JPH04351925A - 電磁流量計 - Google Patents

電磁流量計

Info

Publication number
JPH04351925A
JPH04351925A JP3127065A JP12706591A JPH04351925A JP H04351925 A JPH04351925 A JP H04351925A JP 3127065 A JP3127065 A JP 3127065A JP 12706591 A JP12706591 A JP 12706591A JP H04351925 A JPH04351925 A JP H04351925A
Authority
JP
Japan
Prior art keywords
tube
electrode
electromagnetic flowmeter
measuring tube
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3127065A
Other languages
English (en)
Other versions
JP2931931B2 (ja
Inventor
Masatsugu Arai
雅嗣 荒井
Akiomi Kono
顕臣 河野
Kazuaki Yokoi
和明 横井
▲吉▼冨 雄二
Yuji Yoshitomi
Yutaka Sakurai
櫻居 裕
Tamio Ishihara
石原 民雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3127065A priority Critical patent/JP2931931B2/ja
Priority to US07/890,245 priority patent/US5307687A/en
Priority to DE4217714A priority patent/DE4217714C2/de
Publication of JPH04351925A publication Critical patent/JPH04351925A/ja
Application granted granted Critical
Publication of JP2931931B2 publication Critical patent/JP2931931B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/584Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters constructions of electrodes, accessories therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、測定管と、この測定管
に形成した電極と、この電極の周囲に配置した磁気発生
部と、前記測定管、電極及び磁気発生部を収納するケー
スとを備えた電磁流量計に係り、特に耐熱衝撃性に優れ
た測定管の形状及び気密性に優れた電極部の構造に関す
る。
【0002】
【従来の技術】従来の電磁流量計の測定管は、雑誌「計
測と制御,Vol.29,No.9」の第27頁から第
34頁において論じられているように、ステンレス鋼な
どで製作された測定管の内周面を天然ゴム、合成ゴムテ
フロン系材料などの絶縁ライニングで被覆したものであ
る。また、最近では、耐熱性、耐食性及び耐摩耗性を向
上させるために、非導電性セラミックスであるAl2O
3を用いた測定管も広く利用されている。ステンレス鋼
から成る測定管では、電極を測定管に設けた孔に接着剤
を用いて取付け、気密性を保持していた。また、非導電
性材料であるAl2O3を用いてなる電磁流量計の電極
としては、Al2O3の焼結温度に対して十分な耐熱性
を持ち、かつ、耐食性がある白金Ptが用いられている
。この電極を測定管に気密性を持たせて取り付ける方法
としては、特開昭58−501552号公報に記載のよ
うに、未焼結のAl2O3測定管に白金と同じ直径の孔
を形成して前記白金電極を測定管に挿入した後、一体焼
結したものがある。
【0003】
