JPH0435213B2 - - Google Patents
Info
- Publication number
- JPH0435213B2 JPH0435213B2 JP58040615A JP4061583A JPH0435213B2 JP H0435213 B2 JPH0435213 B2 JP H0435213B2 JP 58040615 A JP58040615 A JP 58040615A JP 4061583 A JP4061583 A JP 4061583A JP H0435213 B2 JPH0435213 B2 JP H0435213B2
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- carbon
- microscopic
- metal
- solvent metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 claims description 34
- 239000002184 metal Substances 0.000 claims description 34
- 239000010432 diamond Substances 0.000 claims description 32
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 28
- 229910003460 diamond Inorganic materials 0.000 claims description 28
- 229910052799 carbon Inorganic materials 0.000 claims description 24
- 239000002904 solvent Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 17
- 239000013078 crystal Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- 238000003786 synthesis reaction Methods 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 230000002194 synthesizing effect Effects 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 description 9
- 230000008018 melting Effects 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000006911 nucleation Effects 0.000 description 8
- 238000010899 nucleation Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/06—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
- B01J3/062—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/065—Composition of the material produced
- B01J2203/0655—Diamond
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0675—Structural or physico-chemical features of the materials processed
- B01J2203/068—Crystal growth
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【発明の詳細な説明】
本発明は非ダイヤモンド炭素(以下炭素とい
う)と溶媒金属より高温高圧下でダイヤモンドを
合成する方法に関し、特に良質のダイヤモンド結
晶で粒度が揃つたものを得ることを目的とする。
う)と溶媒金属より高温高圧下でダイヤモンドを
合成する方法に関し、特に良質のダイヤモンド結
晶で粒度が揃つたものを得ることを目的とする。
ダイヤモンドは主として砥粒として用いられる
が、その性能をよくするには結晶欠陥が少ないこ
と、外形的には自形性がよいことが要求され、さ
らに切削材等に使用する場合は特定の狭い粒度範
囲のものの需要が多い。
が、その性能をよくするには結晶欠陥が少ないこ
と、外形的には自形性がよいことが要求され、さ
らに切削材等に使用する場合は特定の狭い粒度範
囲のものの需要が多い。
良質のダイヤモンドを得るためにはダイヤモン
ドと炭素の相平衡線の近傍にて、ダイヤモンドの
核発生を極力抑え、その後の成長を円滑に行なう
方法が知られている。ダイヤモンドの核生成は溶
