WO2018159443A1 - 電磁流量計の電極構造 - Google Patents

電磁流量計の電極構造 Download PDF

Info

Publication number
WO2018159443A1
WO2018159443A1 PCT/JP2018/006443 JP2018006443W WO2018159443A1 WO 2018159443 A1 WO2018159443 A1 WO 2018159443A1 JP 2018006443 W JP2018006443 W JP 2018006443W WO 2018159443 A1 WO2018159443 A1 WO 2018159443A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode structure
metal film
resistant metal
corrosion
main body
Prior art date
Application number
PCT/JP2018/006443
Other languages
English (en)
French (fr)
Inventor
和子 奥畑
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Priority to CN201880014774.6A priority Critical patent/CN110383012B/zh
Publication of WO2018159443A1 publication Critical patent/WO2018159443A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters

Definitions

  • the present invention relates to an electrode structure of an electromagnetic flow meter configured to extract an electromotive force corresponding to the flow rate of fluid flowing in a conduit through a signal electrode.
  • an exciting coil that generates a magnetic field in a direction perpendicular to the flow direction of the fluid flowing in the measuring pipe, and a measuring pipe facing in a direction orthogonal to the magnetic field generated by the exciting coil And a signal electrode provided on the inner circumferential surface.
  • the electromotive force generated in the fluid flowing in the measurement pipe is taken out from the signal electrode by the magnetic field generated by the excitation coil (see, for example, Patent Document 1).
  • FIG. 6 shows a longitudinal cross-sectional view of the electrode structure of the electromagnetic flowmeter related to FIG.
  • the extrapolated signal electrode 10 (10A) is attached from the outside of the conduit 20.
  • the signal electrode 10A includes a main body 11 in which a cylindrical shaft 11-1 and a disk-shaped seal 11-2 are integrated.
  • the lower portion 11-1a of the shaft portion 11-1 is located in the conduit 20 and is in contact with the fluid flowing in the conduit 20.
  • the upper portion 11-1b of the shaft portion 11-1 is located outside the conduit 20.
  • the lead wire 12 is connected to the end surface (upper end surface) 11-1c of the upper portion 11-1b of the shaft portion 11-1. An electromotive force corresponding to the flow rate of the fluid flowing in the conduit 20 is taken out through the lead wire 12.
  • a metal with high corrosion resistance (hereinafter, simply referred to as "corrosion-resistant metal"), for example, platinum is used as the material of the main body 11 (for example, see Patent Document 2).
  • a corrosion-resistant metal platinum is used as a material of the main body 11 because a corrosive solution causes a problem that it can not be measured or becomes unstable.
  • a corrosion-resistant metal platinum is used as a material of the main body 11 because a corrosive solution causes a problem that it can not be measured or becomes unstable.
  • pure platinum there is a problem that the strength is insufficient, there is an electrode having a shape that can not be made, or the electrode becomes expensive.
  • stainless steel is used as the material of the main body 11 and platinum is a corrosion-resistant metal from the lower portion 11-1a of the shaft portion 11-1 to the peripheral surface 11-2a of the seal portion 11-2.
  • the structure covered with the plating layer (it may be hereafter mentioned "the corrosion resistant metal film") 13 by the above is considered. That is, it is considered that the lower portion 11-1a of the shaft portion 11-1 covered with the plating layer 13 is used as the liquid contact portion 14, and the signal electrode 10 (10B) is brought into contact with the fluid flowing in the conduit 20. It is done.
  • the plating layer 13 may be worn away to expose a part of the main body 11 (stainless steel). In such a state, the surface of the exposed main body 11 is exposed to the fluid flowing in the conduit 20 to corrode, and the value of the electromotive force (value of the output signal from the signal electrode 10B) taken out through the lead wire 12 Instability can result in loss of stable measurements.
  • the present invention has been made to solve such problems, and the object of the present invention is to provide an electrode structure of an electromagnetic flowmeter capable of performing stable measurement even if a corrosion resistant metal film is scratched. It is to provide.
  • the present invention relates to an electrode structure of an electromagnetic flow meter configured to extract an electromotive force corresponding to the flow rate of fluid flowing in the conduit (20) through the signal electrode (1).
  • the signal electrode (1) includes a liquid contact portion (6) in contact with the fluid, and the liquid contact portion is covered with the corrosion resistant metal film (4) in contact with the fluid and the corrosion resistant metal film. And an insulating member (3).