【発明が解決しようとする課題】上記従来技術の電磁流
量計は、測定管の内部流体によって生じる測定管内外面
の温度差を低減する配慮が充分ではなかった。そのため
セラミック測定管においては、測定管に過大な熱応力が
発生して割れを生じてしまうおそれがあった。従って、
大きな熱負荷が加わるプラントには用いられていなかっ
た。また、劇物等を使用するプラントにおいては、信頼
性の点から使用出来なかった。
【0004】一方、ステンレス鋼から成る測定管におい
ては、電極を測定管に接着剤で取り付けていたので、長
期間の気密性を保持することは出来なかった。セラミッ
クから成る測定管においては、電極を焼結時の収縮力で
締め付けていたため、セラミック測定管の電極取付部に
過大な残留応力が生じ、セラミック測定管の強度が低下
する問題があった。また、測定管と電極の境界面に欠陥
があれば、気密性が低下する問題があった。さらに、本
電磁流量計をヒートサイクルが加わる環境で使用すると
、電極の締め付け力が低下して長期間の気密性を保持す
ることができなくなる恐れがあった。。
【0005】本発明の目的は、内部流体によって生じる
熱応力を最小にした測定管を備え、信頼性の高い電磁流
量計を提供するにある。さらに、気密性に優れた測定管
と電極の取付け構造を備えた電磁流量計を提供するにあ
る。
【0006】
【課題を解決するための手段】上記目的を達成するため
に、本発明では、内部に被測定流体が流れる測定管の肉
厚tと平均半径Rとの比t/Rが、管内流体(被測定流
体)の圧力によって測定管に生ずる応力と前記管内流体
によって測定管に生ずる熱応力を組み合わせた応力が測
定管材料の許容応力を超えない値となる範囲に選定され
る。このt/Rは、0.1〜0.2の範囲に選定される
のが好ましい。
【0007】さらに、測定管の両端部のフランジの高さ
hは、該測定管材質がAl2O3の場合該測定管の肉厚
t以下、該測定管材質がSi3N4の場合3tを超えな
い値に選定される。
【0008】また、測定管の材質を耐熱衝撃性に優れた
Si3N4又はエンジニアリングプラスチックにするこ
とにより大きな熱応力が許容され、信頼性が向上する。
【0009】さらに、測定管内外面の温度差に起因する
熱応力は、測定管の外周もしくは測定管の壁面肉厚内に
ヒータを配置して測定管を加熱することによっても緩和
される。
【0010】一方、電極部の高気密化は、測定管の壁面
に設けた貫通孔にNi又はNiを主成分とする合金の電
極を圧入、接合又はろう付することにより達成される。
【0011】
【作用】本発明によれば、測定管の肉厚tと平均半径R
との比t/Rが、該測定管内を流れる流体の圧力によっ
て該測定管に生ずる応力と前記流体によって該測定管に
生ずる熱応力を組み合わせた応力が許容応力以下になる
ように選定されるので、測定管は管内流体の圧力に対し
て十分な剛性を有し、かつ、前記流体によって生じる測
定管内外面の温度差は小さくなり、過大な熱応力が発生
しないので、測定管の強度信頼性が向上する。
【0012】さらに、測定管のフランジの高さhを、A
l2O3の場合t以下、Si3N4の場合3tを超えな
い値とすることにより、前記フランジ部に過大な熱応力
が発生しないので、測定管の強度信頼性が向上する。
【0013】また、測定管の材質を耐熱衝撃性に優れた
Si3N4又はエンジニアリングプラスチックにするこ
とにより許容できる熱負荷が大きくなるので、温度変化
の大きい流体に対する測定管の強度信頼性が向上し、高
温流体の電磁流量計として使用できる。
【0014】さらに、測定管の外周もしくは管壁肉厚内
に配置されたヒータで管壁を加熱することにより、高温
の流体が急激に流れる場合でも、測定管内外面の温度差
が低減され、熱応力が低減される。そのため温度変化の
大きい流体に対する測定管の強度信頼性が向上し、高温
の流体を使用するプラントにおいての使用が可能となる
【0015】一方、測定管の壁面に設けた貫通孔にNi
又はNiを主成分とする合金の電極を圧入又は接合、ろ
う付することにより、両者は強固に固着されるので気密
性に優れた電極部を構成できる。また、接合及びろう付
することにより測定管に過大な応力が発生することがな
