthetic resin-based sheet to abut against the second conductive metal layer and plastically deforming the conductive bump group. Forming a multi-layer wiring board electrically connected by the bump group; forming a through hole between both surfaces at a predetermined position of the multi-layer wiring board; Depositing and forming a metal layer by the method described above.
A second method for manufacturing a printed wiring board according to the present invention includes a step of forming a conductive bump at a predetermined position on a main surface of a conductive metal layer by using a curable conductive paste; A step of forming a laminate composed of a plurality of layers including a wiring pattern in an inner layer with the principal surfaces of the synthetic resin sheet having no holes facing each other, a step of heating the laminate, and heating and heating the synthetic resin sheet. Pressing, connecting the conductive bump to the wiring pattern in the conductive metal layer to form a multilayer wiring board, and forming a through hole for penetrating a predetermined position of the multilayer wiring board and receiving a lead terminal. And a step of forming a metal layer on the inner wall of the through hole by plating.
A third method for manufacturing a printed wiring board according to the present invention is characterized in that, in the first or second method for manufacturing a printed wiring board, the synthetic resin-based sheet is a fiber-reinforced thermosetting resin.
The printed wiring board according to the present invention is a printed wiring board provided with two or more conductive metal layers arranged via a synthetic resin sheet, wherein the composite of the conductive metal layer penetrates the synthetic resin sheet. A first interlayer connection portion made of a cured conductive paste connected to the conductive metal layer surface on the same surface as the surface in contact with the resin-based sheet, and a through-hole having a hole passing through the synthetic resin-based sheet and the conductive metal layer; And a second interlayer connection part of a mold type.

 本発明において、導体バンプ群を形設する導電性金属層としては、たとえば電解銅箔などの導電性シート(箔)が挙げられ、この導電性金属層は1枚のシートであってもよく、パターン化されたものでもよく、その形状はとくに限定されなく、さらに導体バンプ群は、一方の主面だけでなく、両主面にそれぞれ形設した形のものを用いてもよい。 In the present invention, examples of the conductive metal layer forming the conductor bump group include a conductive sheet (foil) such as an electrolytic copper foil, and the conductive metal layer may be a single sheet. It may be patterned and its shape is not particularly limited. Further, the conductor bump group may be formed not only on one main surface but also on both main surfaces.

 ここで、導体バンプは、たとえば銀,金,銅,半田粉などの導電性粉末、これらの合金粉末もしくは複合(混合)金属粉末と、たとえばポリカーボネート樹脂、ポリスルホン樹脂、ポリエステル樹脂、フェノキシ樹脂、フエノール樹脂,ボリイミド樹脂などのバインダー成分とを混合して調製された導電性組成物、あるいは導電性金属などで構成される。そして、前記バンプ群の形設は、導電性組成物で形成する場合、たとえば比較的厚いメタルマスクを用いた印刷法により、アスペクト比の高いバンプを形成でき、そのバンプ群の高さは一般的に、100〜400μm程度が望ましく、さらにバンプ群の高さは一層の合成樹脂系シートを貫通し得る高さおよび複数層の合成樹脂系シートを貫通し得る高さとが適宜混在していてもよい。なお、この導体バンプの形設において、スルーホール(貫通穴)の穿設予定位置に、穿設するスルーホール内壁面の複数箇所に導体バンプの一部が露出するように設けておくと、メッキによる金属層の被着形成がより容易になる。一方、導電性金属でバンプ群を形成する手段としては、(a)ある程度形状もしくは寸法が一定な微小金属魂を、粘着剤層を予め設けておいた導電性金属層面に散布し、選択的に固着させるか(このときマスクを配置して行つてもよい)、(b)電解銅箔面にメッキレジストを印刷・パターニングして,銅、錫、金、銀、半田などメッキして選択的に微小な金属柱(バンプ)群の形成、 (c)導電性金属層面に半田レジストの塗布・パターニングして、半田浴に浸漬して選択的に微小な金属柱(バンプ)群の形成などが挙げられる。ここで、バンプに相当する微小金属魂ない微小な金属柱は、異種金属を組合わせて成る多層構造、多層シェル構造でもよい。たとえば銅を芯にし表面を金や銀の層で被覆して耐酸化性を付与したり、銅を芯にし表面を半田層被覆して半田接合性をもたせたりしてもよい。なお、本発明において、バンプ群を導電性組成物で形成する場合は、メッキ法などの手段で行う場合に較べて、さらに工程など簡略化し得るので、低コスト化の点で有効である。 Here, the conductive bumps are made of, for example, conductive powders such as silver, gold, copper, and solder powders, alloy powders or composite (mixed) metal powders thereof, and polycarbonate resins, polysulfone resins, polyester resins, phenoxy resins, and phenol resins. , A conductive composition prepared by mixing with a binder component such as polyimide resin, or a conductive metal. When the bump group is formed of a conductive composition, for example, a bump having a high aspect ratio can be formed by a printing method using a relatively thick metal mask. Preferably, the height is about 100 to 400 μm, and the height of the bump group may be a height that can penetrate one layer of the synthetic resin sheet and a height that can penetrate a plurality of layers of the synthetic resin sheet. . In the formation of the conductor bump, if the conductor bump is provided at a plurality of locations on the inner wall surface of the through hole to be drilled at a position where the through hole (through hole) is to be drilled, plating may be performed. Makes it easier to form a metal layer. On the other hand, as means for forming a bump group with a conductive metal, (a) a fine metal soul having a certain shape or size is sprayed on a conductive metal layer surface on which an adhesive layer is provided in advance, and selectively. (B) A plating resist is printed and patterned on the surface of the electrolytic copper foil, and selectively plated with copper, tin, gold, silver, solder or the like. Formation of minute metal pillars (bumps), (c) Application and patterning of solder resist on conductive metal layer surface, immersion in solder bath and selective formation of minute metal pillars (bumps) Can be Here, the minute metal pillar without the minute metal soul corresponding to the bump may have a multilayer structure or a multilayer shell structure formed by combining different metals. For example, copper may be used as a core and the surface may be coated with a layer of gold or silver to provide oxidation resistance, or copper may be used as a core and the surface may be coated with a solder layer to provide solder bonding properties. In the present invention, when the bump group is formed of the conductive composition, the steps and the like can be further simplified as compared with the case where the bump group is formed by means such as a plating method, which is effective in terms of cost reduction.

