JPH04348054A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04348054A
JPH04348054A JP7124991A JP7124991A JPH04348054A JP H04348054 A JPH04348054 A JP H04348054A JP 7124991 A JP7124991 A JP 7124991A JP 7124991 A JP7124991 A JP 7124991A JP H04348054 A JPH04348054 A JP H04348054A
Authority
JP
Japan
Prior art keywords
wiring
layer
insulating film
interconnection
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7124991A
Other languages
Japanese (ja)
Inventor
Kazuya Kuroda
黒田 和也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP7124991A priority Critical patent/JPH04348054A/en
Publication of JPH04348054A publication Critical patent/JPH04348054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form an interconnection pattern in which a void and a slit-shaped defect are not produced and in which a disconnection is not caused. CONSTITUTION:A substratum insulating film is formed on a semiconductor substrate via a lower-layer interconnection 5; grooves 13 in a prescribed pattern are formed at definite intervals in the insulating film so as not come into contact with the lower-layer interconnection 5; after that, an interconnection layer is formed by using a chemical vapor deposition method, a sputtering method, an ion cluster beam method or the like; the interconnection layer is worked to a prescribed pattern; an interconnection pattern 3 which is provided with a plurality of grooves 13 at definite intervals at the lower part is formed. It is possible to relax a stress from an insulating film applied onto the interconnection pattern 3 or from an interlayer insulating film formed at the upper part of the interconnection pattern 3, to relax the stress of the interconnection pattern itself and to restrain a stress migration.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は半導体装置の製造方法
に関する。更に詳しくはMOS型LSI等の半導体装置
における配線材料の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device. More specifically, the present invention relates to a method for forming wiring materials in semiconductor devices such as MOS type LSIs.

【0002】0002

【従来の技術】従来の半導体装置は、図7に示すように
ゲート電極、不純物拡散層等を含む半導体素子(図示せ
ず)を有するシリコン基板1上に、ゲート電極、不純物
拡散層に至るコンタクトホール(図示せず)を有する絶
縁膜(酸化シリコン膜)12を形成し、この上にAl系
合金層を積層してコンタクトホールを埋設し、このAl
系合金層を、図8に示すように所定パターンにエッチン
グしてAl系合金配線3を形成して作成されている。
2. Description of the Related Art As shown in FIG. 7, a conventional semiconductor device is constructed on a silicon substrate 1 having a semiconductor element (not shown) including a gate electrode, an impurity diffusion layer, etc., and is provided with contacts leading to the gate electrode and the impurity diffusion layer. An insulating film (silicon oxide film) 12 having a hole (not shown) is formed, an Al-based alloy layer is laminated thereon to fill the contact hole, and the Al
The Al-based alloy layer is etched into a predetermined pattern as shown in FIG. 8 to form Al-based alloy wiring 3.

【0003】0003

【発明が解決しようとする課題】従来の技術により形成
されたAl系合金配線3では、ストレスマイグレーショ
ンの問題、即ちAl系合金膜3の形成後、その上方につ
けられた保護膜(酸化シリコン膜、窒化シリコン膜又は
それらの膜の積層膜で構成される)などよりうける応力
、又はAl系合金膜自身の残留応力のために、金属原子
の移動がおこり、その結果としてボイドやスリット状の
欠陥が発生し、断線を招くという問題がある。特に上記
欠陥は配線長の長い配線において顕著に見られる。 又、配線膜を形成した後絶縁膜を積層して同様の手順で
更に上層に配線膜を形成する多層配線構造においては特
に下層の配線膜では、それにかかる応力が上層のものよ
り大きいから断線が助長されるおそれがある。この発明
は、上記問題を解決するためになされたものであって、
ボイドやスリット状の欠陥発生がなく、断線の起こらな
いAl系合金配線層を形成することのできる半導体装置
の製造方法を提供しようとするものである。
[Problems to be Solved by the Invention] In the Al-based alloy wiring 3 formed by the conventional technique, there is a problem of stress migration, that is, after the formation of the Al-based alloy film 3, a protective film (silicon oxide film, Due to the stress exerted by the silicon nitride film (composed of a silicon nitride film or a laminated film of these films), or the residual stress of the Al-based alloy film itself, metal atoms move, resulting in voids and slit-like defects. There is a problem that this occurs, leading to disconnection. In particular, the above-mentioned defects are noticeable in long wiring lines. In addition, in a multilayer wiring structure in which a wiring film is formed, an insulating film is laminated, and a wiring film is further formed on the upper layer using the same procedure, the stress applied to the lower wiring film is greater than that of the upper layer, so disconnections occur. There is a risk that it will be encouraged. This invention was made to solve the above problems, and
It is an object of the present invention to provide a method for manufacturing a semiconductor device that can form an Al-based alloy wiring layer that does not generate defects such as voids or slits and does not cause disconnection.