い。
【0016】
【実施例】以下、本発明の実施例を図1〜図5及び表1
を用いて詳細に説明する。
【0017】図1は本発明の第1の実施例である電磁流
量計の斜視図を、図2はその断面図である。本実施例の
電磁流量計は、内部に流体が流れるほぼ円筒形の測定管
1と、この測定管1の側面に形成された開口部から管内
にその先端を露出させた一対の電極3と、この電極の周
囲に配置された磁気発生部である励磁コイル2と、該励
磁コイル2をおおうコア21と、これら測定管1,電極
3,励磁コイル2及びコア21とを収納するケース4と
、電極3で検知した信号を変換器6へ伝える端子箱5と
を含んで構成されている。磁気発生部である励磁コイル
2は前記流体に磁界を与え、前記一対の電極3は励磁コ
イル2で形成された磁界内を通る流体の両端に発生する
起電力を検知する。
【0018】測定管1はSi3N4から成り、該測定管
1の両端部外周には高さhのフランジ25が環状に一体
に形成されていて、その軸方向外側の端面は測定管1の
肉厚tの部分の軸方向外側の端面とつらいちの面をなし
ている。該つらいちの面は、測定管1の長手方向中心軸
と垂直になっている。
【0019】測定管1は、肉厚tと、主要外径Dと内径
dとの平均直径Drの1/2に相当する平均半径Rの比
t/Rが0.1から0.2の範囲になるように設計され
ている。また、前記フランジの高さhは、2tとしてあ
る。なお、平均直径Dr、平均半径R及び肉厚tの関係
を次に示す。
【0020】Dr=(D+d)/2 R=Dr/2 t=(D−d)/2 また、図1,図2には記載されていないが、測定管1の
外周にはヒータが配置されており、測定管1を該測定管
内部にながれる流体の温度に予熱することが可能になっ
ている。
【0021】図5に電極3の取付法を示す。本実施例で
は、測定管1の長手方向(軸方向)中央部に直径1.5
5mmの貫通孔が形成されている。厚さ20μmのNi
−Pメッキ7を表面に施した直径1.55mmのステン
レス鋼(SUS 316)から成る電極3が、その先端
が測定管1の内周面に露出するように前記貫通孔に挿入
され、真空度10のマイナス3乗Pa の炉内で900
℃まで加熱されて両者が接合されている。この接合後に
おける気体の漏れ量は、Heリークディテクタの検出精
度(10のマイナス10乗Torr・l/s)以下のレ
ベルであり、非常に高い気密性が得られた。さらに、電
極3を接合した測定管1を用いて、20℃から180℃
の温度変化を交互に100回加える熱サイクル試験がお
こなわれたが、気密性は低下しなかった。
【0022】図2は、上記構成の電磁流量計がプロセス
配管24に組み込まれた状態を示し、その軸方向両端面
がガスケット20及びアースリング22を介してプロセ
ス配管24のフランジ26に接しており、該フランジ2
6とボルト23により結合されている。
【0023】前記肉厚tと平均半径Rとの比は、FEM
解析及び測定管1の応力測定から決定された値である。 この根拠を、横軸にt/R,縦軸に測定管に生ずる応力
σをとった図3を用いて説明する。図3の曲線31は、
内径dが50mm及び75mmであるAl2O3の測定
管1のt/Rと、該測定管1に内圧力0.4kgf/(
平方ミリメートル)が加わった時に該測定管に発生する
周方向応力の関係を示す。また曲線32Aは内径dが5
0mmの測定管に、曲線32Bは内径dが75mmの測
定管1内に、それぞれ温度が20℃のとき、圧力0.4
kgf/(平方ミリメートル)、温度180℃の流体が
2m/sの速度で流れた場合の非定常状態における軸方
向、周方向の熱応力を示している。図からt/Rが0.
2以上になると測定管1の軸方向及び周方向の熱応力が
急激に増加していることがわかる。また、t/Rが0.
1以下になると内圧による周方向応力が急激に大きくな
る。本実施例では、測定管1のt/Rが0.2以上にな
ると測定管1が熱応力で割れ、0.1以下になると内圧
によって破壊した。しかし、測定管1のt/Rが0.1
〜0.2の範囲であれば測定管1に割れは発生せず、安
定した計測を行なうことができた。同様に、内径dが1
00mmであり、t/Rが0.1であるAl2O3の測
