JPH04307939A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04307939A
JPH04307939A JP7199591A JP7199591A JPH04307939A JP H04307939 A JPH04307939 A JP H04307939A JP 7199591 A JP7199591 A JP 7199591A JP 7199591 A JP7199591 A JP 7199591A JP H04307939 A JPH04307939 A JP H04307939A
Authority
JP
Japan
Prior art keywords
insulating film
wiring
interlayer insulating
contact hole
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7199591A
Other languages
Japanese (ja)
Inventor
Fukashi Harada
深志 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7199591A priority Critical patent/JPH04307939A/en
Publication of JPH04307939A publication Critical patent/JPH04307939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To keep the performance and reliability of a multilayer interconnection high by preventing the width and thickness of the interconnection from falling short of the designed size when patterning the interconnection and by making the interconnection formation surface nearly completely flat, concerning the method for manufacturing a semiconductor device, specifically, the method for making the interconnection formation surface of the semiconductor device having the multilayer interconnection structure flat. CONSTITUTION:In a layer insulation film (3) formed on a first conductive pattern (2), a recess (5) which has such a specified pattern shape as to include a contact hole installation region (4) that has the depth not to reach the bottom of the layer insulation film is made. In the recess (5), a contact hole (6) is formed to expose the surface of the first conductive pattern (2). Then, a second conductor layer is so deposited as to fill the contact hole (6) and the inside of the recess (5) completely. After that, the whole surface is etched to form an upper second conductive pattern (7) which is buried flat in the recess (5) including the contact hole (6) of the layer insulation film (3).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体装置の製造方法、
特に多層配線構造を有する半導体装置における配線形成
面の平坦化方法に関する。
[Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device,
In particular, the present invention relates to a method for flattening a wiring formation surface in a semiconductor device having a multilayer wiring structure.

【0002】近年の半導体ICの高集積化に伴い、回路
を構成する配線は多層化され、且つ配線の幅も極度に微
細化されてきている。かかる状況において微細配線ルー
ルによる配線の高品質を確保して、半導体ICの高信頼
性を維持するためには、多層配線形成に際して、配線の
、厚さや幅の設計寸法からの目減りや、形状劣化等を伴
わない平坦化技術が要求される。
As semiconductor ICs have become highly integrated in recent years, the wiring constituting the circuit has become multilayered, and the width of the wiring has become extremely fine. In such a situation, in order to ensure high quality wiring using fine wiring rules and maintain high reliability of semiconductor ICs, when forming multilayer wiring, it is necessary to reduce the thickness and width of the wiring from the designed dimensions and to prevent shape deterioration. A planarization technique that does not involve such problems is required.

【0003】0003

【従来の技術】素子が微細化され回路が高集積化される
半導体ICにおいては、多層配線が多く用いられるが、
かかる半導体装置においてその高信頼性を確保するため
に、多層配線を構成する各層の配線を設計ルール通りに
精度良く形成することが極めて重要である。そのため多
層配線においては、配線を形成する下地面を平坦化する
ことが是非とも必要になる。
[Prior Art] Multilayer wiring is often used in semiconductor ICs where elements are miniaturized and circuits are highly integrated.
In order to ensure high reliability in such a semiconductor device, it is extremely important to form wiring in each layer constituting the multilayer wiring with high precision according to design rules. Therefore, in multilayer wiring, it is absolutely necessary to flatten the underlying surface on which the wiring is formed.

