JPH04245442A - Manufacture of ldd transistor - Google Patents

Manufacture of ldd transistor

Info

Publication number
JPH04245442A
JPH04245442A JP1017791A JP1017791A JPH04245442A JP H04245442 A JPH04245442 A JP H04245442A JP 1017791 A JP1017791 A JP 1017791A JP 1017791 A JP1017791 A JP 1017791A JP H04245442 A JPH04245442 A JP H04245442A
Authority
JP
Japan
Prior art keywords
drain
gate electrode
semiconductor substrate
source
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1017791A
Other languages
Japanese (ja)
Inventor
Junichi Matsuda
順一 松田
Toshimitsu Taniguchi
敏光 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1017791A priority Critical patent/JPH04245442A/en
Publication of JPH04245442A publication Critical patent/JPH04245442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To eliminate a need of tilting an ion beam, to make a source and a drain easily symmetric and to prevent an enhanced diffusion by a method wherein an ion implantation operation is performed in a state that an Si3N4 film has been applied and a heat treatment is executed in an oxidizing atmosphere. CONSTITUTION:A gate electrode 14 is formed; Si3N4 is deposited on the whole surface of a semiconductor substrate 11 an Si3N4 film 15 is formed; P<-> ions are implanted vertically into the semiconductor substrate 11 by making use of the gate electrode 14 as a mask; an N<-> source-drain 16 is formed. In succession, an SiO2 film is formed; an anisotropic etching operation is executed to it; a sidewall spacer 17 is formed. As<+> ions are implanted vertically into the semiconductor substrate 11 by making use of the gate electrode 14 and the sidewall spacer 17 as a mask; an N<+> source-drain 18 is formed. After that, a heat treatment is executed in an oxidizing atmosphere in a state that the Si3N4 film 15 has been applied.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、LDDトランジスタの
製造方法に関し、さらに詳しく言えば、ソース・ドレイ
ン形成時におけるチャネリング防止及びソース・ドレイ
ン拡散時における増速拡散の防止に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an LDD transistor, and more particularly, to prevention of channeling during formation of a source/drain and prevention of accelerated diffusion during diffusion of a source/drain.

【0002】0002

【従来の技術】一般にチャンネル長が1μm程度以下に
微細化されたMOSトランジスタでは、ホットキャリア
効果を低減化するためにいわゆるLDD構造のMOSト
ランジスタ(以下「LDDトランジスタ」という。)が
用いられている。従来、LDDトランジスタを製造する
には、第5図に示す如くSiO2又はSi3N4よりな
るサイドウォールスペーサ(1)を用いて、イオン注入
を行い、低濃度ソー ス・ドレイン(2)と高濃度ソー
ス・ドレイン(3)を形成していた。そして、かかるイ
オン注入に際してはチャネリングを防止するためにイオ
ンビームの入射角を垂直方向から7゜程度傾斜させてい
た。
2. Description of the Related Art Generally, in MOS transistors whose channel length is miniaturized to about 1 μm or less, MOS transistors with a so-called LDD structure (hereinafter referred to as "LDD transistors") are used to reduce hot carrier effects. . Conventionally, to manufacture an LDD transistor, as shown in Fig. 5, sidewall spacers (1) made of SiO2 or Si3N4 are used and ion implantation is performed to connect the low concentration source/drain (2) and the high concentration source/drain. It formed a drain (3). In order to prevent channeling during such ion implantation, the angle of incidence of the ion beam is inclined by about 7 degrees from the vertical direction.

【0003】なおこの技術は例えばIEDMテクニカル
ダイジェスト(1988年版)の234頁〜237頁に
記載されている。
[0003] This technique is described, for example, on pages 234 to 237 of IEDM Technical Digest (1988 edition).