  • the liquid contact portion of the signal electrode in contact with the fluid has the surface of the insulating member covered with a corrosion resistant metal film. Therefore, in the present invention, even if the corrosion-resistant metal film is scratched, only the surface of the insulating member is exposed, and the exposed surface is not corroded. As a result, stable measurement can be performed without the value of the output signal from the signal electrode becoming unstable.
  • the signal electrodes (1A, 1B) are provided with rigid bodies (2A, 2B) having conductivity. Then, the insulating layer (3) sandwiched between the corrosion resistant metal film (4) and the conductive rigid body (2A, 2B) is referred to as an insulating member in the present invention. Further, in the present invention, for example, the signal electrodes (1C, 1D) are provided with rigid bodies (2C, 2D) having an insulating property. Then, a part (2a, 2-1a) of the rigid body having the insulating property is used as the insulating member in the present invention.
  • the corrosion-resistant metal film since the surface of the insulating member is covered with the corrosion-resistant metal film, even if the corrosion-resistant metal film is scratched, only the surface of the insulating member is exposed, and the exposed surface is corroded. There is no such thing. As a result, stable measurement can be performed without the value of the output signal from the signal electrode becoming unstable.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of the electrode structure of the electromagnetic flowmeter according to the present invention.
  • FIG. 2 is a diagram showing an example in which the signal electrodes are extrapolated in the first embodiment.
  • FIG. 3 is a longitudinal sectional view showing a second embodiment of the electrode structure of the electromagnetic flowmeter according to the present invention.
  • FIG. 4 is a view showing an example in which the signal electrode is extrapolated in the second embodiment.
  • FIG. 5 is a longitudinal sectional view of an electrode structure of a related electromagnetic flow meter.
  • FIG. 6 is a longitudinal cross-sectional view of an electrode structure of a related electromagnetic flow meter adapted to form a plated layer of platinum.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of the electrode structure of the electromagnetic flowmeter according to the present invention.
  • the signal electrode 1 (1A) is an interpolation type signal electrode attached from the inside of the conduit 20.
  • the signal electrode 1A includes a rivet-like main body 2 (2A), and the head 2a of the main body 2A is positioned in the conduit 20.
  • the main body 2A is a rigid body having conductivity, and the head 2a of the main body 2A located in the conduit 20 is covered with the insulating layer 3. Further, the surface of the insulating layer 3 covering the head 2a of the main body 2A is further covered with a corrosion-resistant metal film 4. That is, in the signal electrode 1A, the insulating layer 3 is provided between the corrosion resistant metal film 4 and the main body 2A (rigid body having conductivity) as an insulating member in the present invention.
  • drum 2b of 2 A of main bodies has the screw thread 2c formed in the part away from the head 2a.
  • the signal electrode 1A is attached to the conduit 20 by positioning the screw thread 2c outside the conduit 20 and tightening it with a nut (not shown).
  • the lead wire 5 is connected to the trunk
  • a conductive material having rigidity such as metal, glassy carbon, conductive resin, etc.
  • the corrosion resistant metal film 4 is a film made of Pt, Ti, Au, Ta, WC or the like.
  • ceramic SiC, Al 2 O 3 , ZrO 2 , Y 2 O 3 , Si 3 N 4 , or the like
  • SiO highly insulating resin, etc.
  • the liquid contact portion 6 in contact with the fluid of the signal electrode 1A has the head 2a of the main body 2A covered with the insulating layer 3 and the surface of the insulating layer 3 covered with the corrosion resistant metal film 4 It has a two-layer structure. For this reason, even if the corrosion resistant metal film 4 is scratched, only the surface of the insulating layer 3 (insulating member) is exposed, the main body 2A is not exposed, and the exposed surface is not corroded. As a result, stable measurement can be performed without the value of the output signal from the signal electrode 1A becoming unstable.
  • FIG. 1 the signal electrode 1 is in the form of interpolation, it may be in the form of extrapolation.
  • FIG. 2 shows an example in which the signal electrode 1 is extrapolated.
  • the signal electrode 1 (1 B) is attached from the outside of the conduit 20.