【0004】従来、微細配線ルールに基づく多層配線を
形成するに際して、配線層のパターニングはリアクティ
ブイオンエッチング(RIE )処理によって行われ、
その反応ガスに、エッチング性のガス(アルミニウム若
しくはその合金の場合 CCl4 )と堆積性のガス(
アルミニウム若しくはその合金の場合 SiCl4、B
Cl3等)を混合して用いることによりパターン形状の
劣化を極力抑える方法が行われていた。また配線形成面
の平坦化のためには、スピンコートされるSOG(Sp
in On Glass )膜により配線間の凹部を埋
める方法が用いられていた。
Conventionally, when forming multilayer wiring based on fine wiring rules, patterning of wiring layers is performed by reactive ion etching (RIE) processing.
The reaction gas includes an etching gas (CCl4 in the case of aluminum or its alloy) and a deposition gas (CCl4 for aluminum or its alloys).
In the case of aluminum or its alloy SiCl4, B
A method of suppressing deterioration of the pattern shape as much as possible has been carried out by using a mixture of Cl3, etc.). In addition, in order to flatten the wiring formation surface, spin-coated SOG (Sp
A method has been used in which the recesses between the wirings are filled with an in-on-glass (in-on-glass) film.

【0005】[0005]

【発明が解決しようとする課題】しかし上記従来の配線
層のパターニング方法においては、反応ガス中の上記エ
ッチング性ガスと堆積性ガスの比率の変動、レジストと
のエッチングの選択性の減少等によって形成される配線
パターンに設計寸法からの厚さや幅の目減りを生じ、特
に配線ルールが微細化されるLSI等においては、上記
厚さや幅の目減りによって配線の性能や信頼性が大幅に
低下するという問題があった。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional wiring layer patterning method, the formation of wiring layers due to fluctuations in the ratio of the above-mentioned etching gas and deposition gas in the reaction gas, a decrease in etching selectivity with respect to the resist, etc. The problem is that the thickness and width of the wiring pattern are reduced from the design dimensions, and especially in LSIs where wiring rules are miniaturized, the performance and reliability of the wiring are significantly reduced due to the reduction in thickness and width. was there.

【0006】また上記従来のSOGスピンコートによる
平坦化方法においては、配線間隔の狭い部分と、広い部
分とではそこに溜まるSOGの厚さが異なるので、平坦
化が部分的に不十分になり、特に配線ルールが微細化さ
れるLSI等においては、その段差部上でステップカバ
レージ不足による上層配線の膜厚不足や段切れが生じ易
くなり、配線の性能や信頼性が大幅に低下するという問
題が生じていた。
[0006] Furthermore, in the conventional planarization method using SOG spin coating, the thickness of the SOG accumulated in areas where the wiring spacing is narrow differs from that where the wiring spacing is wide, so that planarization is partially insufficient. Particularly in LSIs, etc., where wiring rules are miniaturized, there is a problem that the upper layer wiring is likely to have insufficient film thickness or breakage due to insufficient step coverage on the stepped portion, and the performance and reliability of the wiring will be significantly reduced. was occurring.

【0007】そこで本発明は、配線のパターニングに際
して幅や厚さの設計寸法からの目減りを回避し、且つ配
線形成面をほぼ完全に平坦化し、多層配線の性能や信頼
性を高度に保つことを目的とする。
Accordingly, the present invention aims to avoid reduction in width and thickness from design dimensions when patterning wiring, and to flatten the wiring formation surface almost completely, thereby maintaining a high level of performance and reliability of multilayer wiring. purpose.

【0008】[0008]