 本発明において、前記導体バンプ群が貫挿され、貫通型の導体配線部を形成する合成樹脂系シートとしては、たとえば熱可塑性樹脂フイルム(シート)が挙げられ、またその厚さは50〜800μm程度が好ましい。ここで、熱可塑性樹脂シートとしては,たとえばポリカーボネート樹脂、ポリスルホン樹脂,熱可塑性ポリイミド樹脂,4フッ化ポリエチレン樹脂、6フッ化ポリプロピレン樹脂,ポリエーテルエーテルケトン樹脂などのシート類が挙げられる。また、硬化前状態に保持される熱硬化性樹脂シートとしては、エポキシ樹脂、ビスマレイミドトリアジン樹脂、ポリイミド樹脂、フェノール樹脂,ポリエステル樹脂、メラミン樹脂、あるいはブタジエンゴム,ブチルゴム,天然ゴム、ネオプレンゴム,シリコーンゴムなどの生ゴムのシート類が挙げられる。これら合成樹脂は、単独でもよいが絶縁性無機物や有機物系の充填物を含有してもよく、さらにガラスクロスやマット、有機合成繊維布やマット、あるいは斑などの補強材と組み合わせて成るシートであってもよい。 In the present invention, examples of the synthetic resin-based sheet into which the conductor bump group is inserted to form a through-type conductor wiring portion include a thermoplastic resin film (sheet), and the thickness thereof is about 50 to 800 μm. Is preferred. Here, examples of the thermoplastic resin sheet include sheets such as a polycarbonate resin, a polysulfone resin, a thermoplastic polyimide resin, a polyethylene tetrafluoride resin, a hexafluoropropylene resin, and a polyether ether ketone resin. The thermosetting resin sheet held in a pre-cured state includes epoxy resin, bismaleimide triazine resin, polyimide resin, phenol resin, polyester resin, melamine resin, butadiene rubber, butyl rubber, natural rubber, neoprene rubber, silicone Examples include sheets of raw rubber such as rubber. These synthetic resins may be used alone or may contain an insulating inorganic or organic filler, and may be a sheet made of glass cloth or mat, organic synthetic fiber cloth or mat, or a reinforcing material such as spots. There may be.

 さらに、本発明において、バンプ群を形設した導電性金属層の主面に、合成樹脂系シート主面を対接させた構成の複数層を、積層配置して成る積層体を加熱・加圧するとき、合成樹脂系シートを載置する基台(当て板)としては、寸法や変形の少ない金属板もしくは耐熱性樹脂板、たとえばステンレス板、真鍮板、ポリイミド樹脂板(シート)、ポリテトラフロロエチレン樹脂板(シート)などが使用される。 Further, in the present invention, a laminate formed by stacking and laminating a plurality of layers having a configuration in which the synthetic resin-based sheet main surface is in contact with the main surface of the conductive metal layer forming the bump group is heated and pressed. At this time, a base (backing plate) on which the synthetic resin sheet is placed is a metal plate or a heat-resistant resin plate having small dimensions and deformation, such as a stainless steel plate, a brass plate, a polyimide resin plate (sheet), and polytetrafluoroethylene. A resin plate (sheet) is used.

 なお、スルーホール穿設は、たとえばドリルなど印刷配線板の製造で、常套的である手段でよく、また穿設したスルーホール内壁面へのメッキ処理も化学メッキ(無電解メッキ)、もしくは化学メッキど電気メッキの併用で成し得る。そして、この穴明け工程やメッキ工程は、いわゆる従来技術におけるスルーホール接続など、配線パターン層間の電気的な接続部数に比べて大幅に少ないので、工程的な煩雑性もほとんど問題にならない。 The drilling of the through hole may be a conventional means in the manufacture of a printed wiring board such as a drill, and the plating on the inner wall surface of the drilled through hole may be performed by chemical plating (electroless plating) or chemical plating. It can be achieved by using electroplating in combination. The drilling step and the plating step are much less than the number of electrical connections between wiring pattern layers, such as so-called through-hole connections in the prior art, so that the process complexity is hardly a problem.

 本発明に係る印刷配線板の製造方法によれば、配線パターン層間を電気的に接続する層間の導体配線部は、いわゆる積層一体化する工程での加熱・加圧により、層間絶縁層を成す合成樹脂系シートの可塑状態化ないしこれに類似した状態と、導電性金属層面の導体バンプ群の圧入とによって、確実に信頼性の高い配線パターン層間の電気的な接続が達成される。つまり、プロセスの簡易化を図りながら、微細な配線パターン層間を任意な位置(箇所)で、高精度にかつ信頼性の高い電気的な接続を形成し得る。つまり、配線密度の高い印刷配線板を低コストで製造することが可能となり、また前記配線パターン層間の電気的な接続に当たり、接続穴の形設も不要となるので、その分高密度配線および高密度実装の可能で、かつピン挿入形部品の確実な信頼性の高い実装を成し得る印刷配線板が得られることになる。 According to the method of manufacturing a printed wiring board according to the present invention, the conductor wiring portions between the layers electrically connecting the wiring pattern layers are combined to form an interlayer insulating layer by heating and pressing in a so-called lamination and integration process. Due to the plastic state of the resin-based sheet or a state similar thereto, and the press-fitting of the conductive bump group on the conductive metal layer surface, highly reliable electrical connection between the wiring pattern layers is reliably achieved. In other words, highly accurate and highly reliable electrical connection can be formed at any position (location) between the fine wiring pattern layers while simplifying the process. That is, it is possible to manufacture a printed wiring board having a high wiring density at low cost, and it is not necessary to form connection holes in the electrical connection between the wiring pattern layers. It is possible to obtain a printed wiring board that can be mounted at a high density and that can reliably mount a pin insertion component with high reliability.