【0004】0004

【発明が解決しようとする課題】しかしながら、イオン
ビームを傾斜させるとソース・ドレインの左右対称性が
悪化し、電気的特性も非対称になるという不具合がある
。また、SiO2でサイドウォールスペーサ(1)を形
成した場合には、酸化性雰囲気中で熱処理を施すと、酸
素がサイドウォールスペーサ(1)中を拡散して、低濃
度ソース・ドレイン(2)の表面に達し、低濃度ソース
・ドレイン(2)が増速拡散を受ける。この結果、トラ
ンジスタの実効チャンネル長が必要以上に短かくなると
いう不具合がある。
However, when the ion beam is tilted, the left-right symmetry of the source and drain deteriorates, and the electrical characteristics also become asymmetrical. In addition, when the sidewall spacer (1) is formed of SiO2, if heat treatment is performed in an oxidizing atmosphere, oxygen will diffuse into the sidewall spacer (1), forming a low concentration source/drain (2). It reaches the surface and the lightly doped source/drain (2) undergoes accelerated diffusion. As a result, there is a problem that the effective channel length of the transistor becomes shorter than necessary.

【0005】さらに、Si3N4でサイドウォールスペ
ーサ(1)を形成した場合には、Si3N4のストレス
の影響によってサイドウォールスペーサ(1)にクラッ
クが生じたり、あるいはソース・ドレインと半導体基板
の間にリーク電流を生じるおそれがある。
Furthermore, when the sidewall spacer (1) is formed of Si3N4, cracks may occur in the sidewall spacer (1) due to the stress of Si3N4, or leakage current may occur between the source/drain and the semiconductor substrate. may occur.

【0006】[0006]

【課題を解決するための手段】本発明は、斯上した従来
の課題に鑑みてなされたものであり、ゲート電極を形成
した後に半導体基板上の全面をSi3N4膜でカバーし
、該Si3N4膜を付けた状態でLDD構造のソース・
ドレイン形成のためのイオン注入工程とその後の酸化性
雰囲気中での熱処理工程を行うことを特徴としている。
[Means for Solving the Problems] The present invention has been made in view of the above-mentioned conventional problems.After forming a gate electrode, the entire surface of a semiconductor substrate is covered with a Si3N4 film, and the Si3N4 film is With the attached state, the source of LDD structure
It is characterized by performing an ion implantation process for drain formation and a subsequent heat treatment process in an oxidizing atmosphere.

【0007】[0007]

【作用】上述の手段によれば、ゲート電極を形成した後
に半導体基板上の全面をSi3N4膜でカバーしている
ので、該Si3N4膜がイオン注入に対してはチャネリ
ング防止膜として作用する。これにより、従来のように
チャネリングを防止するためにイオンビームを垂直方向
から傾斜させる必要がないので、左右対称性の良いソー
ス・ドレインを形成することが可能となる。
According to the above method, since the entire surface of the semiconductor substrate is covered with the Si3N4 film after forming the gate electrode, the Si3N4 film acts as a channeling prevention film against ion implantation. This eliminates the need to tilt the ion beam from the vertical direction in order to prevent channeling, as is the case in the prior art, making it possible to form sources and drains with good left-right symmetry.

【0008】また、その後の酸化性雰囲気中での熱処理
工程に際しては前記Si3N4膜が耐酸 化性膜として
作用する。これにより、酸素が半導体基板表面にまで拡
散するのを阻止し、ソース・ドレインが増速拡散を受け
るのを防止することが可能となる。
Furthermore, during the subsequent heat treatment step in an oxidizing atmosphere, the Si3N4 film acts as an oxidation-resistant film. This makes it possible to prevent oxygen from diffusing to the surface of the semiconductor substrate and prevent the source/drain from undergoing accelerated diffusion.

【0009】[0009]

【実施例】次に図1乃至図4を参照しながら、本発明の
実施例を詳細に説明する。まず図1に示す如く、P型の
半導体基板(11)上に約200Åのゲート酸化膜(1
2)を介してポリシリコンをLPCVD法により約30
00Åの膜厚に堆積し、次いで燐をドーピングしてなる
ポリシリコン層(13)を形成する。
Embodiments Next, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 4. First, as shown in FIG. 1, a gate oxide film (1
2) Approximately 30% polysilicon is deposited by LPCVD method through
A polysilicon layer (13) is deposited to a thickness of 0.00 Å and then doped with phosphorus.