  • the main body 2 (2B) is a conductive rigid body in which the shaft portion 2-1 and the seal portion 2-2 are integrated, and the lower portion of the shaft portion 2-1 of the main body 2B
  • the portion 2-1a is located in the conduit 20.
  • the seal portion 2-2 of the main body 2B is pressed by a spring from the upper side.
  • the lead wire 5 is connected to the end surface (upper end surface) 2-1c of the upper portion 2-1b of the main body 2B.
  • the liquid contact portion 6 in contact with the fluid of the signal electrode 1B has the lower portion 2-1a of the shaft portion 2-1 of the main body 2B covered with the insulating layer 3 and the surface of the insulating layer 3 is corrosion resistant It is covered with a metal film 4 to form a two-layer structure. That is, also in this signal electrode 1B, as in the case of the signal electrode 1A shown in FIG. 1, the insulating layer 3 serves as an insulating member in the present invention, between the corrosion-resistant metal film 4 and the main body 2B (rigid body having conductivity).
  • FIG. 3 is a longitudinal sectional view showing a second embodiment of the electrode structure of the electromagnetic flowmeter according to the present invention.
  • This electrode structure differs from the electrode structure shown in FIG. 1 in that the main body 2 of the signal electrode 1 is a rigid body having insulation properties, and a corrosion resistant metal film 4 is provided to cover the head 2a and body 2b of the main body 2 The point is that the lead wire 5 is connected to the corrosion resistant metal film 4.
  • the head 2 a of the main body 2 (2 C) located in the inside of the conduit 20 is covered with the corrosion resistant metal film 4. That is, the head portion 2 a of the main body 2 C (rigid body having an insulating property), which is the insulating member in the present invention, is covered with the corrosion-resistant metal film 4.
  • the material of the main body 2C a material capable of securing adhesion to the corrosion resistant metal film 4 is desirable, and ceramic (SiC, Al 2 O 3 , ZrO 2 , Y 2 O 3 , Si 3 N) 4 , SiO), highly insulating resin, etc. are used.
  • the corrosion resistant metal film 4 is a film made of Pt, Ti, Au, Ta, WC or the like.
  • the liquid contact portion 6 in contact with the fluid of the signal electrode 1C has a structure in which the head 2a of the main body 2C (rigid body having insulation properties) is covered with the corrosion resistant metal film 4. Therefore, even if the corrosion resistant metal film 4 is scratched, only the surface of the head 2a (insulating member) of the main body 2C is exposed, and the exposed surface is not corroded. As a result, stable measurement can be performed without the value of the output signal from the signal electrode 1C becoming unstable.
  • FIG. 3 shows an example in which the signal electrode 1 is extrapolated.
  • the signal electrode 1 (1 D) is attached from the outside of the conduit 20.
  • the main body 2 (2D) is an insulating rigid body in which the shaft portion 2-1 and the seal portion 2-2 are integrated, and the lower side of the shaft portion 2-1 of the main body 2D
  • the portion 2-1a is located in the conduit 20.
  • the main body 2D is entirely covered with the corrosion resistant metal film 4. That is, also in the signal electrode 1D, the lower portion 2-1a of the shaft portion 2-1 of the main body 2D, which is an insulation member according to the present invention, is a corrosion resistant metal film 4 like the signal electrode 1C shown in FIG. It is covered.
  • the liquid contact portion 6 in contact with the fluid of the signal electrode 1D has a structure in which the lower portion 2-1a of the shaft portion 2-1 of the main body 2D is covered with the corrosion resistant metal film 4. For this reason, even if the corrosion resistant metal film 4 is damaged, the surface of the lower portion 2-1a (insulating member) of the shaft portion 2-1 of the main body 2D is only exposed, and the exposed surface is corroded. There is no. As a result, stable measurement can be performed without the value of the output signal from the signal electrode 1D becoming unstable.
  • the upper end face 2d of the body 2b of the main body 2C is not covered with the corrosion-resistant metal film 4, but this part may also be covered with the corrosion-resistant metal film 4. That is, all of the main body 2C may be covered with the corrosion resistant metal film 4. Further, in the electrode structure shown in FIG. 4, all of the main body 2D is covered with the corrosion resistant metal film 4. However, as in the electrode structure shown in FIG. It may be covered by a membrane 4.
  • the electrode structure of the electromagnetic flowmeter of the present invention can be used as an electrode structure of an electromagnetic flowmeter that measures the flow rate of fluid flowing in piping in various fields such as process control.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