【0004】0004

【課題を解決するための手段】この発明は、半導体素子
を有する半導体基板上に下地の絶縁膜を介して半導体素
子に電気的に接続される単層配線又は多層配線を形成す
るに際して、(i) 配線が意図される配線領域の下地
の絶縁膜上に複数の溝を任意の間隔で形成し、(ii)
これら溝を含む下地の絶縁膜上の全面に配線層を積層し
た後溝を覆うように配線領域に配線パターンを形成して
なる半導体装置の製造方法である。この発明においては
、半導体基板上に、下地の絶縁膜を介して化学的気相蒸
着法(CVD法)、スパッタ法又はイオンクラスタービ
ーム法等を用いて配線膜を形成する。上記半導体基板は
、例えば、Si、GaAs、GaP、InP等を用いて
構成することができ、通常シリコン基板を用いることが
できる。上記下地の絶縁膜は、例えば酸化シリコン、B
PSG(ホウ素及びリン含有ガラス)、PSG(リン含
有ガラス)、窒化シリコン、酸化タンタル等を用いて構
成することができる。この発明においては、配線層はA
l系合金配線が好ましく、Al−Si層やAl−Si−
Cu層あるいはAl−Si−Pd層が挙げられる。しか
し、本発明は配線層としてAl系合金層以外にこれと同
様の低融点金属層を用いてもよい。WやCuの高融点金
属層は一般に配線層として勿論使用できるが、もともと
これら高融点金属配線ではストレスマイグレーションの
影響は少ないので本発明を適用した所で意味がない。そ
して溝としてのビア・ホール(via  hole)を
絶縁膜上に所定のパターンで複数形成した後ビア・ホー
ルを含む絶縁膜上の全面にAl系合金膜を積層してビア
・ホールをカバーするように所定のパターンに加工する
ことによってAl系合金配線が形成される。上記加工は
通常、公知のホトリソグラフ法によって行うことができ
る。この際、図5に示すように下地の配線5(例えば、
MOS型半導体装置における単層配線構造ではゲート電
極層やソース・ドレインであり、または多層配線構造で
は下地の絶縁膜を介して下方に形成されたAl系合金配
線である。)と当該Al系合金配線(配線層)3とを電
気的に接続するためのコンタクトホール(またはビア・
ホール)23を、例えばBPSG膜(下地の絶縁膜)2
に形成する工程は当該溝13(図4参照)を形成する工
程の前後で周知の方法で形成されるのが好ましい。また
、図4、図2に示すように、溝13を下地の絶縁膜2に
形成する方法も通常のホトリソグラフィ技術とエッチン
グ技術を用いておこなわれる。この発明においては、溝
は単層配線としてのAl系合金配線における下地の絶縁
膜に形成されることは勿論であるが、複数の配線層が重
ね合わされてなる多層配線構造においては、特定の配線
層における下地の絶縁膜だけに溝を設けてもよいし、各
配線層すべてに存在する配線層における下地の絶縁層そ
れぞれに溝を設けてもよい。要は断線が予想され得る配
線における下地の絶縁層に適宜本発明を適用すればよい
。この発明において、複数の溝を任意の間隔で形成する
とは、溝間隔は任意に決めれば良いということで、同一
配線上の溝同志の間隔がバラツイていても等間隔でも良
いという意味である。また、この発明はパターン形成さ
れた配線が特に長い場合により有効である。さらに、こ
の発明は、図4に示すように下地の絶縁膜2上に溝13
を設けて配線層3を積層する際に上述した周知の方法、
すなわち、CVD法やスパッタ法あるいはイオンクラス
タービーム法を用いて溝内にもその内壁13aに沿って
配線層を積層させる訳であるが、フォトマージンを確保
するために、図2に示すように配線3は溝上でオーバー
ラップ部33を有するよう形成されるのが好ましい。す
なわち、一般に図5、図6に示すようにビア・ホール2
3を形成する時には同様の目的でこのようなオーバーラ
ップ部53が設けられているのは周知の事実である。勿
論、この発明では図3に示すように下層配線5と上層配
線3とを接続するためのビア・ホール部23には上記オ
ーバーラップ部53と同様のオーバーラップ部43が形
成され、しかも溝部13にもオーバーラップ部33を形
成するようにしたことが本発明の特長である。これによ
り、図4に示す内壁13aにおいて、薄い膜厚の配線部
分3aが断線したとしても上部にオーバーラップ部33
が形成されているおかげで断線を防止できる。この発明
においては、上記Al系合金層が形成された半導体基板
に、適宜、素子、絶縁層、保護膜等を形成して半導体装
置を製造することができる。
[Means for Solving the Problems] The present invention provides a method (i ) Forming a plurality of grooves at arbitrary intervals on the underlying insulating film in the wiring area where wiring is intended; (ii)
In this method of manufacturing a semiconductor device, a wiring layer is laminated on the entire surface of the underlying insulating film including these grooves, and then a wiring pattern is formed in the wiring region so as to cover the grooves. In this invention, a wiring film is formed on a semiconductor substrate via an underlying insulating film using a chemical vapor deposition method (CVD method), a sputtering method, an ion cluster beam method, or the like. The semiconductor substrate can be made of, for example, Si, GaAs, GaP, InP, etc., and usually a silicon substrate can be used. The underlying insulating film is, for example, silicon oxide, B
It can be constructed using PSG (glass containing boron and phosphorus), PSG (glass containing phosphorus), silicon nitride, tantalum oxide, or the like. In this invention, the wiring layer is A
l-based alloy wiring is preferable, and Al-Si layer or Al-Si-