 本発明によればパターン層間を接続する導電性のバンプを形設する工程、合成樹脂系シートを積層的に配置して熱プレスする工程、外層パターニングする工程というプロセスの簡略化、換言すると製造工程数を従来の製造方法に比べ格段に少ない工程に低減しながら、両面型印刷配線板ないし多層型印刷配線板を容易に製造することが可能となる。特に工程の繰り返しが多い多層型印刷配線板の製造においては、大幅な工程数の低減となり、生産性ないし量産性の向上に効果がある。そして、従来の多層型印刷配線板などの製造工程で、必要不可欠であった穴明け工程、メッキ工程が不要になることに伴い、製造工程で発生する不良が大幅に抑えられ、歩留まりが向上するばかりでなく、信頼性の高い印刷配線板が得られることになる。また、製造される印刷配線板は、層間接続用の穴が表面に存在しないので、配線密度の格段な向上を図り得るし、電子部品の実装用エリアも、穴の位置に関係なく設定し得ることになり、実装密度も格段に向上し、ひいては実装電子部品間の距離を短縮できるので、回路の性能向上をも図り得る。つまり、本発明は、印刷配線板の低コス化に寄与するだけでなく、実装回路装置のコンパクト化や、高性能化などにも大きく寄与するものといえる。 According to the present invention, a process of forming conductive bumps for connecting pattern layers, a process of laminating synthetic resin-based sheets and hot pressing, and a process of outer layer patterning are simplified, in other words, a manufacturing process. It is possible to easily manufacture a double-sided printed wiring board or a multilayer printed wiring board while reducing the number to significantly fewer steps as compared with the conventional manufacturing method. Particularly, in the production of a multilayer printed wiring board in which steps are frequently repeated, the number of steps is greatly reduced, which is effective in improving productivity or mass productivity. In addition, since the drilling step and the plating step, which are indispensable in the manufacturing process of the conventional multilayer printed wiring board and the like, are no longer required, defects generated in the manufacturing process are significantly suppressed, and the yield is improved. In addition, a highly reliable printed wiring board can be obtained. Further, since the printed wiring board to be manufactured has no holes for interlayer connection on the surface, the wiring density can be remarkably improved, and the mounting area of the electronic component can be set regardless of the position of the hole. As a result, the mounting density is remarkably improved, and the distance between the mounted electronic components can be shortened, so that the performance of the circuit can be improved. That is, it can be said that the present invention not only contributes to cost reduction of the printed wiring board, but also greatly contributes to downsizing and high performance of the mounted circuit device.

 以下図1(a)〜(c)、図2(a),(b)、図3(a),(b)、図4 (a)〜(d)および図5(a)〜(c)をそれぞれ参照して本発明の実施例を説明する。 1 (a) to 1 (c), 2 (a) and 2 (b), 3 (a) and 3 (b), 4A (a) to 4 (d), and 5 (a) to 5 (c). An embodiment of the present invention will be described with reference to FIGS.

[実施例1]
 図1(a)〜(c)、図2(a),(b)および図3(a),(b)は本実施例の実施態様を模式的に示したものである。先ず、厚さ35μmの電解銅箔を導電性金属層1として、ポリマータイプの銀系の導電性ペースト(商品名,熱硬化性導電性ペーストMS−7,東芝ケミカルKK)として、また板厚の300μmのステンレス板の所定箇所に0.35mm径の穴を明けたメタルマスクを用意した。そして、前記電解銅箔1面に、前記メタルマスクを位置決め配置して導電性ペーストを印刷し、この印刷された導電性ペーストが乾燥後、問一マスクを用い同一位置に再度印刷する方法で3回印刷を繰り返し、高さ20〜300μmの山形の導体バンプ2を形成(形設)した。
[Example 1]
FIGS. 1A to 1C, FIGS. 2A and 2B, and FIGS. 3A and 3B schematically show an embodiment of the present embodiment. First, a 35 μm-thick electrolytic copper foil was used as the conductive metal layer 1 as a polymer type silver-based conductive paste (trade name, thermosetting conductive paste MS-7, Toshiba Chemical KK). A metal mask having a hole of 0.35 mm in diameter at a predetermined position on a 300 μm stainless steel plate was prepared. Then, the metal mask is positioned and arranged on one surface of the electrolytic copper foil, and a conductive paste is printed. After the printed conductive paste is dried, it is printed again at the same position using the same mask. The printing was repeated once to form (form) a mountain-shaped conductor bump 2 having a height of 20 to 300 μm.

 一方、厚さ160μmのガラスエポキシ系プリプレグ(合成樹脂系シート)3および厚さ35μm電解銅箔1′を用意し、図1(a)に断面的に示すごとく、前記合成樹脂系シート3面上に、前記形設した導電性のバンプ2を対向させて、また合成樹脂系シート3面の裏面側に電解銅箔1′をそれぞれ位置決め配置して積層体化した。その後、100℃に保持した熱プレスの熱板の間に配置し(図示せず)、合成樹脂系シート3が熱可塑化した状態のとき、樹脂圧として1MPaで加圧しそのまま冷却後取りだし、図1(b)に断面的に示すように、前記導体バンプ2が導電接続部2aを構成し両電解銅箔1,1′を電気的に接続した両面銅張り積層板を得た。この積層板は、前記図1(b)に示すごとく、前記導電性のバンプ2がそのままの形で、合成樹脂系シート3中に圧入し、電解銅箔1′面に対接して先端が潰された形になった形態を採っている。 On the other hand, a glass epoxy-based prepreg (synthetic resin-based sheet) 3 having a thickness of 160 μm and an electrolytic copper foil 1 ′ having a thickness of 35 μm were prepared, and as shown in cross section in FIG. Then, the formed conductive bumps 2 were opposed to each other, and an electrolytic copper foil 1 ′ was positioned and arranged on the back side of the synthetic resin-based sheet 3 to form a laminate. Thereafter, it is disposed between hot plates of a hot press maintained at 100 ° C. (not shown). When the synthetic resin sheet 3 is in a thermoplastic state, the resin is pressed at 1 MPa as a resin pressure, cooled and taken out. As shown in cross section in b), a double-sided copper-clad laminate was obtained in which the conductive bumps 2 constituted the conductive connecting portions 2a and were electrically connected to both electrolytic copper foils 1 and 1 '. As shown in FIG. 1 (b), the laminated board is pressed into the synthetic resin sheet 3 with the conductive bump 2 as it is, and the tip is crushed by contacting the electrolytic copper foil 1 'surface. It takes a form that has been shaped.

 なお、前記図1(b)に図示した構成の積層板は、次のようにしても製造し得る。すなわち、導体バンプ2を形設した前記電解銅箔1の導体バンプ2形設面側に、合成樹脂系シート3、アルミ箔およびゴムシートを積層・配置し、熱プレス処理して、前記導体バンプ2の先端が合成樹脂系シート3を貫挿したものを作成し、冷却後取り出してアルミ箔およびゴムシートを剥がし、導体バンプ2の先端が貫挿した合成樹脂系シート3面に、電解銅箔1′を積層・配置してから、たとえば170℃に保持した熱プレスの熱板の間に配置し、合成樹脂系シート3が熱可塑化した状態のとき、樹脂圧として1MPaで1時間程加圧することによっても製造し得る。 積 層 The laminate having the structure shown in FIG. 1B can be manufactured as follows. That is, a synthetic resin sheet 3, an aluminum foil and a rubber sheet are laminated and arranged on the conductive bump 2 forming surface side of the electrolytic copper foil 1 on which the conductive bumps 2 are formed, and hot-pressed to form the conductive bumps. 2 is made by inserting a synthetic resin sheet 3 at the tip thereof, taken out after cooling, the aluminum foil and the rubber sheet are peeled off, and an electrolytic copper foil is After laminating and arranging 1 ', for example, it is arranged between hot plates of a hot press kept at 170 ° C., and when synthetic resin sheet 3 is in a thermoplastic state, it is pressed at 1 MPa as a resin pressure for about 1 hour. Can also be manufactured.