電極本体(2)を導電性を有する剛体とする。管路(20)内に位置する電極本体(2)の頭部(2a)を絶縁層(3)で覆い、さらに、この絶縁層(3)の表面を耐食性の金属膜(4)で覆う。これにより、耐食性の金属膜(4)に傷がついても、絶縁層(3)の表面が露出するのみとなり、信号電極(1)からの出力信号の値が不安定となることがない。

Description

電磁流量計の電極構造
 本発明は、管路内を流れる流体の流量に応じた起電力を信号電極を通して取り出すように構成された電磁流量計の電極構造に関する。
 従来より、この種の電磁流量計は、測定管内を流れる流体の流れ方向に対して直交する方向に磁界を作る励磁コイルと、この励磁コイルが作る磁界と直交する方向に対向して測定管の内周面に設けられた信号電極とを有している。この電磁流量計では、励磁コイルが作る磁界により測定管内を流れる流体に発生する起電力を信号電極より取り出すようにしている(例えば、特許文献1参照)。
 図5に関連する電磁流量計の電極構造の縦断面図を示す。同図において、外挿形の信号電極10(10A)は、管路20の外側から取り付けられている。この信号電極10Aは、円柱形の軸部11-1と円板状のシール部11-2とが一体化された本体11を備えている。軸部11-1の下方部11-1aは管路20内に位置し、管路20内を流れる流体に接液する。軸部11-1の上方部11-1bは、管路20の外側に位置する。軸部11-1の上方部11-1bの端面(上端面)11-1cには、リード線12が接続される。このリード線12を通して、管路20内を流れる流体の流量に応じた起電力が取り出される。
 この電磁流量計の電極構造において、本体11の材料として、耐食性の高い金属(以下、単に「耐食性の金属」と呼ぶ。)、例えば白金が用いられる(例えば、特許文献2参照)。電磁流量計では、腐食性の溶液では測定ができないまたは不安定になる問題が発生するため、耐食性の金属である白金が本体11の材料として用いられる。しかし、無垢の白金では、強度が不足し、作れない形状の電極があったり、高価になるという問題がある。
 そこで、図6に示すように、本体11の材料としてステンレス鋼を用い、軸部11-1の下方部11-1aからシール部11-2の周面11-2aまでを耐食性の金属である白金によるメッキ層(以下、「耐食性の金属膜」ということがある。)13で覆うような構造が考えられている。すなわち、メッキ層13で覆われた軸部11-1の下方部11-1aを接液部14として、管路20内を流れる流体に接液させた信号電極10(10B)とすることが考えられている。
 しかしながら、図6に示したような電極構造では、安価とすることはできるが、管路20内を流れる流体の中に摩耗性の物体、例えばスラリー状の物体、が混入しているような場合には、メッキ層13が摩耗して本体11(ステンレス鋼)の一部が露出することがある。このような状態となると、露出した本体11の表面が管路20内を流れる流体に晒されて腐食し、リード線12を通して取り出される起電力の値(信号電極10Bからの出力信号の値)が不安定となり、安定した測定が損なわれることがある。
特開平4-319622号公報 実開平2-16024号公報
 本発明は、このような課題を解決するためになされたもので、その目的とするところは、耐食性の金属膜に傷がついても、安定した測定を行うことができる電磁流量計の電極構造を提供することにある。
 このような目的を達成するために本発明は、管路(20)内を流れる流体の流量に応じた起電力を信号電極(1)を通して取り出すように構成された電磁流量計の電極構造において、信号電極(1)は、流体に接液する接液部(6)を備え、接液部は、流体に接液する耐食性の金属膜(4)と、耐食性の金属膜によってその表面が覆われた絶縁部材(3)とを備えることを特徴とする。
 この発明において、流体に接液する信号電極の接液部は、耐食性の金属膜で絶縁部材の表面が覆われている。このため、本発明では、耐食性の金属膜に傷がついても、絶縁部材の表面が露出するのみとなり、露出した表面が腐食してしまうというようなことはない。これにより、信号電極からの出力信号の値が不安定となることがなく、安定した測定を行うことができるようになる。
 本発明では、例えば、信号電極(1A,1B)を導電性を有する剛体(2A,2B)を備えたものとする。そして、耐食性の金属膜(4)と導電性を有する剛体(2A,2B)との間に挟まれた絶縁層(3)を、本発明でいう絶縁部材とする。また、本発明では、例えば、信号電極(1C,1D)を絶縁性を有する剛体(2C,2D)を備えたものとする。そして、絶縁性を有する剛体の一部(2a,2-1a)を、本発明でいう絶縁部材とする。