【課題を解決するための手段】図1は本発明の原理説明
用模式断面図で、図中、1は下部絶縁膜、2は下層の第
1の導電性パターン(第1層配線のコンタクト用パッド
部)、3は層間絶縁膜、4はコンタクトホール配設領域
、5は溝、6はコンタクトホール、7はコンタクトホー
ルを含む溝内の埋め込まれた上層の第2の導電体層(第
2層埋込み配線)を示す。  上記課題は、同図に示さ
れるように、第1の導電性パターン(2) を有する基
板上に層間絶縁膜(3) を形成する工程と、該層間絶
縁膜(3) に、該第1の導電性パターン(2) 上の
コンタクトホール配設領域(4) を包含する所定のパ
ターン形状を有し、且つ該層間絶縁膜(3) の底部に
達しない深さの溝(5) を形成する工程と、該層間絶
縁膜(3) の該溝(5) 内の該コンタクトホール配
設領域(4) に該第1の導電性パターン(2) 面を
表出するコンタクトホール(6) を形成する工程と、
該層間絶縁膜(3) 上に該コンタクトホール(6) 
及び該溝(5) の内部を完全に埋める第2の導電体層
を堆積する工程と、該第2の導電体層を異方性を有する
ドライエッチング手段により該層間絶縁膜(3) の上
面が完全に表出するまで全面エッチングして、該層間絶
縁膜(3) の該コンタクトホール(6) を含む該溝
(5) 内に平坦に埋め込まれた上層の第2の導電性パ
ターン(7) を形成する工程、若しくは該第2の導電
体層を該層間絶縁膜の溝に沿ってパターニングして、該
層間絶縁膜の該コンタクトホールを含む溝内を埋め、且
つ該層間絶縁膜の表面上に突出した上層の第2の導電性
パターンを形成する工程の、両方若しくは何れか一方と
を含む本発明による半導体装置の製造方法によって解決
される。
[Means for Solving the Problems] FIG. 1 is a schematic cross-sectional view for explaining the principle of the present invention. In the figure, 1 is a lower insulating film, 2 is a lower layer first conductive pattern (for contact of first layer wiring). 3 is an interlayer insulating film, 4 is a contact hole arrangement region, 5 is a trench, 6 is a contact hole, and 7 is an upper second conductive layer (second conductor layer) buried in the trench including the contact hole. layer embedded wiring). As shown in the same figure, the above-mentioned problem involves a process of forming an interlayer insulating film (3) on a substrate having a first conductive pattern (2), and a step of forming an interlayer insulating film (3) on a substrate having a first conductive pattern (2). A groove (5) having a predetermined pattern shape that includes the conductive pattern (2) and the contact hole arrangement region (4) on the conductive pattern (2) and having a depth that does not reach the bottom of the interlayer insulating film (3) is formed. and forming a contact hole (6) exposing the surface of the first conductive pattern (2) in the contact hole arrangement region (4) in the groove (5) of the interlayer insulating film (3). a step of forming;
The contact hole (6) is formed on the interlayer insulating film (3).
and depositing a second conductive layer that completely fills the inside of the groove (5), and etching the second conductive layer by anisotropic dry etching means to remove the upper surface of the interlayer insulating film (3). The second conductive pattern (7) of the upper layer is flatly buried in the groove (5) including the contact hole (6) of the interlayer insulating film (3) by etching the entire surface until it is completely exposed. ), or patterning the second conductive layer along the groove of the interlayer insulating film to fill the groove including the contact hole of the interlayer insulating film, and filling the groove of the interlayer insulating film with a surface of the interlayer insulating film. This problem is solved by the method of manufacturing a semiconductor device according to the present invention, which includes one or both of the steps of forming a second conductive pattern in the upper layer that projects upward.

【0009】[0009]

【作用】即ち本発明においては、上層の導電性パターン
例えば上層の導電体層(配線)(7) を層間絶縁膜(
3) の表面に形成した設計ルールに見合う溝(5) 
内に平坦若しくは平坦より高く埋込むことによって、上
層配線(7) のパターニングに際し、上層配線(7)
 の品質維持に必要な部分をエッチングガスにふれない
ようにして、幅や厚さの目減りによる信頼性の低下を回
避する。また少なくとも最上層以外の上層配線(7) 
においては、溝(5) に埋め込まれた配線(7) の
上面と層間絶縁膜(3)の上面とがほぼ同一平面上に位
置するように形成されるので、更に上層の配線を形成す
る面は段差部の存在しないほぼ完全な平坦面になり、カ
バレッジ性の不足による更に上層配線の品質劣化を生ず
ることがなくなる。
[Operation] That is, in the present invention, the upper conductive pattern (for example, the upper conductive layer (wiring) (7)) is connected to the interlayer insulating film (
3) Grooves (5) that meet the design rules formed on the surface of
When patterning the upper layer wiring (7), the upper layer wiring (7) can be buried flat or higher than flat.
Avoid reducing reliability due to loss of width or thickness by preventing parts necessary for maintaining quality from coming into contact with etching gas. Also, at least upper layer wiring other than the top layer (7)
In this case, the upper surface of the wiring (7) embedded in the groove (5) and the upper surface of the interlayer insulating film (3) are formed so as to be located on almost the same plane, so that the surface on which the wiring in the upper layer is formed is The surface is almost completely flat without any stepped portions, and there is no further deterioration in the quality of the upper layer wiring due to insufficient coverage.