Examples include a Cu layer or an Al-Si-Pd layer. However, in the present invention, a similar low melting point metal layer may be used as the wiring layer in addition to the Al-based alloy layer. Of course, a high melting point metal layer such as W or Cu can generally be used as a wiring layer, but since these high melting point metal wirings are inherently less affected by stress migration, there is no point in applying the present invention. After forming a plurality of via holes as grooves in a predetermined pattern on the insulating film, an Al-based alloy film is laminated on the entire surface of the insulating film including the via holes to cover the via holes. Al-based alloy wiring is formed by processing it into a predetermined pattern. The above-mentioned processing can usually be performed by a known photolithography method. At this time, as shown in FIG. 5, the underlying wiring 5 (for example,
In a single layer wiring structure in a MOS type semiconductor device, this is a gate electrode layer or a source/drain, or in a multilayer wiring structure, it is an Al-based alloy wiring formed below with an underlying insulating film interposed therebetween. ) and the Al-based alloy wiring (wiring layer) 3.
For example, the BPSG film (underlying insulating film) 2
It is preferable that the step of forming the groove 13 (see FIG. 4) is performed by a known method before or after the step of forming the groove 13 (see FIG. 4). Further, as shown in FIGS. 4 and 2, the method of forming the groove 13 in the underlying insulating film 2 is also performed using ordinary photolithography technology and etching technology. In this invention, the groove is of course formed in the underlying insulating film of the Al-based alloy wiring as a single-layer wiring, but in a multilayer wiring structure in which multiple wiring layers are stacked, it is necessary to Grooves may be provided only in the underlying insulating film of the layer, or grooves may be provided in each of the underlying insulating layers of the wiring layers present in all wiring layers. In short, the present invention may be appropriately applied to the underlying insulating layer in the wiring where disconnection can be expected. In this invention, forming a plurality of grooves at arbitrary intervals means that the groove intervals may be determined arbitrarily, and the grooves on the same wiring may be spaced at different intervals or evenly spaced. Further, the present invention is more effective when the patterned wiring is particularly long. Furthermore, as shown in FIG.
When laminating the wiring layer 3 by providing the above-mentioned well-known method,
That is, the wiring layer is laminated inside the trench along the inner wall 13a using the CVD method, sputtering method, or ion cluster beam method, but in order to ensure a photo margin, the wiring layer is 3 is preferably formed to have an overlapping portion 33 on the groove. That is, in general, as shown in FIGS. 5 and 6, the via hole 2
It is a well-known fact that such an overlapping portion 53 is provided for the same purpose when forming 3. Of course, in this invention, as shown in FIG. 3, an overlap part 43 similar to the overlap part 53 is formed in the via hole part 23 for connecting the lower layer wiring 5 and the upper layer wiring 3, and the groove part 13 A feature of the present invention is that the overlapping portion 33 is also formed at both ends. As a result, even if the thin wiring portion 3a of the inner wall 13a shown in FIG.
This structure prevents wire breakage. In the present invention, a semiconductor device can be manufactured by appropriately forming an element, an insulating layer, a protective film, etc. on the semiconductor substrate on which the Al-based alloy layer is formed.