定管1を用いて実験を行った結果、測定管1に割れは発
生せず安定した計測を行うことができた。従って、本実
施例の電磁流量計を用いることにより強度信頼性が著し
く向上した。
【0024】図4は本発明の第2の実施例を示す。曲線
41は直径D=60mm、肉厚t=5mm及び直径D=
80mm、肉厚t=6.5mmのAl2O3から成る測
定管1のフランジ高さhと正規化応力(熱応力/破壊応
力)Kの関係を、曲線42は直径D=60mm、肉厚t
=5mm及び直径D=80mm、肉厚t=6.5mmの
Si3N4から成る測定管1のフランジ高さhと正規化
応力(熱応力/破壊応力)Kの関係を、それぞれ示して
いる。なお、本図は20℃の測定管1内に圧力0.4k
gf/(平方ミリメートル)、温度180℃の流体が2
m/Sの速度で流れた場合の非定常状態におけるFEM
解析から算出した値を示している。曲線41,42は、
測定管の材質が同じであれば径や肉厚がある程度異なっ
ても、肉厚tの倍数で表示された測定管のフランジ高さ
hと正規化応力Kの関係は実質的に同じであることを表
している。図から、Al2O3から成る測定管1のフラ
ンジ高さhがt以下のとき破壊しないことがわかる。ま
た、Si3N4から成る測定管1のフランジ高さhが3
t以下のとき破壊しないことがわかる。本実施例では、
Al2O3から成る測定管1のフランジ高さhがt以上
のとき熱応力で割れ、t以下になると破壊しなかった。 また、Si3N4から成る測定管1においても、フラン
ジ高さhが3t以上のとき熱応力で割れ、3t以下にな
ると破壊しなかった。従って、Al2O3から成る測定
管1のフランジ高さhがt以下、また、Si3N4から
成る測定管1のフランジ高さhが2t以下のとき、電磁
流量計の強度信頼性が著しく向上して安定した計測を行
うことができる。
【0025】次に第3の実施例として、測定管1がSi
3N4から成る電磁流量計を用いて耐熱衝撃性の実験を
行った結果を説明する。本実施例で用いられた測定管1
は、直径D=60mm、肉厚t=5mmであり、t/R
が0.18となっている。このSi3N4から成る測定
管1が均一に220℃まで加熱された後、その内部に2
0℃の水が流された。このような実験を行った測定管1
の全表面を観察した結果、測定管1に割れなどは生じて
いなかった。しかし、測定管1がAl2O3から成る同
形状の測定管1を用いて同様な実験を行った結果、測定
管1に割れを生じた。これは表1に示すように、Al2
O3に比べSi3N4の線膨張係数及び縦弾性係数が小
さいために熱応力が小さくなり、かつ、曲げ強度が大き
いためにと考えられる。
【0026】
【表1】
【0027】従って、測定管1に生じる熱応力が小さく
なるような特性を有し、かつ、材料強度が大きいSi3
N4で測定管を形成することにより、信頼性の高い電磁
流量計を提供することができる。また、同様にZrO2
やエンジニアリングプラスチックを用いて、測定管1を
形成しても同じような効果が得られる。
【0028】次に説明する第4の実施例においては、S
i3N4から成る第3の実施例と同形状の測定管1が用
いられており、該測定管の中央部に直径1.55mmの
貫通孔が形成されている。直径1.5mmのNi鋼から
成る電極3が測定管1の前記貫通孔に形成され、真空度
10のマイナス3乗Pa の炉内で850℃、10分加
熱されて両者が接合された。この接合後における気体の
漏れ量は、Heリークディテクタの検出精度(10のマ
イナス10乗Torr・l/s)以下のレベルであり、
非常に高い気密性が得られた。なお、電極3の耐食性を
向上するために、流体と接する前記電極部分にコーティ
ングを施して使用することも可能である。また、電極3
を2つに分割し、流体と接しない部分を第1の実施例も
しくは次に述べる第5の実施例の手法で測定管と接合し
、流体と接する部分に耐食性の優れた導電性材料を圧入
して使用することもできる。なお、本実施例では、電極
の材料としてNi鋼が用いられているが、ニッケル,N
i鋼以外のニッケル合金及びニッケルめっきした金属材
料でもよい。 また、電極と測定管をろう付けにより接合してもよい。 ろう付けの場合は、開口部の接合面に予め金属層を溶射