 なお、上記説明では、一例として、発明の構成要素に対応する図面上の構成要素を、括弧を付した参照符号によって示している。
 本発明によれば、耐食性の金属膜によって絶縁部材の表面を覆うようにしたので、耐食性の金属膜に傷がついても、絶縁部材の表面が露出するのみとなり、露出した表面が腐食してしまうというようなことはない。これにより、信号電極からの出力信号の値が不安定となることがなく、安定した測定を行うことができるようになる。
図1は、本発明に係る電磁流量計の電極構造の第1の実施例を示す縦断面図である。 図2は、第1の実施例において信号電極を外挿形とした例を示す図である。 図3は、本発明に係る電磁流量計の電極構造の第2の実施例を示す縦断面図である。 図4は、第2の実施例において信号電極を外挿形とした例を示す図である。 図5は、関連する電磁流量計の電極構造の縦断面図である。 図6は、白金によるメッキ層を形成するようにした関連する電磁流量計の電極構造の縦断面図である。
 以下、本発明の実施例を図面に基づいて詳細に説明する。
〔第1の実施例(実施例1)〕
 図1は本発明に係る電磁流量計の電極構造の第1の実施例を示す縦断面図である。同図において、信号電極1(1A)は、管路20の内側から取り付けられている内挿形の信号電極である。この信号電極1Aは、リベット状の本体2(2A)を備え、この本体2Aの頭部2aを管路20内に位置させている。
 この信号電極1Aにおいて、本体2Aは導電性を有する剛体とされており、管路20内に位置する本体2Aの頭部2aは絶縁層3で覆われている。また、この本体2Aの頭部2aを覆った絶縁層3の表面は、さらに耐食性の金属膜4によって覆われている。すなわち、この信号電極1Aには、絶縁層3が本発明でいう絶縁部材として、耐食性の金属膜4と本体2A(導電性を有する剛体)との間に設けられている。
 また、本体2Aの胴部2bは、頭部2aから離れた部分に形成されたネジ山2cを有している。このネジ山2cを管路20の外側に位置させて図示されていないナットで締め付けることによって、信号電極1Aが管路20に取り付けられている。また、本体2Aの胴部2bには、管路20の外側において、リード線5が接続されている。この例では、本体2Aの上端面2dにリード線5を接続している。このリード線5を通して、管路20内を流れる流体の流量に応じた起電力が取り出される。
 なお、本実施例において、本体2Aの材料としては、金属,ガラス状カーボン,導電性樹脂などの剛性を有する導電性物質が用いられている。また、耐食性の金属膜4は、Pt,Ti,Au,Ta,WCなどからなる膜である。また、絶縁層3の材料としては、本体2Aと耐食性の金属膜4との密着性が確保できるものとして、セラミック(SiC、Al23、ZrO2、Y23、Si34、SiO),絶縁性の高い樹脂等を用いることができる。
 この電極構造において、信号電極1Aの流体に接液する接液部6は、本体2Aの頭部2aが絶縁層3で覆われ、絶縁層3の表面が耐食性の金属膜4で覆われ、これにより、2層構造とされている。このため、耐食性の金属膜4に傷がついても、絶縁層3(絶縁部材)の表面が露出するのみで、本体2Aは露出せず、露出した表面が腐食してしまうということはない。これにより、信号電極1Aからの出力信号の値が不安定となることがなく、安定した測定を行うことができるようになる。
 なお、図1では、信号電極1を内挿形としたが、外挿形としてもよい。図2に、信号電極1を外挿形とした例を示す。
 図2において、信号電極1(1B)は、管路20の外側から取り付けられている。この信号電極1Bにおいて、本体2(2B)は軸部2-1とシール部2-2とが一体化された導電性を有する剛体とされており、この本体2Bの軸部2-1の下方部2-1aを管路20内に位置させている。なお、図示してはいないが、本体2Bのシール部2-2は上側からバネによって押し付けられている。また、本体2Bの上方部2-1bの端面(上端面)2-1cにリード線5を接続している。
 この電極構造において、信号電極1Bの流体に接液する接液部6は、本体2Bの軸部2-1の下方部2-1aが絶縁層3で覆われ、絶縁層3の表面が耐食性の金属膜4で覆われ、これにより、2層構造とされている。すなわち、この信号電極1Bにおいても、図1に示した信号電極1Aと同様、絶縁層3が本発明でいう絶縁部材として、耐食性の金属膜4と本体2B(導電性を有する剛体)との間に設けられている。