【0005】[0005]

【作用】配線長の長い当該配線パターン(Al系合金配
線)が、その上に付けられた保護膜又は当該配線パター
ンより上方に形成される層間絶縁膜等からの応力、及び
当該配線パターン自身の応力により、金属原子の移動が
起こり、ボイドやスリット状の欠陥が発生して断線を招
くのを、形成が意図される長い配線パターンの下地絶縁
膜における配線領域に適当な間隔で溝を設けることによ
り、当該配線パターンにかかる応力を緩和できる。
[Effect] The long wiring pattern (Al-based alloy wiring) is exposed to stress from the protective film attached thereon or the interlayer insulating film formed above the wiring pattern, as well as stress from the wiring pattern itself. To prevent the movement of metal atoms due to stress and the generation of voids and slit-like defects, which lead to disconnection, it is necessary to provide grooves at appropriate intervals in the wiring area of the underlying insulating film for long wiring patterns that are intended to be formed. Accordingly, the stress applied to the wiring pattern can be alleviated.

【0006】[0006]

【実施例】以下図に示す多層配線構造の一実施例にもと
づいてこの発明を詳述する。これによってこの発明は限
定されるものではない。図1に示すように、シリコン基
板1上にBPSG膜2を形成する。なお、図1には示さ
れていないがBPSG膜2の直下にはすでに下層配線5
が形成されている(図3参照)。その膜2に公知の方法
を用いて所定のパターンで溝13を形成する。その上に
公知の方法を用いてAl系合金膜(図示せず)を形成し
、図2、図3に示すように所定の形状に加工して配線3
を形成する。なおこの際、溝部にはフォトマージンを確
保するためにオーバーラップ部33を設けるのでこの溝
内での配線の断線は問題とならない。以上のように形成
した配線3(図3参照)では、以後配線上に付けられる
保護膜又は上層Al系合金膜自身の応力が緩和され、ス
トレスマイグレーションを抑えることができ、信頼性の
高いAl系合金配線3を形成することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on an embodiment of a multilayer wiring structure shown in the drawings. This invention is not limited thereby. As shown in FIG. 1, a BPSG film 2 is formed on a silicon substrate 1. Although not shown in FIG. 1, there is already a lower layer wiring 5 directly under the BPSG film 2.
is formed (see Figure 3). Grooves 13 are formed in the film 2 in a predetermined pattern using a known method. An Al-based alloy film (not shown) is formed thereon using a known method and processed into a predetermined shape as shown in FIGS.
form. At this time, since an overlap portion 33 is provided in the trench to ensure a photo margin, disconnection of the wiring within the trench does not pose a problem. In the wiring 3 (see FIG. 3) formed as described above, the stress of the protective film or the upper layer Al-based alloy film itself, which is subsequently applied on the wiring, is relaxed, stress migration can be suppressed, and the highly reliable Al-based Alloy wiring 3 can be formed.

【0007】[0007]

【発明の効果】この発明によればAl系合金配線にかか
る応力を下地の絶縁層における配線領域に複数の溝を形
成するようにすることによって緩和することができ、そ
の結果、ストレスマイグレーションを抑え、断線不良の
生じない信頼性の高いAl系合金配線を得ることができ
る効果がある。
[Effects of the Invention] According to the present invention, the stress applied to the Al-based alloy wiring can be alleviated by forming a plurality of grooves in the wiring area of the underlying insulating layer, and as a result, stress migration can be suppressed. This has the effect of making it possible to obtain highly reliable Al-based alloy wiring that does not cause disconnection defects.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例における製造工程の第1ス
テップを示す図である。
FIG. 1 is a diagram showing the first step of the manufacturing process in an embodiment of the present invention.

【図2】上記実施例における製造工程の第2ステップを
示す図である。
FIG. 2 is a diagram showing the second step of the manufacturing process in the above embodiment.

【図3】上記実施例におけるパターン配線を示す構成説
明図である。
FIG. 3 is a configuration explanatory diagram showing pattern wiring in the above embodiment.

【図4】上記実施例における溝の形成を説明するための
構成説明図である。
FIG. 4 is a configuration explanatory diagram for explaining the formation of grooves in the above embodiment.

【図5】通常のビア・ホールを説明するための構成説明
図である。
FIG. 5 is a configuration explanatory diagram for explaining a normal via hole.