,蒸着等の方法で形成しておくとよい。
【0029】第5の実施例においてもSi3N4から成
る実施例3と同形状の測定管1が用いられており、該測
定管の中央部に直径1.55mmの貫通孔が形成されて
いる。前記貫通孔に導電性サイアロンの粉末が圧入され
た後、1750℃の窒素雰囲気内で加熱されて両者が一
体焼結された。この接合後における気体の漏れ量は、H
eリーク試験機の検出精度以下のレベルであり、非常に
高い気密性が得られた。
【0030】上記各実施例では、電極3はその先端が測
定管内部に露出しているが、測定管管壁の電極取付け部
の穴を貫通させずにめくら穴とし、電極先端を測定管の
管壁肉厚内に配置するようにしてもよい。さらに、測定
管管壁の電極取付け部には穴を設けず、電極を測定管管
壁の外周面上に配置することも可能である。このように
電極取付け部の測定管管壁に貫通孔を設けることなく電
極が配置されると、電極部からの漏れ発生の可能性が減
少し、電磁流量計の信頼性が向上する。
【0031】図6に示す第6の実施例は、Si3N4か
ら成る測定管1(直径D=60mm 肉厚t=5mmで
t/Rが0.18)と、第1の実施例と同じ手法で測定
管に接合された電極3とを含んでなる電磁流量計10を
設置した食品プラントの一部を示す。本プラントは、水
溶液である食品を収容する槽8と、該槽8に接続されて
食品を管路13に送りだすポンプ9と、前記管路13に
介装されて該管路13を流れる食品の量を検出する電磁
流量計10と、前記ポンプ9と電磁流量計10を結ぶ管
路に接続して配置され該管路に殺菌用の蒸気を供給する
ボイラ12と、前記管路13及び該管路13に接続され
た管路に介装されたバルブ11とを含んで構成されてい
る。本実施例の電磁流量計10には、常温の流体である
食品と圧力0.4kgf/(平方ミリメートル)、温度
180℃のの殺菌用の蒸気が交互に流入する。このよう
な環境で長期間使用しても測定管1に割れは発生せず、
電極部の気密性も低下することがなく、高精度に流量を
計測することができた。本発明にかかる電磁流量計は、
食品プラント以外に、化学プラントや上下水道プラント
などにおける流量計測にも適用可能である。
【0032】上記各実施例では、測定管の材質としてA
l2O3やSi3N4が用いられているが、SiC,ジ
ルコニア,サイアロンなどをもちいてもよい。
【0033】また、前記第1の実施例では、測定管1の
外周にヒータが配置されているが、このヒータを測定管
1焼結時に、該測定管1の管壁内に配置し、測定管1と
一体に焼結することもできる。ヒータを管壁内に配置す
れば、ヒータと励磁コイルを配置する際の物理的干渉を
さけるのが容易になる。
【0034】
【発明の効果】本発明によれば、測定管内外面の温度差
に起因して発生する熱応力が低減され、測定管の強度信
頼性が向上するので、信頼性の高い電磁流量計が得られ
る。さらに、測定管が熱衝撃性に優れた材料で形成され
るので、大きな熱負荷が加わるプラントにおいても使用
可能なすることができる。
【0035】また、本発明によれば、電極が圧入又は接
合またはろう付により測定管に結合されるので、測定管
に過大な応力を与えることなく電極部の気密性を保持す
ることが可能となり、測定管の強度信頼性が向上する。
【図面の簡単な説明】
【図1】本発明の第1の実施例の電磁流量計の斜視図で
ある。
【図2】本発明の第1の実施例の測定管の断面図である
【図3】測定管のt/Rと応力の関係を示すグラフであ
る。
【図4】測定管のフランジ高さhと正規化応力の関係を
示すグラフである。
【図5】本発明の第1の実施例の電極の取付状態を示す
断面図である。
【図6】本発明の実施例である食品プラントの部分を示
す配管図である。
【符号の説明】
1  測定管 2  励磁コイル 3  電極 4  ケース 5  端子箱 6  変換器 7  Ni−Pメッキ 8  槽 9  ポンプ 10  電磁流量計 11  バルブ 12  ボイラ 13  管路 20  ガスケット 21  コア 22  アースリング 23  ボルト 24  プロセス配管 25  フランジ 26  プロセス配管のフランジ 21  コア