 このため、耐食性の金属膜4に傷がついても、絶縁層3(絶縁部材)の表面が露出するのみで、本体2Bは露出せず、露出した表面が腐食してしまうということはない。これにより、信号電極1Bからの出力信号の値が不安定となることがなく、安定した測定を行うことができるようになる。
〔第2の実施例(実施例2)〕
 図3は本発明に係る電磁流量計の電極構造の第2の実施例を示す縦断面図である。この電極構造の図1に示した電極構造と異なる点は、信号電極1の本体2を絶縁性を有する剛体とし、この本体2の頭部2aおよび胴部2bを覆う耐食性の金属膜4を設け、この耐食性の金属膜4にリード線5を接続している点にある。
 この信号電極1(1C)において、管路内20内に位置する本体2(2C)の頭部2aは耐食性の金属膜4で覆われている。すなわち、本発明でいう絶縁部材である本体2C(絶縁性を有する剛体)の頭部2aが、耐食性の金属膜4で覆われている。
 なお、本実施例において、本体2Cの材料としては、耐食性の金属膜4との密着性が確保できるものが望ましく、セラミック(SiC、Al23、ZrO2、Y23、Si34、SiO),絶縁性の高い樹脂等が用いられている。また、耐食性の金属膜4は、Pt,Ti,Au,Ta,WCなどからなる膜である。
 この電極構造において、信号電極1Cの流体に接液する接液部6は、本体2C(絶縁性を有する剛体)の頭部2aが耐食性の金属膜4で覆われた構造とされている。このため、耐食性の金属膜4に傷がついても、本体2Cの頭部2a(絶縁部材)の表面が露出するのみとなり、露出した表面が腐食してしまうということはない。これにより、信号電極1Cからの出力信号の値が不安定となることがなく、安定した測定を行うことができるようになる。
 なお、図3では、信号電極1を内挿形としたが、外挿形としてもよい。図4に、信号電極1を外挿形とした例を示す。
 図4において、信号電極1(1D)は、管路20の外側から取り付けられている。この信号電極1Dにおいて、本体2(2D)は軸部2-1とシール部2-2とが一体化された絶縁性を有する剛体とされており、この本体2Dの軸部2-1の下方部2-1aを管路20内に位置させている。
 この信号電極1Dにおいて、本体2Dは、その全てが耐食性の金属膜4で覆われている。すなわち、この信号電極1Dにおいても、図3に示した信号電極1Cと同様、本発明でいう絶縁部材である本体2Dの軸部2-1の下方部2-1aが、耐食性の金属膜4で覆われている。
 この電極構造において、信号電極1Dの流体に接液する接液部6は、本体2Dの軸部2-1の下方部2-1aが耐食性の金属膜4で覆われた構造とされている。このため、耐食性の金属膜4に傷がついても、本体2Dの軸部2-1の下方部2-1a(絶縁部材)の表面が露出するのみとなり、露出した表面が腐食してしまうということはない。これにより、信号電極1Dからの出力信号の値が不安定となることがなく、安定した測定を行うことができるようになる。
 なお、図3に示した電極構造では、本体2Cの胴部2bの上端面2dは耐食性の金属膜4で覆われていないが、この部分も耐食性の金属膜4で覆うようにしてもよい。すなわち、本体2Cの全てを耐食性の金属膜4で覆うようにしてもよい。また、図4に示した電極構造では、本体2Dの全てを耐食性の金属膜4で覆うようにしているが、図3に示した電極構造と同様、本体2Dの一部を残して耐食性の金属膜4で覆うようにしてもよい。
 また、言うまでもないが、上述した実施例1,2の電極構造では、耐食性の金属膜4を用いた構造としているので、図6に示された電極構造と同様、安価でかつその形状についても柔軟に対応することができる電極構造となる。
〔実施例の拡張〕
 以上、実施例を参照して本発明を説明したが、本発明は上記の実施例に限定されるものではない。本発明の構成や詳細には、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。
 本発明の電磁流量計の電極構造は、配管内を流れる流体の流量を計測する電磁流量計の電極構造として、プロセス制御など様々な分野で利用することが可能である。
 1(1A~1D)…信号電極、2(2A~2D)…本体、2a…頭部、2b…胴部、2-1…軸部、2-1a…下方部、2-2…シール部、3…絶縁層、4…耐食性の金属膜、5…リード線、6…接液部。