【図6】従来例の配線を示す構成説明図である。FIG. 6 is a configuration explanatory diagram showing wiring in a conventional example.

【図7】従来例における製造工程の第1ステップを示す
図である。
FIG. 7 is a diagram showing the first step of a manufacturing process in a conventional example.

【図8】従来例における製造工程の第2ステップを示す
図である。
FIG. 8 is a diagram showing the second step of the manufacturing process in the conventional example.

【符号の説明】[Explanation of symbols]

1    シリコン基板 2    BPSG膜(下地の絶縁膜)3    Al
系合金配線(配線パターン)5    下層配線 13  溝
1 Silicon substrate 2 BPSG film (underlying insulating film) 3 Al
Alloy wiring (wiring pattern) 5 Lower layer wiring 13 Groove

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  半導体素子を有する半導体基板上に下
地の絶縁膜を介して半導体素子に電気的に接続される単
層配線又は多層配線を形成するに際して、(i)配線が
意図される配線領域の下地の絶縁膜上に複数の溝を任意
の間隔で形成し、(ii)これら溝を含む下地の絶縁膜
上の全面に配線層を積層した後溝を覆うように配線領域
に配線パターンを形成してなる半導体装置の製造方法。
[Claim 1] When forming a single-layer wiring or a multilayer wiring that is electrically connected to a semiconductor element through an underlying insulating film on a semiconductor substrate having a semiconductor element, (i) a wiring area where the wiring is intended; (ii) After laminating a wiring layer over the entire surface of the underlying insulating film including these grooves, a wiring pattern is formed in the wiring area so as to cover the grooves. A method of manufacturing a semiconductor device formed by forming a semiconductor device.
JP7124991A 1991-04-03 1991-04-03 Manufacture of semiconductor device Pending JPH04348054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7124991A JPH04348054A (en) 1991-04-03 1991-04-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7124991A JPH04348054A (en) 1991-04-03 1991-04-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04348054A true JPH04348054A (en) 1992-12-03

Family

ID=13455241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7124991A Pending JPH04348054A (en) 1991-04-03 1991-04-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04348054A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997040528A1 (en) * 1996-04-19 1997-10-30 Matsushita Electronics Corporation Semiconductor device
US5773857A (en) * 1995-11-15 1998-06-30 Nec Corporation Semiconductor device having dummy wiring conductors for suppressing heat-treatment-induced shifting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773857A (en) * 1995-11-15 1998-06-30 Nec Corporation Semiconductor device having dummy wiring conductors for suppressing heat-treatment-induced shifting
WO1997040528A1 (en) * 1996-04-19 1997-10-30 Matsushita Electronics Corporation Semiconductor device
US6081036A (en) * 1996-04-19 2000-06-27 Matsushita Electronics Corp. Semiconductor device

Similar Documents

Publication Publication Date Title
JPH04348054A (en) Manufacture of semiconductor device
KR100459723B1 (en) Method for fabricating semiconductor device having metal interconnections of different thickness
US5406121A (en) Semiconductor device having improved interconnection wiring structure
KR100191710B1 (en) Metal wiring method of semiconductor device
JP3087692B2 (en) Method for manufacturing semiconductor device
JPS5849026B2 (en) Multilayer wiring manufacturing method
JPH0856024A (en) Manufacture of integrated circuit
JPH067576B2 (en) Method of manufacturing semiconductor device having multilayer wiring structure
JPH02156537A (en) Manufacture of semiconductor device
KR0139599B1 (en) Mechod of forming metal wiring in semiconducotr device
KR20030002942A (en) Method for forming metal interconnection in semiconductor device
JP2950620B2 (en) Semiconductor device
JPS61239646A (en) Formation of multilayer interconnection
KR960011250B1 (en) Semiconductor contact device manufacturing method
KR100582372B1 (en) A method for forming damascene type metal wire
KR0179707B1 (en) Multi-layer interconnection structure of semiconductor device and method for manufacturing thereof
JPH01241845A (en) Manufacture of semiconductor device
JPS6092623A (en) Manufacture of semiconductor device
JPH05129297A (en) Semiconductor device and manufacturing method thereof
JPH04307939A (en) Manufacture of semiconductor device
JPH08222627A (en) Connecting method for multilayer interconnection
JPS6381833A (en) Manufacture of semiconductor device
JPS6130422B2 (en)
JPS58199553A (en) Manufacture of semiconductor device
JPS63136647A (en) Manufacture of semiconductor integrated circuit device