 前記面銅張積層板両面の電解銅箔1,1′に、通常のエッチングレジストインク(商品名,PSR−4000H、太陽インキKK)をスクリーン印刷し、導体パターン部をマスクしてから、塩化第2銅をエッチング液としてエッチング処理後、レジストマスク剥離して、図1(c)に断面的に示す両面型印刷配線素板4を得た。 A normal etching resist ink (trade name, PSR-4000H, sun ink KK) is screen-printed on the electrolytic copper foils 1, 1 'on both sides of the surface copper-clad laminate to mask the conductor pattern portion, After performing an etching process using 2 copper as an etching solution, the resist mask was peeled off to obtain a double-sided printed wiring board 4 shown in cross section in FIG.

 次に、前記両面型印刷配線素板の両面側に、片面側を配線パターニングした銅張積層素板(2枚)5およびガラスエポキシ系プリプレグ(合成樹脂系シート)3を用意し、図2(a)に断面的に示すごとく、それぞれ位置決め配置して積層体化した。その後、170℃に保持した熱プレスの熱根の間に配置し、合成樹脂系シート3が熱可塑化した状態のとき、樹脂圧として1MPaで加圧しそのまま冷却後取りだし、多層型積層板を得た。この多層型積層板の所定位置に、ドリル加工によってスルーホール6を穿設し、このスルーホール6内壁面に約3時間化学銅メッキを選択的に施して、スルーホール6内壁面に厚さ約7μ巾の銅層7を被着形成した。その後、前記多層型積層板両面の電解銅箔1′に、通常のエッチングレジストインク(商品名,PSR−4000H、太陽インキKK)をスクリーン印刷し、導体パターン部をマスクしてから、塩化第2銅をエッチング液としてエッチング処理後、レジストマスク剥離して、多層型印刷配線板8を得た。 Next, on both sides of the double-sided printed circuit board, a copper-clad laminate (2 sheets) 5 and a glass epoxy prepreg (synthetic resin sheet) 3 having one side wiring-patterned are prepared, and FIG. As shown in a cross section in a), each was positioned and arranged to form a laminate. Then, it is placed between the hot roots of a hot press maintained at 170 ° C., and when the synthetic resin sheet 3 is in a thermoplastic state, the resin pressure is applied at 1 MPa as a resin pressure, cooled and taken out to obtain a multilayer laminate. Was. A through hole 6 is drilled at a predetermined position of the multilayer laminate by drilling, and the inner wall surface of the through hole 6 is selectively subjected to chemical copper plating for about 3 hours, and the inner wall surface of the through hole 6 has a thickness of about 3 hours. A 7 μ wide copper layer 7 was deposited. Thereafter, a normal etching resist ink (trade name, PSR-4000H, sun ink KK) is screen-printed on the electrolytic copper foil 1 'on both sides of the multilayer laminate, and the conductor pattern portion is masked. After etching using copper as an etchant, the resist mask was peeled off to obtain a multilayer printed wiring board 8.

 前記製造した多層型印刷配線板8について、通常実施されている電気チェックを行ったところ、全ての接続に不良なし化信頼性などの問題が認められなかった。また、配線パターン間の接続の信頼性を評価するため、ホットオイルテストで(260℃のオイル中に10秒浸漬,20℃のオイル中に20秒浸漬のサイクルを1サイクルとして)、500回行っても不良発生は認められず、従来の銅メッキ法による場合に比較しても、導電(配線)パターン層間の接続信頼性に問題はなかった。 電 気 An electrical check was conducted on the multilayer printed wiring board 8 manufactured as described above, and no problems were found in all the connections, such as the reliability of the connection without defects. In addition, in order to evaluate the reliability of connection between the wiring patterns, the hot oil test was performed 500 times in a hot oil test (a cycle of immersion in oil at 260 ° C. for 10 seconds and immersion in oil at 20 ° C. for 20 seconds). However, no defect was observed, and there was no problem in connection reliability between the conductive (wiring) pattern layers as compared with the case of the conventional copper plating method.

[実施例2]
 本実施例は、上記実施例1の場合において、両面側(外側)の各2層の配線パターン層に、前記導体バンプ2が導電接続部2aを成して両電解銅箔1および配線パターンを接続した構成の両面型配線素板5を用い、また内層にはスルーホール接続のない両面型配線素板4′を用いて、図3(a)に断面的に示すように,積層・配置し、170℃に保持した熱プレスの熱板の間に配置し、合成樹脂系シート3が熱可塑化した状態のとき、樹脂圧として1MPaで加圧しそのまま冷却後取りだし、多層型積層板を得た。この多層型積層板の所定位置に、ドリル加工によってスルーホール6を穿設し、このスルーホール6内壁面に約3時間化学銅メッキを選択的に施して、スルーホール6内壁面に厚さ約7μmの銅層7を被着形成した。その後、前記多層型積層板両面の電解銅箔1′に、通常のエッチングレジストインク(商品名、PSR−4000H、太陽インキKK)をスクリーン印刷し、導体パターン部をマスクしてから、塩化第2銅をエッチング液としてエッチング処理後、レジストマスク剥離して、多層型印刷配線素板8を得た。
[Example 2]
In this embodiment, in the case of the first embodiment, the conductive bumps 2 form the conductive connection portions 2a on each of the two wiring pattern layers on both sides (outside) so that both the electrolytic copper foil 1 and the wiring pattern are formed. A double-sided wiring base plate 5 having a connected configuration is used, and a double-sided wiring base plate 4 'having no through-hole connection is used for the inner layer, and stacked and arranged as shown in cross section in FIG. And placed between hot plates of a hot press maintained at 170 ° C., and when the synthetic resin sheet 3 was in a thermoplastic state, the resin pressure was applied at 1 MPa, cooled and taken out to obtain a multilayer laminate. A through hole 6 is drilled at a predetermined position of the multilayer laminate by drilling, and the inner wall surface of the through hole 6 is selectively subjected to chemical copper plating for about 3 hours, and the inner wall surface of the through hole 6 has a thickness of about 3 hours. A 7 μm copper layer 7 was deposited. Then, a normal etching resist ink (trade name, PSR-4000H, sun ink KK) is screen-printed on the electrolytic copper foil 1 'on both sides of the multilayer laminate to mask the conductor pattern portion, After etching using copper as an etchant, the resist mask was peeled off to obtain a multilayer printed wiring board 8.