媒金属中へ溶解した炭素がダイヤモンドとして析
出するものであるが、この際1部は再結晶黒鉛と
して析出する。この現象は競合反応であり、黒鉛
と金属の接触面が一通り上記のダイヤモンド及び
再結晶黒鉛で覆われるとそこには新しい核生成は
起らないと云われている。
ドと炭素の相平衡線の近傍にて、ダイヤモンドの
核発生を極力抑え、その後の成長を円滑に行なう
方法が知られている。ダイヤモンドの核生成は溶
媒金属中へ溶解した炭素がダイヤモンドとして析
出するものであるが、この際1部は再結晶黒鉛と
して析出する。この現象は競合反応であり、黒鉛
と金属の接触面が一通り上記のダイヤモンド及び
再結晶黒鉛で覆われるとそこには新しい核生成は
起らないと云われている。
また核発生は反応の始つた2〜3分迄にほとん
ど終了し、成長速度も最初の2〜3分間に急激に
早くなり、その後ゆつくりと成長することが知ら
れている。
ど終了し、成長速度も最初の2〜3分間に急激に
早くなり、その後ゆつくりと成長することが知ら
れている。
以上のことから良質のダイヤモンドを得るため
には極めて狭い温度、圧力範囲に制御せねばなら
ず、仮にこの範囲に制御し得たとしても、核の数
まで制御することは到底不可能である。換言すれ
ば工業的に再現性良く、粒度の揃つたダイヤモン
ドを収率よく得ることは極めてむずかしい。
には極めて狭い温度、圧力範囲に制御せねばなら
ず、仮にこの範囲に制御し得たとしても、核の数
まで制御することは到底不可能である。換言すれ
ば工業的に再現性良く、粒度の揃つたダイヤモン
ドを収率よく得ることは極めてむずかしい。
本発明は種結晶ダイヤモンドを使用しない合成
系内の試料中に予じめ他の部分に比べ容易に核生
成を起す物質の微小体をそれらが大部分互いに接
触することなく規則正しく配置したものである。
この易核生成点が核生成を起す温度、圧力条件下
に一定時間曝されたとき、その点とその他の部分
とでは核生成のためのエネルギーに相当のギヤツ
プがあるため、工業的に条件をコントロールする
ことは極めて容易である。つまり前記した狭い温
度、圧力条件から多少はずれても、他の部分での
新しい核の発生は抑えられる。
系内の試料中に予じめ他の部分に比べ容易に核生
成を起す物質の微小体をそれらが大部分互いに接
触することなく規則正しく配置したものである。
この易核生成点が核生成を起す温度、圧力条件下
に一定時間曝されたとき、その点とその他の部分
とでは核生成のためのエネルギーに相当のギヤツ
プがあるため、工業的に条件をコントロールする
ことは極めて容易である。つまり前記した狭い温
度、圧力条件から多少はずれても、他の部分での
新しい核の発生は抑えられる。
またこの方法によれば核生成密度が予じめわか
つているので、その後の結晶成長に於ける各結晶
の成長速度(析出速度)を制御することが容易で
あり、良質のダイヤモンドが得られる。
つているので、その後の結晶成長に於ける各結晶
の成長速度(析出速度)を制御することが容易で
あり、良質のダイヤモンドが得られる。
ダイヤモンド成長においては析出速度が早過ぎ
ると結晶の内部に埋め残しや、不純物のとり込み
が多くなり、極端な場合は結晶としての自形を保
つことが不可能となり、強度の低い劣質なものし
か得られない。一方析出速度が遅過ぎると自形の
整つた完全結晶が得られるが、所望の大きさに成
長するまで時間がかかり過ぎ、実用的でない。
ると結晶の内部に埋め残しや、不純物のとり込み
が多くなり、極端な場合は結晶としての自形を保
つことが不可能となり、強度の低い劣質なものし
か得られない。一方析出速度が遅過ぎると自形の
整つた完全結晶が得られるが、所望の大きさに成
長するまで時間がかかり過ぎ、実用的でない。
本発明は良質のダイヤモンドを実用的な成長速
度で得る方法を提供するものである。
度で得る方法を提供するものである。
以下、本発明を詳しく説明する。
本発明においてダイヤモンド合成の試料は種結
晶ダイヤモンドを使用しないで、炭素、溶媒金
属、易核発生物質の微小体からなる。これらの配
置方法は第1に夫々の粉末を混合し、成形して用
いる方法である。この場合微小体がその大部分を
互いに接触しないようにするには試料中のその量
を所定値以下とし、できるだけ均一になるように
混合する。そして望ましくはその量は各微小体の
平均間隔(側面間)が100〜1000μmの範囲にな
るように定める。
晶ダイヤモンドを使用しないで、炭素、溶媒金
属、易核発生物質の微小体からなる。これらの配
置方法は第1に夫々の粉末を混合し、成形して用
いる方法である。この場合微小体がその大部分を
互いに接触しないようにするには試料中のその量
を所定値以下とし、できるだけ均一になるように
混合する。そして望ましくはその量は各微小体の
平均間隔(側面間)が100〜1000μmの範囲にな
るように定める。
配置の第2の方法はダイヤモンド合成における
いわゆる積層法を用いることである。溶媒金属と
炭素とを夫々薄板状に成形し、これらを交互に多
数積層させる方法である。この積層法を用いる場
合はこの両薄板の一方又は双方に配置する。また