【0010】以上により、高歩留りで高信頼性を有する
多層配線が形成される。
[0010] Through the above steps, a multilayer wiring having high yield and high reliability is formed.

【0011】[0011]

【実施例】以下本発明を一実施例について、図2及び図
3に示す模式工程断面図を参照し、具体的に説明する。
[Embodiment] The present invention will be specifically described below with reference to an embodiment of the present invention with reference to schematic process cross-sectional views shown in FIGS. 2 and 3.

【0012】図2(a) 参照 本発明の方法によりLSI等の多層配線を形成するに際
しては、素子(図示せず)が形成された半導体基板10
上に下層絶縁膜11が形成され、この下層絶縁膜11上
に図示しないコンタクトホールを介して例えば純Al若
しくはAl合金からなる第1層Al配線(コンタクトパ
ッド部図示)12が導出されてなる被加工基板上に、先
ずCVD 法によりPSG等からなる 1.5μm程度
の厚さの第1の層間絶縁膜13を形成する。この第1の
層間絶縁膜13の厚さ(t1)は層間絶縁耐力を満足す
る厚さに、この第1の層間絶縁膜に埋め込まれる第2層
の配線に必要な厚さを加算した値以上に規定される。
Refer to FIG. 2(a) When forming a multilayer wiring such as an LSI by the method of the present invention, a semiconductor substrate 10 on which elements (not shown) are formed is used.
A lower layer insulating film 11 is formed on the lower layer insulating film 11, and a first layer Al wiring (contact pad portion shown) 12 made of, for example, pure Al or an Al alloy is led out through a contact hole (not shown) on the lower layer insulating film 11. First, a first interlayer insulating film 13 made of PSG or the like and having a thickness of about 1.5 μm is formed on the processed substrate by the CVD method. The thickness (t1) of this first interlayer insulating film 13 is greater than or equal to the sum of the thickness that satisfies the interlayer dielectric strength and the thickness required for the second layer wiring embedded in this first interlayer insulating film. stipulated in

【0013】図2(b) 参照 次いでエッチング手段に[CF4+CHF3] ガスに
よるリアクティブイオンエッチング( RIE ) 手
段を用いる通常のフォトリソグラフィによりコントロー
ルエッチングを行い、上記第1の層間絶縁膜13に第1
層Al配線12に対するコンタクトホール形成領域14
を含む第2層配線のパターン形状に対応するパターン形
状を有する例えば幅1μm、深さ 0.8μm程度の第
1の溝15を形成する。ここで、上記第1の溝15の幅
及び深さ(d) は、第2層配線に必要な幅及び厚さ(
t2)と等しく規定される。また、コンタクトパッド部
は通常とおり配線幅の2〜3倍程度の幅に形成される。
Referring to FIG. 2(b), control etching is then performed by ordinary photolithography using reactive ion etching (RIE) using [CF4+CHF3] gas as the etching means, and the first interlayer insulating film 13 is etched with a first
Contact hole formation region 14 for layered Al wiring 12
A first groove 15 having a pattern shape corresponding to the pattern shape of the second layer wiring including, for example, a width of 1 μm and a depth of about 0.8 μm is formed. Here, the width and depth (d) of the first groove 15 are the width and thickness (d) required for the second layer wiring.
t2). Further, the contact pad portion is formed to have a width approximately two to three times the wiring width as usual.