Claims (5)

  1.  管路内を流れる流体の流量に応じた起電力を信号電極を通して取り出すように構成された電磁流量計の電極構造において、
     前記信号電極は、
     前記流体に接液する接液部を備え、
     前記接液部は、
     前記流体に接液する耐食性の金属膜と、
     前記耐食性の金属膜によってその表面が覆われた絶縁部材と
     を備えることを特徴とする電磁流量計の電極構造。
  2.  請求項1に記載された電磁流量計の電極構造において、
     前記信号電極は、
     導電性を有する剛体を備え、
     前記絶縁部材は、
     前記耐食性の金属膜と前記導電性を有する剛体との間に挟まれた絶縁層として設けられている
     ことを特徴とする電磁流量計の電極構造。
  3.  請求項1に記載された電磁流量計の電極構造において、
     前記信号電極は、
     絶縁性を有する剛体を備え、
     前記絶縁部材は、
     前記絶縁性を有する剛体の一部として設けられている
     ことを特徴とする電磁流量計の電極構造。
  4.  請求項2に記載された電磁流量計の電極構造において、
     前記流体に発生する起電力を取り出すためのリード線を備え、
     前記耐食性の金属膜は、
     前記導電性を有する剛体と接触しており、
     前記リード線は、
     前記管路の外側において前記導電性を有する剛体に接続されている
     ことを特徴とする電磁流量計の電極構造。
  5.  請求項3に記載された電磁流量計の電極構造において、
     前記流体に発生する起電力を取り出すためのリード線を備え、
     前記耐食性の金属膜は、
     前記絶縁部材につながる前記絶縁性を有する剛体の表面も覆うようにして形成されており、
     前記リード線は、
     前記管路の外側において前記耐食性の金属膜に接続されている
     ことを特徴とする電磁流量計の電極構造。
PCT/JP2018/006443 2017-03-02 2018-02-22 電磁流量計の電極構造 WO2018159443A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880014774.6A CN110383012B (zh) 2017-03-02 2018-02-22 电磁流量计的电极构造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017038984A JP6754312B2 (ja) 2017-03-02 2017-03-02 電磁流量計の電極構造
JP2017-038984 2017-03-02

Publications (1)

Publication Number Publication Date
WO2018159443A1 true WO2018159443A1 (ja) 2018-09-07

Family

ID=63371266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006443 WO2018159443A1 (ja) 2017-03-02 2018-02-22 電磁流量計の電極構造

Country Status (3)

Country Link
JP (1) JP6754312B2 (ja)
CN (1) CN110383012B (ja)
WO (1) WO2018159443A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6970001B2 (ja) 2017-12-15 2021-11-24 アズビル株式会社 電磁流量計の電位検出用電極
JP6940392B2 (ja) 2017-12-15 2021-09-29 アズビル株式会社 電磁流量計の電位検出用電極
JP6948244B2 (ja) 2017-12-15 2021-10-13 アズビル株式会社 電磁流量計の電位検出用電極
JP7039276B2 (ja) 2017-12-15 2022-03-22 アズビル株式会社 電磁流量計の電位検出用電極
CN109141551A (zh) * 2018-09-27 2019-01-04 麦克传感器股份有限公司 陶瓷衬里电磁流量计传感器高压电极封装结构
CN109459099A (zh) * 2018-12-05 2019-03-12 重庆川仪自动化股份有限公司 一种提高电磁流量计测量性能的电极结构及流量计