両者の界面に介在させてもよい。最も望ましくは
薄板に規則的に小凹孔を穿ち、この中に微小体を
充填する方法である。凹孔はフオトエツチング、
機械加工等により、容易に等間隔で設けることが
できる。凹孔の間隔は100〜1000μm程度(側面
間)が好ましい。凹孔の直径は10〜350μm程度
が適する。
いわゆる積層法を用いることである。溶媒金属と
炭素とを夫々薄板状に成形し、これらを交互に多
数積層させる方法である。この積層法を用いる場
合はこの両薄板の一方又は双方に配置する。また
両者の界面に介在させてもよい。最も望ましくは
薄板に規則的に小凹孔を穿ち、この中に微小体を
充填する方法である。凹孔はフオトエツチング、
機械加工等により、容易に等間隔で設けることが
できる。凹孔の間隔は100〜1000μm程度(側面
間)が好ましい。凹孔の直径は10〜350μm程度
が適する。
溶媒金属にはFe、Co、Ni等の周期律表の第8
族の金属、Cr、Ta等ダイヤモンド合成で周知の
金属が用いられる。
族の金属、Cr、Ta等ダイヤモンド合成で周知の
金属が用いられる。
これら各物質の量的割合は溶媒金属100重量部
に対し、炭素30〜500重量部、微小体5重量部以
下が適当である。微小体の大きさは、その種類に
よつて異なるが、一般的には5〜350μmの範囲
で用いられる。
に対し、炭素30〜500重量部、微小体5重量部以
下が適当である。微小体の大きさは、その種類に
よつて異なるが、一般的には5〜350μmの範囲
で用いられる。
次に易核発生物質について説明する。
その第1は溶媒金属よりも融点の低い金属ある
いは合金である。この微小体を試料中に点在させ
る。微小体の金属は溶媒金属に対して相対的に融
点が低ければよいので、その組合せにおいては微
小体自体が溶媒金属の場合もあり得る。多量の溶
媒金属中、あるいは溶媒金属板の凹孔中にその金
属よりも融点の低い微小体を点在させ、昇温すれ
ば先ず微小体が溶融し、この部分に先に炭素が溶
解し、ダイヤモンドの核が生成する。その後は合
金化して1体化するが、そのときには既に核が適
度に生成分散しているので、新しい核の発生は抑
制される。
いは合金である。この微小体を試料中に点在させ
る。微小体の金属は溶媒金属に対して相対的に融
点が低ければよいので、その組合せにおいては微
小体自体が溶媒金属の場合もあり得る。多量の溶
媒金属中、あるいは溶媒金属板の凹孔中にその金
属よりも融点の低い微小体を点在させ、昇温すれ
ば先ず微小体が溶融し、この部分に先に炭素が溶
解し、ダイヤモンドの核が生成する。その後は合
金化して1体化するが、そのときには既に核が適
度に生成分散しているので、新しい核の発生は抑
制される。
従来、溶媒金属を合金化して用いることは一般
的であるが、本発明のように相対的に低融点のも
のを少量点在させることは試みられなかつた。
的であるが、本発明のように相対的に低融点のも
のを少量点在させることは試みられなかつた。
本発明において微小体物質は上記溶媒金属の
外、Mn、Si、Sn、Ge、Al、P、Ag、Cu、Au、
などを用いることができる。
外、Mn、Si、Sn、Ge、Al、P、Ag、Cu、Au、
などを用いることができる。
微小体物質の第2は炭素含有金属である。含有
形態は含浸、炭化物、固溶等で炭素が存在してい
るものである。この金属としてはFe、Cr、Ni、
Co、Mn、Si、Ge等がある。
形態は含浸、炭化物、固溶等で炭素が存在してい
るものである。この金属としてはFe、Cr、Ni、
Co、Mn、Si、Ge等がある。
微小体物質の第3は溶媒金属に溶解し易い炭素
である。炭素には溶媒金属に溶解し易いものとし
難いものがある。一般的には黒鉛化度の高いもの
が溶解性が良く、熱硬化性樹脂を炭化したような
炭素は溶解性が低い。本発明ではこの相対的に黒
鉛化度の高い炭素を前記第1の方法のように分散
させておく方法である。先に溶解したところにダ
イヤモンドの核が発生し、成長する。
である。炭素には溶媒金属に溶解し易いものとし
難いものがある。一般的には黒鉛化度の高いもの
が溶解性が良く、熱硬化性樹脂を炭化したような
炭素は溶解性が低い。本発明ではこの相対的に黒
鉛化度の高い炭素を前記第1の方法のように分散
させておく方法である。先に溶解したところにダ
イヤモンドの核が発生し、成長する。
その他微小体物質はダイヤモンド合成反応中に
先に溶解すればよいので、始めから低融点金属を
配置するのでなく、合成中に低融点合金が生成す
るものであつてもよい。これは2種の金属線で網
を構成し、その交点を微小体物質とするものであ
る。交点は合成中に合金化し、先に溶解する。こ
れらの金属網を炭素中あるいは炭素板と共に積層
配置すれば交点は立体的に規則正しく配置され
る。
先に溶解すればよいので、始めから低融点金属を
配置するのでなく、合成中に低融点合金が生成す
るものであつてもよい。これは2種の金属線で網
を構成し、その交点を微小体物質とするものであ
る。交点は合成中に合金化し、先に溶解する。こ