Claims (22)

    【特許請求の範囲】
  1. 【請求項1】  セラミックからなる測定管と、この測
    定管の側面に形成された開口部から管内にその先端を露
    出させた電極と、この電極の周囲に位置させた磁気発生
    部と、これら測定管、電極及び磁気発生部を収納するケ
    ースとを備え、前記測定管内を流れる流体の量を測定す
    る電磁流量計において、前記測定管の肉厚tと平均半径
    Rとの比t/Rが、前記測定管内を流れる流体により該
    測定管に生ずる応力が材料許容応力を超えない値となる
    範囲に設定されていることを特徴とする電磁流量計。
  2. 【請求項2】  セラミックスからなる測定管と、この
    測定管の側面に形成された開口部から管内にその先端を
    露出させた電極と、この電極の周囲に位置させた磁気発
    生部と、これら測定管、電極及び磁気発生部を収納する
    ケースとを備え、前記測定管内を流れる流体の量を測定
    する電磁流量計において、前記測定管の肉厚tと平均半
    径Rとの比t/Rが0.1〜0.2の範囲にあることを
    特徴とする電磁流量計。
  3. 【請求項3】  セラミックスからなる測定管と、この
    測定管の肉厚内にその先端が位置する電極と、この電極
    の周囲に位置させた磁気発生部と、これら測定管、電極
    及び磁気発生部を収納するケースとを備え、前記測定管
    内を流れる流体の量を測定する電磁流量計において、前
    記測定管の肉厚tと平均半径Rとの比t/Rが0.1〜
    0.2の範囲にあることを特徴とする電磁流量計。
  4. 【請求項4】  測定管と、この測定管の表面に形成さ
    れた電極と、この電極の周囲に位置させた磁気発生部と
    、これら測定管、電極及び磁気発生部を収納するケース
    とを備え、前記測定管内を流れる流体の量を測定する電
    磁流量計において、前記測定管の肉厚tと平均半径Rと
    の比t/Rが0.1〜0.2の範囲にあることを特徴と
    する電磁流量計。
  5. 【請求項5】  電極は測定管の軸方向のほぼ中央に位
    置することを特徴とする請求項1乃至4のうちのいずれ
    かに記載の電磁流量計。
  6. 【請求項6】  磁気発生部はコイル形状となっている
    ことを特徴とする請求項1乃至5のうちのいずれかに記
    載の電磁流量計。
  7. 【請求項7】  測定管がAl2O3から成り、そのフ
    ランジ高さhは該測定管の肉厚t以下であることを特徴
    とする請求項1乃至6のうちのいずれかに記載の電磁流
    量計。
  8. 【請求項8】  測定管がSi3N4から成り、そのフ
    ランジ高さhは該測定管の肉厚tの3倍を超えない値と
    したことを特徴とする請求項1乃至6のうちのいずれか
    に記載の電磁流量計。
  9. 【請求項9】  セラミックスからなる測定管と、この
    測定管の側面に形成された開口部から管内にその先端を
    露出させた電極と、この電極の周囲に位置させた磁気発
    生部と、これら測定管,電極及び磁気発生部を収納する
    ケースとを備え、前記測定管内を流れる流体の量を測定
    する電磁流量計において、前記電極はNi又はNiを主
    成分とする合金で形成されていることを特徴とする電磁
    流量計。
  10. 【請求項10】  セラミックスからなる測定管と、こ
    の測定管の側面に形成された開口部から管内にその先端
    を露出させた電極と、この電極の周囲に位置させた磁気
    発生部と、これら測定管,電極及び磁気発生部を収納す
    るケースとを備え、前記測定管内を流れる流体の量を測
    定する電磁流量計において、電極はその表面にNiメッ
    キを施されたものであることを特徴とする電磁流量計。
  11. 【請求項11】  電極は測定管の側面に形成された開
    口部に圧入されたものであることを特徴とする請求項9
    もしくは10に記載の電磁流量計。
  12. 【請求項12】  電極は測定管の側面に形成された開
    口部に接合されていることを特徴とする請求項9もしく
    は10に記載の電磁流量計。
  13. 【請求項13】  電極は測定管の側面に形成された開
    口部にろう付されていることを特徴とする請求項9もし
    くは10に記載の電磁流量計。
  14. 【請求項14】  セラミックからなる測定管と、この
    測定管の側面に形成された開口部から管内にその先端を
    露出させた電極と、この電極の周囲に位置させた磁気発
    生部と、これら測定管,電極及び磁気発生部を収納する
    ケースとを備え、前記測定管内を流れる流体の量を測定
    する電磁流量計において、電極が導電性サイアロンから
    なり、前記セラミック測定管と一体焼結して形成されて
    いることを特徴とする電磁流量計。
  15. 【請求項15】  測定管の外部にヒータが付設されて
    いることを特徴とする請求項1〜14のいずれかに記載
    の電磁流量計。
  16. 【請求項16】  測定管の管壁内部にヒータが一体焼
    結されていることを特徴とする請求項1〜14のいずれ
    かに記載の電磁流量計。
  17. 【請求項17】  測定管の材質がSi3N4であるこ
    とを特徴とする請求項1〜14のいずれかに記載の電磁
    流量計。
  18. 【請求項18】  測定管の材質がエンジニアリングプ
    ラスチックであることを特徴とする請求項1〜14のい
    ずれかに記載の電磁流量計。
  19. 【請求項19】  水溶液を貯溜する槽と、該槽に接続
    された配管系と、該配管系に介装され前記水溶液を前記
    配管系に送給するポンプとを備えているプラントにおい
    て、前記配管系の途中に請求項1〜17のいずれかに記
    載の電磁流量計が配置されていることを特徴とするプラ
    ント。
  20. 【請求項20】  プラントが上下水道であることを特
    徴とする請求項19に記載のプラント。
  21. 【請求項21】  プラントが化学プラントであること
    を特徴とする請求項19に記載のプラント。
  22. 【請求項22】  プラントが食品プラントであること
    を特徴とする請求項19に記載のプラント。
JP3127065A 1991-05-30 1991-05-30 電磁流量計 Expired - Lifetime JP2931931B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3127065A JP2931931B2 (ja) 1991-05-30 1991-05-30 電磁流量計
US07/890,245 US5307687A (en) 1991-05-30 1992-05-29 Electromagnetic flowmeter
DE4217714A DE4217714C2 (de) 1991-05-30 1992-05-29 Elektromagnetischer Durchflußmesser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3127065A JP2931931B2 (ja) 1991-05-30 1991-05-30 電磁流量計