【0014】なお、図中のR1は上記フォトリソグラフ
ィに際し形成された第1のレジストマスクを示す。 図2(c) 参照 次いで、前記同様のエッチング手段を用いるフォトリソ
グラフィにより、第1の層間絶縁膜13の第1の溝15
内のコンタクトホール形成領域14に第1層Al配線1
2(コンタクトパッド部)の上面を表出する第1のコン
タクトホール16を形成する。図中、R2は上記フォト
リソグラフィに際し形成された第2のレジストマスクを
示す。
Note that R1 in the figure indicates the first resist mask formed during the photolithography described above. Refer to FIG. 2(c) Next, the first groove 15 of the first interlayer insulating film 13 is etched by photolithography using the same etching means as described above.
The first layer Al wiring 1 is formed in the contact hole formation region 14 within the
A first contact hole 16 exposing the upper surface of 2 (contact pad portion) is formed. In the figure, R2 indicates the second resist mask formed during the photolithography.

【0015】図2(d) 参照 次いで、通常のバイアススパッタ法により上記第1の層
間絶縁膜13上に、第1のコンタクトホール16及び第
1の溝15内を完全に埋める厚さ1μm程度の第2のA
l(Al合金を含む)層117 を堆積する。
Referring to FIG. 2(d), a film having a thickness of about 1 μm is then deposited on the first interlayer insulating film 13 by a normal bias sputtering method to completely fill the first contact hole 16 and the first groove 15. Second A
A layer 117 (containing an Al alloy) is deposited.

【0016】図2(e) 参照 次いで、エッチングガスに塩素系のガス例えばCCl4
を用いるRIE 手段により、第1の層間絶縁膜13の
上面が完全に表出するまでエッチングバックを行い、第
1の層間絶縁膜13の第1のコンタクトホール16を含
む第1の溝15内に、上面が第1の層間絶縁膜13の上
面とほぼ平坦な第2層埋込みAl配線17を形成する。
Referring to FIG. 2(e), a chlorine-based gas such as CCl4 is used as the etching gas.
Etching back is performed by RIE using a method until the upper surface of the first interlayer insulating film 13 is completely exposed, and the inside of the first groove 15 including the first contact hole 16 of the first interlayer insulating film 13 is etched back. , a second layer buried Al wiring 17 whose upper surface is substantially flat with the upper surface of the first interlayer insulating film 13 is formed.

【0017】図3(a) 参照 次いで、上記第2層埋込みAl配線17を有する第1の
層間絶縁膜13上に、前記同様層間絶縁耐力と第3層配
線に必要な厚さの和に対応する例えば 1.5μm程度
の厚さの第2の層間絶縁膜18を形成する。
Referring to FIG. 3A, next, on the first interlayer insulating film 13 having the second layer buried Al wiring 17, a film corresponding to the sum of the interlayer dielectric strength and the thickness required for the third layer wiring as described above is applied. For example, a second interlayer insulating film 18 having a thickness of about 1.5 μm is formed.

【0018】図3(b) 参照 次いで上記第2の層間絶縁膜18の、第2層配線と第3
層配線とのコンタクトホール形成領域19を含む第3層
配線のパターンに対応する領域に、前記同様のフォトリ
ソグラフィ手段により第3層配線に必要な幅及び厚さに
対応する例えば幅1μm、深さ 0.8μm程度の第2
の溝20を形成する。図中、R3は第3のレジストマス
クを示す。
Referring to FIG. 3(b), the second layer wiring and the third layer wiring of the second interlayer insulating film 18 are
A region corresponding to the pattern of the third layer wiring, including the contact hole forming region 19 with the layer wiring, is formed with a width of 1 μm and a depth corresponding to the width and thickness necessary for the third layer wiring, for example, by the same photolithography method as described above. The second layer of about 0.8μm
A groove 20 is formed. In the figure, R3 indicates the third resist mask.