れらの金属網を炭素中あるいは炭素板と共に積層
配置すれば交点は立体的に規則正しく配置され
る。
さらに他の方法は炭素板あるいは溶媒金属板の
表面を多数の小孔を穿つた反応の低い物質で覆
う。そうすると小孔の部分が核生成し易い物質と
なる。例えば炭素板の表面をその炭素より金属に
対する溶解度の低い炭素で覆い、この後者の炭素
には望ましくは規則正しく小孔を穿つておく。こ
の小孔の部分で溶解し易い炭素が溶解し、その点
にダイヤモンドの核が発生する。また同様に溶媒
金属板を小孔を穿つた溶媒金属より融点の高い金
属で覆つてもよい。高融点金属としてはW、Ta、
Ti、Mo等を用いることができ、覆う方法はイオ
ンプレーテイング、薄板を付けるなどによる。
表面を多数の小孔を穿つた反応の低い物質で覆
う。そうすると小孔の部分が核生成し易い物質と
なる。例えば炭素板の表面をその炭素より金属に
対する溶解度の低い炭素で覆い、この後者の炭素
には望ましくは規則正しく小孔を穿つておく。こ
の小孔の部分で溶解し易い炭素が溶解し、その点
にダイヤモンドの核が発生する。また同様に溶媒
金属板を小孔を穿つた溶媒金属より融点の高い金
属で覆つてもよい。高融点金属としてはW、Ta、
Ti、Mo等を用いることができ、覆う方法はイオ
ンプレーテイング、薄板を付けるなどによる。
これらを用いたダイヤモンド合成は周知の方法
で行なうことができ、例えば温度は1300〜2000
℃、圧力は4万〜7万気圧で熱力学的にダイヤモ
ンド安定領域である。
で行なうことができ、例えば温度は1300〜2000
℃、圧力は4万〜7万気圧で熱力学的にダイヤモ
ンド安定領域である。
実施例
厚さ0.25mmの30Ni−70Feの円板の全面に直径
300μm、深さ240μmの凹孔を中心間の距離750μ
mで設けた。この中にFe−Mn合金粒子(Mn75
%)を充填した。粒子の平均直径は150μmであ
る。
300μm、深さ240μmの凹孔を中心間の距離750μ
mで設けた。この中にFe−Mn合金粒子(Mn75
%)を充填した。粒子の平均直径は150μmであ
る。
この円板と厚さ1.6mmの黒鉛円板とを交互に多
数積層し、超高圧装置に装填し、ダイヤモンド合
成を行なつた。温度、圧力は推定1450℃、5万3
千気圧である。保持時間は30分であつた。
数積層し、超高圧装置に装填し、ダイヤモンド合
成を行なつた。温度、圧力は推定1450℃、5万3
千気圧である。保持時間は30分であつた。
生成したダイヤモンドの大きさは大部分が250
〜350μmで自形性のよいものであつた。
〜350μmで自形性のよいものであつた。
Claims (1)
- 【特許請求の範囲】 1 種結晶ダイヤモンドを使用しないで、非ダイ
ヤモンド炭素及び溶媒金属より高温高圧下でダイ
ヤモンドを合成する方法において、合成系内にダ
イヤモンドの核の発生し易い物質の微小体をそれ
らが大部分互いに接触することなく平面的もしく
は立体的に規則正しく配置することを特徴とする
方法。 2 微小体を略等間隔に配置することを特徴とす
る特許請求の範囲第1項記載の方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58040615A JPS59169918A (ja) | 1983-03-14 | 1983-03-14 | ダイヤモンド合成法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58040615A JPS59169918A (ja) | 1983-03-14 | 1983-03-14 | ダイヤモンド合成法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59169918A JPS59169918A (ja) | 1984-09-26 |
JPH0435213B2 true JPH0435213B2 (ja) | 1992-06-10 |
Family
ID=12585428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58040615A Granted JPS59169918A (ja) | 1983-03-14 | 1983-03-14 | ダイヤモンド合成法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59169918A (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0782996B2 (ja) * | 1986-03-28 | 1995-09-06 | キヤノン株式会社 | 結晶の形成方法 |
JP2670442B2 (ja) * | 1986-03-31 | 1997-10-29 | キヤノン株式会社 | 結晶の形成方法 |