 前記製造した多層型印刷配線板8について、通常実施されている電気チェックを行ったところ、全ての接続に不良ないし信頼性などの問題が認められなかった。また、配線パターン間の接続の信頼性を評価するため、ホットオイルテストで(260℃のオイル中に10秒浸漬20℃のオイル中に20秒浸漬のサイクルを1サイクルとして)、500回行っても不良発生は認められず、従来の銅メッキ法による場合に比較しても、導電(配線)パターン層間の接続信頼性に問題はなかった。 電 気 An electrical check was conducted on the multilayer printed wiring board 8 manufactured as described above. As a result, no problems such as defects or reliability were found in all the connections. In addition, in order to evaluate the reliability of connection between the wiring patterns, the hot oil test was performed 500 times in a hot oil test (a cycle of immersion in 260 ° C. oil for 10 seconds and immersion in 20 ° C. oil for 20 seconds was one cycle). No defect was observed, and there was no problem in the connection reliability between the conductive (wiring) pattern layers as compared with the conventional copper plating method.

[実施例3]
 前記実施例1の場合と同様に、通常、印刷配線板の製造に使用されている厚さ35μmの電解銅箔を導電性金属層として、ポリマータイプの銀系の導電性ペースト(商品名,熱硬化性導電性ペーストMS−7、東芝ケミカルKK)を導電性ペーストとして、また、300μm厚みのステンレス板の所定位置に0.35mm径の穴を明けたメタルマスクをそれぞれ用意した。そして、前記電解銅箔に前記メタルマスクを位置決め配置して導電性ペーストを印刷し、この印刷された導電性ペーストが乾燥後、同一マスクを用い同一位置に再度印刷する方法を2回印刷をくりかえし、高さ200〜300μmの山型の導体バンプを形成(形設)した。
[Example 3]
As in the case of the first embodiment, a polymer-type silver-based conductive paste (trade name, heat-treated) is generally used as a conductive metal layer with a 35 μm-thick electrolytic copper foil used for manufacturing a printed wiring board. Curable conductive paste MS-7, Toshiba Chemical KK) was used as a conductive paste, and a metal mask having a hole of 0.35 mm diameter formed in a predetermined position on a stainless steel plate having a thickness of 300 μm was prepared. Then, the metal mask is positioned and arranged on the electrolytic copper foil, and the conductive paste is printed. After the printed conductive paste is dried, the printing is repeated twice by using the same mask and printing again at the same position. A mountain-shaped conductor bump having a height of 200 to 300 μm was formed (formed).

 次に、図4(a)に断面的に示すように、前記所定位置に導体バンプ群2を印刷形成した電解銅箔1上に厚さ約160μmの成樹脂系シート3、アルミ箔、ゴムシートを積層配置し(図示せず)、100℃に保持した熱ブレスの熱板の間に位置決め・配置し、ガラス点移転以上の温度、好ましくは合成樹脂系シート3の樹脂分が可塑状態になった温度で加圧し、冷却後、アルミ箔、ゴムシートを剥がしたところ、導体バンプ2の先端が対接する合成樹脂系シート3を突き抜け、貫挿・露出した。次に、電解銅箔1と合成樹脂系シート3の積層体の導体バンプ2の先端が貫挿・露出した側に電解銅箔1′を積層配置し、170℃で1時間、1MPaで加圧したところ、導体バンプ2の先端が電解銅箔1′と接合し、合成樹脂系シート3が硬化して両面電解銅箔1,1′間が貫通型に接続された導体配線部2aを有する両面銅張板を得た(図4(b))。 Next, as shown in cross section in FIG. 4 (a), a resin sheet 3, an aluminum foil, and a rubber sheet having a thickness of about 160 μm are formed on the electrolytic copper foil 1 on which the conductor bump groups 2 are formed by printing at the predetermined positions. Are stacked and arranged (not shown), and positioned and arranged between hot plates of a heat brace held at 100 ° C., at a temperature equal to or higher than the glass point transfer, preferably at a temperature at which the resin component of the synthetic resin-based sheet 3 is in a plastic state. After cooling, the aluminum foil and the rubber sheet were peeled off, and the ends of the conductor bumps 2 penetrated the synthetic resin-based sheet 3 that was in contact, and were inserted and exposed. Next, an electrolytic copper foil 1 'is laminated and arranged on the side of the laminated body of the electrolytic copper foil 1 and the synthetic resin sheet 3 where the tip of the conductor bump 2 is inserted and exposed, and pressed at 1 MPa at 170 ° C. for 1 hour. Then, the tip of the conductor bump 2 is joined to the electrolytic copper foil 1 ′, the synthetic resin sheet 3 is hardened, and the double-sided electrolytic copper foil 1, 1 ′ has a conductor wiring portion 2 a having a penetrating connection. A copper clad plate was obtained (FIG. 4 (b)).

 この両面銅張板の両面に、通常のエッチングレジストをラミネーターで張り付け、ネガ用フィルムを位置合わせし、露光・現像した後に銅箔1.1′をエッチングし,最後にエッチングレジストをアルカリ水溶液で剥離し導体パターンを形成し、両面型配線素板4を作成した(図4(c)参照)。前記両面型配線素板4について、テスターで各導体配線部2aを表裏から導通テストしたところ、全数が2mΩ以下の抵抗値であった。 A normal etching resist is stuck on both sides of this double-sided copper-clad board with a laminator, a negative film is aligned, exposed and developed, and then the copper foil 1.1 'is etched. Finally, the etching resist is peeled off with an alkaline aqueous solution. Then, a conductor pattern was formed, and a double-sided wiring base plate 4 was formed (see FIG. 4C). With respect to the double-sided wiring base plate 4, a continuity test was performed on each conductor wiring portion 2a from the front and back with a tester.