【0019】図3(c) 参照 次いで、前記同様のフォトリソグラフィ手段により、上
記第2の層間絶縁膜18に形成された第2の溝20内の
第2層Al埋込み配線17に対するコンタクトホール形
成領域19に第2層埋込みAl配線17のコンタクトパ
ッド部を表出する第2のコンタクトホール21を形成す
る。図中、R4は第4のレジストマスクを示す。
Referring to FIG. 3(c), a contact hole formation region for the second layer Al buried wiring 17 is formed in the second trench 20 formed in the second interlayer insulating film 18 by the same photolithography method as described above. A second contact hole 21 is formed in 19 to expose a contact pad portion of the second layer buried Al wiring 17. Then, as shown in FIG. In the figure, R4 indicates the fourth resist mask.

【0020】図3(d) 参照 次いで、第4のレジストマスクR4を除去し、次いで上
記第2の層間絶縁膜18上に前記第2のコンタクトホー
ル21を含む第2の溝20内を完全に埋める例えば厚さ
1μm程度の第3のAl(Al合金を含む)層122 
を堆積し、次いで、エッチング手段に塩素系のガス例え
ばCCl4等を用いるRIE 手段を用いる通常のフォ
トリソグラフィにより上記第3のAl層122 のパタ
ーニングを行って、下部が第2の層間絶縁膜18内に埋
め込まれ、且つ第2のコンタクトホール21で第2層A
l埋込み配線17に接続する第3層Al配線22を形成
し、3層のAl配線を有する多層配線構造が完成する。
Referring to FIG. 3(d), the fourth resist mask R4 is removed, and the inside of the second groove 20 including the second contact hole 21 is completely etched on the second interlayer insulating film 18. For example, a third Al (including Al alloy) layer 122 with a thickness of about 1 μm is buried.
Then, the third Al layer 122 is patterned by ordinary photolithography using RIE using a chlorine-based gas such as CCl4 as an etching means, so that the lower part is inside the second interlayer insulating film 18. , and the second layer A is buried in the second contact hole 21.
A third layer Al wiring 22 connected to the buried wiring 17 is formed, and a multilayer wiring structure having three layers of Al wiring is completed.

【0021】なお、上記第3層Al配線22のパターニ
ングをエッチバック法により行わずに、フォトリソグラ
フィ手段により行ったのは、この第3層Al配線22が
最上層配線であり、敢えて完全に埋込む必要がなかった
ことによる。
Note that the reason why the third layer Al wiring 22 was patterned by photolithography rather than by an etch-back method is that this third layer Al wiring 22 is the top layer wiring, and it is intentionally not completely buried. This is because there was no need to include it.

【0022】また上記実施例においては、溝15、20
等の形成を先に行い、コンタクトホール16、21等の
形成を後に行ったが、これらの順序は逆であっても差支
えない。 上記実施例の説明から明らかなように、本発明によれば
、多層配線構造の形成に際して、上層の配線例えば(1
7)(22)等を層間絶縁膜例えば(13)(18)等
に形成した溝(15)(20)等に平坦若しくは平坦よ
り高く埋込むことによって、上層配線(17)(22)
等のパターニングに際し、上層配線(17)(22)等
の品質維持に必要な部分はエッチングガスに接触せしめ
ない。従って上層配線(17)(22)等にその性能が
損なわれるような幅や厚さの目減りは生ぜずその信頼性
が確保される。
Further, in the above embodiment, the grooves 15, 20
Although the formation of the contact holes 16, 21, etc. was carried out first, and the formation of the contact holes 16, 21, etc. was carried out later, these orders may be reversed. As is clear from the description of the above embodiments, according to the present invention, when forming a multilayer wiring structure, the upper layer wiring, for example (1
7) (22) etc. are buried in the grooves (15) (20) formed in the interlayer insulating film (13) (18) etc. to form flat or higher than flat upper layer wiring (17) (22).
When patterning, etc., portions necessary for maintaining quality such as the upper layer wiring (17), (22), etc. are not brought into contact with the etching gas. Therefore, there is no loss in width or thickness of the upper layer wiring (17), (22), etc. that would impair its performance, and its reliability is ensured.