JPS6427630A (en) * | 1987-07-21 | 1989-01-30 | Matsumoto Yushi Seiyaku Kk | Preparation of diamond |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4832518A (ja) * | 1971-08-30 | 1973-04-28 | ||
JPS5288289A (en) * | 1976-01-16 | 1977-07-23 | Gen Electric | Method and apparatus for making diamonds |
JPS5678410A (en) * | 1979-11-26 | 1981-06-27 | Sumitomo Electric Ind Ltd | Synthesis of diamond |
JPS59164605A (ja) * | 1983-03-09 | 1984-09-17 | Showa Denko Kk | ダイヤモンド合成法 |
-
1983
- 1983-03-14 JP JP58040615A patent/JPS59169918A/ja active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4832518A (ja) * | 1971-08-30 | 1973-04-28 | ||
JPS5288289A (en) * | 1976-01-16 | 1977-07-23 | Gen Electric | Method and apparatus for making diamonds |
JPS5678410A (en) * | 1979-11-26 | 1981-06-27 | Sumitomo Electric Ind Ltd | Synthesis of diamond |
JPS59164605A (ja) * | 1983-03-09 | 1984-09-17 | Showa Denko Kk | ダイヤモンド合成法 |
Also Published As
Publication number | Publication date |
---|---|
JPS59169918A (ja) | 1984-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4547257A (en) | Method for growing diamond crystals | |
US7323049B2 (en) | High pressure superabrasive particle synthesis | |
US7404857B2 (en) | Superabrasive particle synthesis with controlled placement of crystalline seeds | |
US4089933A (en) | Method of producing polycrystalline diamond aggregates | |
US3871840A (en) | Abrasive particles encapsulated with a metal envelope of allotriomorphic dentrites | |
US3258817A (en) | Method of preparing composite hard metal material with metallic binder | |
KR100503542B1 (ko) | 다이아몬드 성장방법 | |
EP0975423A1 (en) | Sintering process for diamond and diamond growth | |
JPH0435213B2 (ja) | ||
JP4216499B2 (ja) | ダイヤモンドクラスターの成長 | |
JP4190196B2 (ja) | ダイヤモンドの合成方法 | |
JPS58161995A (ja) | ダイヤモンドの合成方法 | |
JPH0433489B2 (ja) | ||
JPH052369B2 (ja) | ||
JPS6357099B2 (ja) | ||
Wakatsuki | Formation and Growth of Diamond-For Understanding and Better Control of The Process | |
JP2932300B2 (ja) | ダイヤモンド合成法 | |
JPH06238154A (ja) | ダイヤモンドの合成方法 | |
JP2585349B2 (ja) | ダイヤモンドの合成方法 | |
JPH0693994B2 (ja) | ダイヤモンドの合成法 | |
JPS60145958A (ja) | 窒化硼素の合成方法 | |
JPH05329356A (ja) | ダイヤモンド単結晶の合成方法 | |
JPS6317492B2 (ja) | ||
JPS59164608A (ja) | ダイヤモンド合成法 | |
CN114086252A (zh) | 一种金刚石团簇及其制备方法 |