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179122U (ja) * 1981-05-09 1982-11-13
JPS57188120U (ja) * 1981-05-27 1982-11-29
JPS6242014A (ja) * 1985-08-19 1987-02-24 Yamatake Honeywell Co Ltd 電磁流量計用測定管の製造方法
JPS6246330U (ja) * 1985-08-15 1987-03-20
US5247837A (en) * 1991-09-25 1993-09-28 Rosemount Inc. Magnetic flowmeter electrode
US20060179931A1 (en) * 2005-01-21 2006-08-17 Abb Patent Gmbh Electrode in a measurement tube of a magnetic-inductive flowmeter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1266734A (fr) * 1960-07-25 1961-07-17 Alto Instr Great Britain Ltd Montage d'électrodes, notamment pour appareils de mesure de débit par induction
FR1495061A (fr) * 1966-09-01 1967-09-15 Mawdsley S Ltd Perfectionnements aux dispositifs d'étanchéité pour électrodes
US4782709A (en) * 1985-08-19 1988-11-08 Yamatake-Honeywell Co., Ltd. Electromagnetic flowmeter
JP2599322B2 (ja) * 1991-10-09 1997-04-09 山武ハネウエル株式会社 電磁流量計用電極の製造方法
JP5202368B2 (ja) * 2009-02-03 2013-06-05 株式会社東芝 測定装置
IN2012DN00703A (ja) * 2009-08-18 2015-06-19 Takahata Prec R & D Ct Co Ltd

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179122U (ja) * 1981-05-09 1982-11-13
JPS57188120U (ja) * 1981-05-27 1982-11-29
JPS6246330U (ja) * 1985-08-15 1987-03-20
JPS6242014A (ja) * 1985-08-19 1987-02-24 Yamatake Honeywell Co Ltd 電磁流量計用測定管の製造方法
US5247837A (en) * 1991-09-25 1993-09-28 Rosemount Inc. Magnetic flowmeter electrode
US20060179931A1 (en) * 2005-01-21 2006-08-17 Abb Patent Gmbh Electrode in a measurement tube of a magnetic-inductive flowmeter

Also Published As

Publication number Publication date
CN110383012B (zh) 2020-11-06
JP2018146274A (ja) 2018-09-20
CN110383012A (zh) 2019-10-25
JP6754312B2 (ja) 2020-09-09

Similar Documents

Publication Publication Date Title
WO2018159443A1 (ja) 電磁流量計の電極構造
KR101153658B1 (ko) 측정 장치
JP2012008108A (ja) 電磁流量計
RU2397451C1 (ru) Устройство для измерения объемного или массового потока среды в трубопроводе
JPH0612275B2 (ja) 電磁流量計の電極構造
JP2019109089A (ja) 電磁流量計の電位検出用電極
US7878072B2 (en) Measurement device including an electrode head with an anchor formed on an outer peripheral portion
JP4185478B2 (ja) 歪検出器およびその製造方法
JP2931931B2 (ja) 電磁流量計
KR102075765B1 (ko) 전자 유량계의 전위 검출용 전극
KR20190072453A (ko) 전자 유량계의 전위 검출용 전극
JP4739045B2 (ja) 導電率検出器
JP5271552B2 (ja) 電磁流量計
JP3009314B2 (ja) 静電容量形電磁流量計
JPH068500Y2 (ja) 電磁流量計
JP2590920Y2 (ja) 電磁流量計
JPH067318Y2 (ja) 電磁流量計
JPH067319Y2 (ja) 電磁流量計
JPH01140022A (ja) 電磁流量計
JP3533659B2 (ja) セラミックス電磁流量計
JPH068501Y2 (ja) 電磁流量計のアースリング
JPS62137521A (ja) 電磁流量計電極部の製造方法
JP2597863Y2 (ja) 電磁流量計
KR20190072452A (ko) 전자 유량계의 전위 검출용 전극
JP2001194194A (ja) 電磁流量計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760892

Country of ref document: EP

Kind code of ref document: A1