【0023】また、少なくとも最上層以外の上層配線(
17)においては、溝(15)に埋め込まれた配線(1
7)の上面と層間絶縁膜(13)の上面とがほぼ同一平
面上に位置するように層間絶縁膜(13)内に埋め込ま
れるので、更に上層の配線(22)を形成する面は段差
部の存在しないほぼ完全な平坦面になり、カバレッジ性
の不足による更に上層配線(22)の品質劣化を生ずる
ことがなくなる。
[0023] Also, at least upper layer wiring other than the top layer (
17), the wiring (1) embedded in the groove (15)
7) Since the upper surface of the interlayer insulating film (13) is embedded in the interlayer insulating film (13) so that the upper surface of the interlayer insulating film (13) is located almost on the same plane, the surface on which the upper layer wiring (22) will be formed will have a stepped portion. This results in an almost completely flat surface with no traces, and there is no further deterioration in the quality of the upper layer wiring (22) due to insufficient coverage.

【0024】[0024]

【発明の効果】以上説明のように本発明によれば、多層
配線における配線の品質確保に必要な断面形状が設計値
通りに確保され、且つ配線層のカバレッジ性不足による
配線品質の劣化は生じない。従って本発明は多層配線構
造を有する半導体装置の歩留り及び信頼性の向上に寄与
するところが大きい。
[Effects of the Invention] As explained above, according to the present invention, the cross-sectional shape necessary for ensuring the quality of wiring in multilayer wiring is secured as designed, and deterioration of wiring quality due to insufficient coverage of wiring layers is prevented. do not have. Therefore, the present invention greatly contributes to improving the yield and reliability of semiconductor devices having a multilayer wiring structure.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の原理説明用模式断面図[Figure 1] Schematic sectional view for explaining the principle of the present invention

【図2】 
 本発明の方法の一実施例の模式工程断面図(その1)
[Figure 2]
Schematic process cross-sectional diagram of one embodiment of the method of the present invention (Part 1)

【図3】  本発明の方法の一実施例の模式工程断面図
(その2)
[Figure 3] Schematic process cross-sectional diagram of one embodiment of the method of the present invention (Part 2)

【符号の説明】[Explanation of symbols]

1  下部絶縁膜 2  下層の第1の導電性パターン(第1層配線)3 
 層間絶縁膜 4  コンタクトホール形成領域 5  溝 6  コンタクトホール
1 Lower insulating film 2 Lower layer first conductive pattern (first layer wiring) 3
Interlayer insulating film 4 Contact hole formation region 5 Groove 6 Contact hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1の導電性パターン(2) を有する基
板上に層間絶縁膜(3) を形成する工程と、該層間絶
縁膜(3) に、該第1の導電性パターン(2) 上の
コンタクトホール配設領域(4) を包含する所定のパ
ターン形状を有し、且つ該層間絶縁膜の底部に達しない
深さの溝(5) を形成する工程と、該層間絶縁膜(3
) の該溝(5) 内の該コンタクトホール配設領域(
4) に該第1の導電性パターン(2) 面を表出する
コンタクトホール(6) を形成する工程と、該層間絶
縁膜(3) 上に該コンタクトホール(6) 及び該溝
(5) の内部を完全に埋める第2の導電体層を堆積す
る工程と、該第2の導電体層を異方性を有するドライエ
ッチング手段により該層間絶縁膜(3) の上面が完全
に表出するまで全面エッチングして、該層間絶縁膜(3
) の該コンタクトホール(6) を含む該溝(5) 
内に平坦に埋め込まれた上層の第2の導電性パターン(
7) を形成する工程、若しくは該第2の導電体層を該
層間絶縁膜の溝に沿ってパターニングして、該層間絶縁
膜の該コンタクトホールを含む溝内を埋め、且つ該層間
絶縁膜の表面上に突出した上層の第2の導電性パターン
を形成する工程の、両方若しくは何れか一方とを含むこ
とを特徴とする半導体装置の製造方法。
1. A step of forming an interlayer insulating film (3) on a substrate having a first conductive pattern (2), and forming the first conductive pattern (2) on the interlayer insulating film (3). A step of forming a groove (5) having a predetermined pattern shape that includes the upper contact hole arrangement region (4) and having a depth that does not reach the bottom of the interlayer insulating film (3);
) in the groove (5) of the contact hole arrangement area (
4) forming a contact hole (6) exposing the surface of the first conductive pattern (2), and forming the contact hole (6) and the groove (5) on the interlayer insulating film (3); The upper surface of the interlayer insulating film (3) is completely exposed by depositing a second conductive layer that completely fills the inside of the interlayer insulating film (3) and dry etching the second conductive layer with anisotropy. The interlayer insulating film (3
) The groove (5) including the contact hole (6)
The upper layer second conductive pattern (
7) forming a step, or patterning the second conductive layer along the groove of the interlayer insulating film to fill the groove including the contact hole of the interlayer insulating film; 1. A method of manufacturing a semiconductor device, comprising the step of forming a second conductive pattern in an upper layer protruding from a surface.
JP7199591A 1991-04-05 1991-04-05 Manufacture of semiconductor device Pending JPH04307939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7199591A JPH04307939A (en) 1991-04-05 1991-04-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7199591A JPH04307939A (en) 1991-04-05 1991-04-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04307939A true JPH04307939A (en) 1992-10-30