 前記に準じて形成した所定位置に、導体バンプ2群が印刷されたの電解銅箔1、厚さ約160μmの合成樹脂系シート3、アルミ箔およびゴムシートを積層配置(図示せず)し、100℃で7分間保持後、1MPaで3分間加圧してから、前記アルミ箔およびゴムシートを剥がして、導体バンプ2の先端が対接する合成樹脂系シート3を貫挿して成る部材を得た。この部材および両面型配線素板4を、図4(c)に断面的に示すごとく、位置決め・積層・配置し170℃に30分、1MPaで加圧保持し、導体バンプ2の先端が対接する両面型配線素根4の配線パターン面に接合して、図4(d)に断面的に示すような、両面銅張板を作成した。 Electrodeposited copper foil 1 on which conductive bumps 2 are printed, synthetic resin sheet 3 having a thickness of about 160 μm, aluminum foil and rubber sheet are stacked and arranged (not shown) at predetermined positions formed according to the above. After holding at 100 ° C. for 7 minutes, pressurizing at 1 MPa for 3 minutes, the aluminum foil and the rubber sheet were peeled off to obtain a member formed by inserting the synthetic resin sheet 3 with which the tip of the conductor bump 2 was in contact. This member and the double-sided wiring base plate 4 are positioned, laminated and arranged as shown in cross section in FIG. 4 (c), pressed at 170 ° C. for 30 minutes at 1 MPa, and the ends of the conductive bumps 2 come into contact with each other. By bonding to the wiring pattern surface of the double-sided wiring base 4, a double-sided copper clad board as shown in cross section in FIG.

 なお、この両面銅張板の構成においては、たとえばディスクリート部品ピンの挿入・実装予定位置の周りに、ピン挿入用スルーホール6を穿設したとき、そのスルーホール6内壁面に導体バンプ2の一部が露出するように4個の貫通型導体配線部2bが形成されている。つまり、部品ピンの挿入用スルーホール6を穿設する領域には、図5(b)に平面的に示すごとく、4個の貫通型導体配線部2b(図4(d)参照)を特に形設してある。 In the structure of the double-sided copper-clad board, for example, when a through hole 6 for inserting a pin is formed around a position where a discrete component pin is to be inserted and mounted, one conductor bump 2 is formed on the inner wall surface of the through hole 6. Four through-type conductor wiring portions 2b are formed so that the portions are exposed. In other words, as shown in a plan view in FIG. 5B, four through-type conductor wiring portions 2b (see FIG. 4D) are particularly formed in a region where the through holes 6 for inserting component pins are formed. It is set up.

 次に、前記両面銅張板の貫通型導体配線部2bのほぼ中心に、穴明け加工によりディスクリート部品ピン挿入用のスルーホール6を穿設した後、前記スルーホール6内壁面に化学銅メッキ処理を3時間施し、厚さ約7μmの銅層7を析出させた。次いで、前記両面銅張板の両面銅箔1,1面に、通常のエッチングレジストをラミネーターで張り付け、ネガ用フィルムを位置合わせし、前記の場合と問様に、エッチング処理を行って、図5(c)に断面的に、また図5(d)に平面的にそれぞれ示すように、貫通型導体配線部2bに接続した良質な銅層7から成る部品実装用スルーホール6およびパッドを備えた厚さ約550μmの4層薄型多層配線板8を作成した。 Next, a through hole 6 for inserting a discrete component pin is formed at a substantially center of the through-type conductor wiring portion 2b of the double-sided copper clad board by drilling, and a chemical copper plating process is performed on the inner wall surface of the through hole 6. For 3 hours to deposit a copper layer 7 having a thickness of about 7 μm. Next, a normal etching resist was stuck on the double-sided copper foils 1 and 1 of the double-sided copper-clad board with a laminator, the negative film was aligned, and, as in the above case, an etching treatment was performed. As shown in FIG. 5C in a sectional view and in a plan view in FIG. 5D, a component mounting through hole 6 made of a high-quality copper layer 7 and a pad connected to the through-type conductive wiring portion 2b are provided. A four-layer thin multilayer wiring board 8 having a thickness of about 550 μm was prepared.

 前記4層薄型多層配線板8のスルーホール6に、ディスクリート部品のピンを挿入し、半田付けを行い実装回路装置を構成したところ、信頼性の高いディスクリート部
品の接続実装が達成された。
When a pin of a discrete component was inserted into the through hole 6 of the four-layer thin multilayer wiring board 8 and soldered to form a mounting circuit device, highly reliable connection and mounting of the discrete component were achieved.

[実施例4]
 前記実施例3において、導体バンプ2を銀ペーストで形成する代りに、銅ペーストを用いた他は同様の条件で4層薄型多層配線板8を作成した。この実施例の場合は、4個の貫通型導体配線部2b中心に、ディスクリート部品ピン用のスルーホール6を穿設したとき、スルーホール内壁面に銅を含む導電体が露出するため、半田食われの心配もなくなり、そのままディスクリート部品ピンを挿入し、半田付けを行うことができた。
[Example 4]
In Example 3, a four-layer thin multilayer wiring board 8 was prepared under the same conditions except that a copper paste was used instead of forming the conductor bumps 2 with a silver paste. In the case of this embodiment, when a through-hole 6 for a discrete component pin is formed in the center of the four through-type conductive wiring portions 2b, the conductor containing copper is exposed on the inner wall surface of the through-hole, so that the solder corrosion is prevented. With no worries, I was able to insert the discrete component pins and solder them.

 なお、多層型配線板においては、ディスクリート部品を実装する場合、貫通孔(スルーホール)内壁面への化学銅メッキは必要不可欠であるが、前記実施例4の構成を採った場合は、半田付けのための化学銅メッキなど必要なく、また複数個の貫通型導体配線部2bにより表面配線パターン層と内層配線パターンとの電気的接続の信頼性も確保されるので、オールドライ工程による多層配線板の製造方法を確立できる。 In the case of mounting a discrete component in the multilayer wiring board, chemical copper plating on the inner wall surface of the through-hole (through hole) is indispensable. No need for chemical copper plating or the like, and the reliability of electrical connection between the surface wiring pattern layer and the inner wiring pattern is secured by the plurality of through-type conductive wiring portions 2b. Can be established.