Publications (2)

Publication Number Publication Date
JPH04351925A true JPH04351925A (ja) 1992-12-07
JP2931931B2 JP2931931B2 (ja) 1999-08-09

Family

ID=14950719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3127065A Expired - Lifetime JP2931931B2 (ja) 1991-05-30 1991-05-30 電磁流量計

Country Status (3)

Country Link
US (1) US5307687A (ja)
JP (1) JP2931931B2 (ja)
DE (1) DE4217714C2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4239956C2 (de) * 1991-11-29 1997-05-07 Hitachi Ltd Elektromagnetischer Durchflußmesser
JP2770675B2 (ja) * 1992-09-30 1998-07-02 株式会社日立製作所 静電容量式電磁流量計
AU2002364788A1 (en) * 2002-01-11 2003-07-24 Services Petroliers Schlumberger Device for characterizing the flow of a multiphase fluid in a tubing
DE102004063617A1 (de) * 2004-12-02 2006-06-08 Krohne Ag Magnetisch-induktives Durchflußmeßgerät und Herstellungsverfahren für ein magnetisch-induktives Durchflußmeßgerät
DE102005019418B4 (de) * 2005-04-25 2007-03-15 Krohne Messtechnik Gmbh & Co. Kg Magnetisch-induktives Durchflußmeßgerät und Verfahren zur Herstellung eines magnetisch-induktiven Durchflußmeßgeräts
US7562913B1 (en) * 2005-05-20 2009-07-21 Anheuser-Busch, Inc. Magmeter flange adapter
DE102006008433B4 (de) * 2006-02-23 2010-12-23 Abb Ag Magnetisch-induktives Durchflussmessgerät mit einem Messrohr aus Kunststoff
DE102007058133A1 (de) * 2007-11-30 2009-06-04 Endress + Hauser Flowtec Ag Messsystem, insbesondere zur Durchflussmessung eines in einer Rohrleitung strö menden Messmediums
KR101582938B1 (ko) * 2008-11-20 2016-01-08 삼성디스플레이 주식회사 유기 발광 표시 장치
DE102009002053A1 (de) * 2009-03-31 2010-10-07 Endress + Hauser Flowtec Ag Magnetisch-induktive Durchflussmesseinrichtung
US8006569B2 (en) * 2009-06-12 2011-08-30 Sensus Usa Inc. Magnetic flow meter
DE102017130717A1 (de) 2017-12-20 2019-06-27 Endress+Hauser Flowtec Ag Fertigungsverfahren zur Herstellung eines magnetisch-induktiven Durchflussmessgerätes und magnetisch-induktives Durchflussmessgerät