Family

ID=13476572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7199591A Pending JPH04307939A (en) 1991-04-05 1991-04-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04307939A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585307A (en) * 1995-02-27 1996-12-17 Taiwan Semiconductor Manufacturing Company Ltd. Forming a semi-recessed metal for better EM and Planarization using a silo mask
JPH09283523A (en) * 1996-04-12 1997-10-31 Lg Semicon Co Ltd Formation of multi-layered wiring in semiconductor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585307A (en) * 1995-02-27 1996-12-17 Taiwan Semiconductor Manufacturing Company Ltd. Forming a semi-recessed metal for better EM and Planarization using a silo mask
JPH09283523A (en) * 1996-04-12 1997-10-31 Lg Semicon Co Ltd Formation of multi-layered wiring in semiconductor element

Similar Documents

Publication Publication Date Title
US7233052B2 (en) Semiconductor device including fine dummy patterns
US7315072B2 (en) Semiconductor device capable of suppressing current concentration in pad and its manufacture method
US6524948B2 (en) Semiconductor device and method for fabricating the same
JPH10209273A (en) Manufacture of semiconductor device
KR100267108B1 (en) Semiconductor device having multi-layer metal interconnection and method fabricating the same
JPH04307939A (en) Manufacture of semiconductor device
JPH10321623A (en) Semiconductor device and its manufacture
JP2001332619A (en) Manufacturing method of semiconductor device
KR0134108B1 (en) Fabrication method of semiconductor device
JP3442064B2 (en) Method for manufacturing semiconductor device
JPH0758204A (en) Manufacture of semiconductor device
KR0182043B1 (en) Method for plating metal-insulating layer
JP3983701B2 (en) Semiconductor device
JP2004022694A (en) Method of manufacturing semiconductor device
JPS6039849A (en) Manufacture of semiconductor device
KR0179849B1 (en) Metal interconnector in semiconductor device and method therefor
JP2002124516A (en) Semiconductor device and its manufacturing method
JPH06163721A (en) Semiconductor device
JP2001313334A (en) Manufacturing method of semiconductor device
KR20020031491A (en) A dummy capacity using dummy pattern and forming method thereof
JPH0945765A (en) Manufacture of semiconductor device with multilayer interconnection structure
JPH0621244A (en) Manufacture of semiconductor device
JP2002083867A (en) Semiconductor device and production method therefor
JPH1197526A (en) Semiconductor device and manufacture thereof
KR20050073689A (en) Method for forming multi line of semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000516