本発明の第1の実施態様例の基本を模式的に示すもので、(a)は導体バンプを形設具備した導電性金属層、合成樹脂系シート、導電性金属層を位置決め・積層した状態の断面図、(b)は積層体を熱プレスで加圧一体化した状態の断面図、(c)は両導電性金属層をパターニングして得た両面型配線素板の断面図1A schematically shows the basics of a first embodiment of the present invention. FIG. 1A shows a state in which a conductive metal layer provided with a conductive bump, a synthetic resin sheet, and a conductive metal layer are positioned and laminated. , (B) is a cross-sectional view of a state in which the laminated body is pressed and integrated by a hot press, and (c) is a cross-sectional view of a double-sided wiring plate obtained by patterning both conductive metal layers. 本発明の第1の実施態様例を模式的に示すもので、(a)は両面型配線素板の両側に合成樹脂系シート、片面パターニングした銅張り積層素板の積層・配置状態の断面図、(b)は最終的に形成した多層型配線板の構造状態を示す断面図。1A is a schematic view of a first embodiment of the present invention, in which FIG. 1A is a cross-sectional view of a double-sided wiring base plate on both sides of a synthetic resin sheet and a single-side patterned copper-clad laminated base plate in a stacked and arranged state. (B) is a cross-sectional view showing the structural state of the finally formed multilayer wiring board. 本発明の第2の実施態様例を模式的に示すもので、(a)は貫通導電接続部を持たない両面型配線素板の両側に合成樹脂系シート、片面パターニングした貫通導電接続部付き板銅張り積層素板の積層・配置状態の断面図、(b)は最終的に形成した多層型配線板の構造状態を示す断面図。FIG. 4A schematically shows a second embodiment of the present invention, in which (a) shows a double-sided wiring base plate having no through conductive connecting portions, a synthetic resin sheet on both sides, and a plate with a through conductive connecting portion patterned on one side. Sectional drawing of the lamination and arrangement | positioning state of a copper-clad laminated base plate, (b) is sectional drawing which shows the structural state of the multilayer wiring board finally formed. 本発明の第2の実施態様例を模式的に示すもので、(a)は導体バンプを形設具備した導電性金属層、合成樹脂系シート、導電性金属層を位置決め・積層した状態の断面図、(b)は積層体を熱プレスで加圧一体化した後、両導電性金属層をパターニングして得た両面型配線素板の断面図、(c)は両面型配線素板、導電性金属層に形設した導体バンプが合成樹脂系シートを貫挿させたものを位置決め・積層した状態の断面図、(d)は積層体を熱プレスで加圧一体化した両面銅張り積層板の断面図。FIG. 4A schematically shows a second embodiment of the present invention, in which (a) is a cross-section of a state in which a conductive metal layer provided with a conductive bump, a synthetic resin sheet, and a conductive metal layer are positioned and laminated. FIG. 2B is a cross-sectional view of a double-sided wiring base plate obtained by patterning both conductive metal layers after pressure-integrating the laminate by a hot press, and FIG. Sectional view with positioning and lamination of conductive bumps formed on conductive metal layers with synthetic resin sheets inserted through them. (D) is a double-sided copper-clad laminate obtained by press-integrating the laminate by hot pressing FIG. 本発明の第2の実施態様例をさらに模式的に示すもので、(a)は両面銅張り積層板(図4(d)の両面をパターニングした状態の断面図、(b)は前記両面をパターニングした状態の平面図、(c)は部品ピン挿入用穴を穿設し、その内壁に銅メッキ層を形成した状態の断面図、(d)は前記内壁面に銅メッキ層を形成した状態の平面図。FIGS. 4A and 4B further schematically illustrate a second embodiment of the present invention, in which FIG. 4A is a cross-sectional view of a double-sided copper-clad laminate (FIG. 4D) in which both sides are patterned, and FIG. A plan view of a patterned state, (c) is a cross-sectional view of a state where a hole for inserting a component pin is formed, and a copper plating layer is formed on the inner wall, and (d) is a state where a copper plating layer is formed on the inner wall surface. FIG.

符号の説明Explanation of reference numerals

 1,1′…導電性金属層、2…導体バンプ、2a…導体接続部、2b…貫通型導体接続部、3…合成樹脂系シート、4…両面型配線素板、4′…導体接続部なしの両面型配線素板、5…片面パターニングした銅張り積層素板、6…スルーホール、7…銅メッキ層、8…多層型印刷配線板、9…パッド 1, 1 ': conductive metal layer, 2: conductor bump, 2a: conductor connection portion, 2b: penetrating conductor connection portion, 3: synthetic resin sheet, 4: double-sided wiring base plate, 4': conductor connection portion No double-sided wiring blank, 5: Single-sided patterned copper-clad laminate, 6: Through hole, 7: Copper plating layer, 8: Multi-layer printed wiring board, 9: Pad

Claims (4)

 無穴の合成樹脂系シートの第1の主面に所定位置に硬化性の導電性ペーストにより導体バンプ群を形設した第1の導電性金属層を対接させ、前記合成樹脂系シートの第2の主面に第2の導電性金属層を対接させて積層配置する工程と、
 前記積層体を加熱、加圧し、前記第1の導体金属層の導体バンプ群を、前記合成樹脂系シートの厚さ方向に貫挿させて前記第2の導電性金属層に当接、塑性変形させて第1および第2の導電性金属層が前記バンプ群によって電気的に接続された多層配線板を形成する工程と、
 前記多層配線板の所定位置に両面間に貫通するスルーホールを穿設する工程と、 前記スルーホール内壁面にメツキ法によって金属層を被着形成する工程と
を具備して成ることを特徴とする印刷配線板の製造方法。
A first conductive metal layer in which a conductive bump group is formed with a curable conductive paste at a predetermined position on the first main surface of the non-hole synthetic resin sheet is brought into contact with the first main surface of the synthetic resin sheet. A step of laminating and placing a second conductive metal layer in contact with the main surface of No. 2;
The laminate is heated and pressed, and the conductive bumps of the first conductive metal layer are penetrated in the thickness direction of the synthetic resin-based sheet to abut on the second conductive metal layer, resulting in plastic deformation. Forming a multilayer wiring board in which the first and second conductive metal layers are electrically connected by the bump group;
A step of forming a through-hole penetrating between both surfaces at a predetermined position of the multilayer wiring board; and a step of forming a metal layer on the inner wall surface of the through-hole by a plating method. Manufacturing method of printed wiring board.
 硬化性の導電性ペーストにより導体バンプを導電性金属層の主面の所定位置に形成する工程と、
 前記導電性金属層の主面に無穴の合成樹脂系シート主面を対向させて、配線パターンを内層に含む複数層からなる積層体を形成する工程と、
 前記積層体を加熱する工程と、前記合成樹脂系シートを加熱、加圧し、前記導体バンプを前記導電性金属層内の配線パターンと接続し、多層配線板を形成する工程と、
 前記多層配線板の所定位置を貫通し、リード端子を受け入れるためのスルーホールを形成する工程と、メッキ処理により、前記スルーホールの内壁に金属層を形成する工程と
を具備してなることを特徴とする印刷配線板の製造方法。
A step of forming a conductive bump at a predetermined position on the main surface of the conductive metal layer with a curable conductive paste,
A step of forming a laminate composed of a plurality of layers including a wiring pattern in an inner layer, with the main surface of the conductive metal layer facing the non-hole synthetic resin-based sheet main surface,
Heating the laminate, heating and pressurizing the synthetic resin sheet, connecting the conductive bumps to a wiring pattern in the conductive metal layer, and forming a multilayer wiring board;
Forming a through hole for penetrating a predetermined position of the multilayer wiring board and receiving a lead terminal; and forming a metal layer on an inner wall of the through hole by plating. Manufacturing method of a printed wiring board.
 前記合成樹脂系シートは繊維強化熱硬化性樹脂であることを特徴とする請求項1又は2に記載の印刷配線板の製造方法。 The method according to claim 1, wherein the synthetic resin sheet is a fiber-reinforced thermosetting resin.  合成樹脂系シートを介して配置された2層以上の導電性金属層を備えた印刷配線板において、
 合成樹脂系シートを貫通し、導電性金属層の前記合成樹脂系シートと接する面と同一の面で導電性金属層面と接続する導電性ペーストの硬化物からなる第1の層間接続部と、合成樹脂系シートと導電性金属層を貫通する穴を有する貫通型の第2の層間接続部とを有することを特徴とする印刷配線板。
In a printed wiring board having two or more conductive metal layers disposed via a synthetic resin-based sheet,
A first interlayer connection portion made of a cured conductive paste which penetrates the synthetic resin sheet and is connected to the conductive metal layer surface on the same surface as the surface of the conductive metal layer in contact with the synthetic resin sheet; A printed wiring board comprising: a resin-based sheet; and a penetrating second interlayer connection portion having a hole penetrating the conductive metal layer.
JP2003380309A 2003-11-10 2003-11-10 Printed wiring board manufacturing method and printed wiring board Expired - Lifetime JP3694708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380309A JP3694708B2 (en) 2003-11-10 2003-11-10 Printed wiring board manufacturing method and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003380309A JP3694708B2 (en) 2003-11-10 2003-11-10 Printed wiring board manufacturing method and printed wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002191249A Division JP3628313B2 (en) 2002-05-27 2002-05-27 Printed wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004072125A true JP2004072125A (en) 2004-03-04
JP3694708B2 JP3694708B2 (en) 2005-09-14