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0080535B1 (de) * 1981-11-27 1985-08-28 Krohne AG Messwertaufnehmer für magnetisch-induktive Durchflussmessgeräte
EP0113928B1 (de) * 1983-01-18 1986-04-09 Rheometron Ag Messwertaufnehmer für magnetisch-induktive Durchflussmessgeräte
DE3364847D1 (en) * 1983-03-23 1986-09-04 Rheometron Ag Pick-up device for magneto-inductive flow meters
DE3337151A1 (de) * 1983-10-12 1985-04-25 Fischer & Porter GmbH, 3400 Göttingen Induktiver durchflussmesser
US4722231A (en) * 1985-05-14 1988-02-02 Yamatake-Honeywell Co., Ltd. Electromagnetic flowmeter
DE8524172U1 (de) * 1985-08-23 1987-01-08 Rheometron AG, Basel Meßwertaufnehmer für magnetisch-induktive Durchflußmeßgeräte
JPH0619285B2 (ja) * 1987-10-23 1994-03-16 株式会社日立製作所 外筒を有するセラミック導管
JPH01136025A (ja) * 1987-11-20 1989-05-29 Sumitomo Cement Co Ltd 磁気誘導型流量測定用検出管およびその製造方法
US4912838A (en) * 1987-12-25 1990-04-03 Yamatake-Honeywell Co., Ltd. Method of manufacturing electrode for electromagnetic flowmeter
JPH02147912A (ja) * 1988-11-30 1990-06-06 Toshiba Corp 電磁流量計検出装置

Also Published As

Publication number Publication date
DE4217714A1 (de) 1992-12-03
US5307687A (en) 1994-05-03
JP2931931B2 (ja) 1999-08-09
DE4217714C2 (de) 1997-04-30

Similar Documents

Publication Publication Date Title
US5723979A (en) Mixed fluid time domain reflectometry sensors
JPH04351925A (ja) 電磁流量計
JPH0522829Y2 (ja)
US4507521A (en) High pressure electrical conductivity probe
EP3198239B1 (en) Magnetic flowmeter flowtube assembly with spring-energized seal rings
US5880365A (en) Thermal mass flow sensor
US4722231A (en) Electromagnetic flowmeter
US20020023499A1 (en) Pressure-measurment device
WO2018159443A1 (ja) 電磁流量計の電極構造
JPH01237418A (ja) 電磁流量計の電極構造
JP6571764B2 (ja) プロセス流体排出アセンブリを備えた電磁流量計流管
US5113690A (en) Electromagnetic flowmeter
JP3175261B2 (ja) 電磁流量計
TWI823995B (zh) 溫度感測器系統
JP2014517316A (ja) 測定室内の流状媒体の圧力を検知するための圧力センサ装置
US4607961A (en) Heat flux meter
JP2003185620A (ja) ガスセンサ
JPS62137521A (ja) 電磁流量計電極部の製造方法
JPH05322620A (ja) 電磁流量計
CN216645467U (zh) 科氏质量流量传感器和质量流量计
JPS61124823A (ja) 電磁流量計検出器
JP2001174397A (ja) 腐食電位測定装置
JP2019158453A (ja) ジルコニア酸素センサ用部品及びジルコニア酸素センサ
JPH01140022A (ja) 電磁流量計
JPS62137520A (ja) 電磁流量計電極部の製造方法