Family

ID=32025945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380309A Expired - Lifetime JP3694708B2 (en) 2003-11-10 2003-11-10 Printed wiring board manufacturing method and printed wiring board

Country Status (1)

Country Link
JP (1) JP3694708B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052799A1 (en) * 2005-11-07 2007-05-10 Matsushita Electric Industrial Co., Ltd. Multilayer printed wiring board and process for producing the same
JP2013239565A (en) * 2012-05-15 2013-11-28 Yamaichi Electronics Co Ltd Flexible wiring board with reinforcement plate and manufacturing method of the same
CN110769669A (en) * 2018-07-27 2020-02-07 广州方邦电子股份有限公司 Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film
CN110769664A (en) * 2018-07-27 2020-02-07 广州方邦电子股份有限公司 Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film
CN110769665A (en) * 2018-07-27 2020-02-07 广州方邦电子股份有限公司 Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052799A1 (en) * 2005-11-07 2007-05-10 Matsushita Electric Industrial Co., Ltd. Multilayer printed wiring board and process for producing the same
TWI392410B (en) * 2005-11-07 2013-04-01 Panasonic Corp Multilayer printed wiring board and manufacturing method thereof
JP2013239565A (en) * 2012-05-15 2013-11-28 Yamaichi Electronics Co Ltd Flexible wiring board with reinforcement plate and manufacturing method of the same
CN110769669A (en) * 2018-07-27 2020-02-07 广州方邦电子股份有限公司 Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film
CN110769664A (en) * 2018-07-27 2020-02-07 广州方邦电子股份有限公司 Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film
CN110769665A (en) * 2018-07-27 2020-02-07 广州方邦电子股份有限公司 Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film
CN110769665B (en) * 2018-07-27 2023-12-05 广州方邦电子股份有限公司 Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film
CN110769664B (en) * 2018-07-27 2024-02-06 广州方邦电子股份有限公司 Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film
CN110769669B (en) * 2018-07-27 2024-02-06 广州方邦电子股份有限公司 Electromagnetic shielding film, circuit board and preparation method of electromagnetic shielding film

Also Published As

Publication number Publication date
JP3694708B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
JP2006278774A (en) Double-sided wiring board, method for manufacturing the same and base substrate thereof
JP2006196785A (en) Printed-wiring board having built-in electronic component and manufacturing method thereof
JP2007129124A (en) Multilayer printed circuit board and method of manufacturing same
JPWO2004049772A1 (en) Circuit board, multilayer wiring board, method for manufacturing circuit board, and method for manufacturing multilayer wiring board
JPH1154934A (en) Multilayered printed wiring board and its manufacture
JP2010232249A (en) Multilayer printed wiring board and manufacturing method of the same
JPH08139450A (en) Manufacturing method of printed-wiring board
KR100704920B1 (en) Pcb and it&#39;s manufacturing method used bump board
JP3654982B2 (en) Manufacturing method of multilayer printed wiring board
JPH11204939A (en) Multilayer circuit board and manufacture thereof
JP3474894B2 (en) Printed wiring board and manufacturing method thereof
JPH0923067A (en) Multilayered printed wiring board and its manufacture
JP3167840B2 (en) Printed wiring board and method for manufacturing printed wiring board
JP3694708B2 (en) Printed wiring board manufacturing method and printed wiring board
JPH1070363A (en) Method for manufacturing printed wiring board
JP3474896B2 (en) Printed wiring board and manufacturing method thereof
JP4899409B2 (en) Multilayer printed wiring board and manufacturing method thereof
JPH08264939A (en) Manufacture of printed wiring board
JP3474897B2 (en) Printed wiring board and method of manufacturing the same
JP3628313B2 (en) Printed wiring board and manufacturing method thereof
JP2004311909A (en) Circuit board, multilayer wiring board, method for producing the circuit board and method for producing the multilayer wiring board
JP3549063B2 (en) Manufacturing method of printed wiring board
JPH06232558A (en) Manufacture of multilayer printed wiring board
JPH11289165A (en) Multilayer wiring board and method for manufacturing the same
JPH08125344A (en) Manufacture of printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20031204

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Effective date: 20041022

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A711 Notification of change in applicant

Effective date: 20050511

Free format text: JAPANESE INTERMEDIATE CODE: A711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110708

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8