【0010】続いて図2に示す如く、ゲート酸化膜(1
2)及びポリシリコン層(13)に対し選択的に異方性
のエッチング処理を施すことにより、ゲート電極(14
)を形成する。そして図3に示す如く、Si3N4をL
PCVD法により半導体基板(11)の全面にSi3N
4を堆積し、約500Åの膜厚を有するSi3N4膜(
15)を形成し、ゲート電極(14)をマスクとしてP
+イオンをイオン注入法により、加速電圧約60KeV
、ドーズ量約3×1013/cm2の条件下で半導体基
板(11)中に垂直に打ち込み、N−ソース・ドレイン
(16)を形成する。
Next, as shown in FIG. 2, a gate oxide film (1
2) and the polysilicon layer (13) by selectively performing an anisotropic etching process, the gate electrode (14
) to form. Then, as shown in Fig. 3, Si3N4 is
Si3N is deposited on the entire surface of the semiconductor substrate (11) using the PCVD method.
4 and has a thickness of about 500 Å (
15), and using the gate electrode (14) as a mask, P
Accelerating voltage of approximately 60 KeV by ion implantation of + ions
, is vertically implanted into the semiconductor substrate (11) at a dose of approximately 3×10 13 /cm 2 to form an N-source/drain (16).

【0011】ここで、Si3N4膜(15)がP+イオ
ンのチャネリング防止膜として作用するので、従来のよ
うにチャネリングを防止するためにイオンビームを垂直
方向から傾斜させる必要がなく、左右対称性の良いN−
ソース・ドレイン(16)を形成できる利点を有する。 なお、Si3N4膜(15)を形成する前に半導体基板
(11)上に200Å程度の熱酸化膜を形成しておくと
、半導体基板(11)の表面に及ぼすSi3N4膜(1
5)の応力を緩和できる。
Here, since the Si3N4 film (15) acts as a channeling prevention film for P+ ions, there is no need to tilt the ion beam from the vertical direction in order to prevent channeling as in the conventional case, and the beam has good left-right symmetry. N-
It has the advantage of being able to form a source/drain (16). Note that if a thermal oxide film of about 200 Å is formed on the semiconductor substrate (11) before forming the Si3N4 film (15), the effect on the surface of the semiconductor substrate (11) will be reduced.
5) stress can be alleviated.

【0012】続いて図4に示す如く、SiO2をLPC
VD法により全面に堆積してSiO2膜を形成し、該S
iO2膜に異方性のエッチングを施すことによりサイド
ウォールスペーサ(17)を形成する。そして、ゲート
電極(14)及びサイドウォールスペーサ(17)をマ
スクとしてAs+イオンを加速電圧約60KeV、ドー
ズ量約5×1015/cm2の条件下で半導体基板(1
1)中に垂直に打ち込み、N+ソース・ドレイン(18
)を形成する。
Next, as shown in FIG. 4, SiO2 was subjected to LPC
A SiO2 film is formed by depositing on the entire surface by VD method, and the S
Sidewall spacers (17) are formed by subjecting the iO2 film to anisotropic etching. Using the gate electrode (14) and sidewall spacer (17) as a mask, As+ ions are applied to the semiconductor substrate (1
1) N+ source/drain (18
) to form.

【0013】ここで、Si3N4膜(15)が同様にA
s+イオンのチャネリング防止膜として作用す るので
、従来のようにチャネリングを防止するためにイオンビ
ームを垂直方向から傾斜させる必要がなく、左右対称性
の良いN+ソース・ドレイン(18)を形成することが
できる利点を有する。その後、Si3N4膜(15)を
付けた状態で、酸化性雰囲気中での熱処理工程を行う 
。該熱処理工程の例としては、ソース・ドレイン拡散工
程(例えば、950℃O2+N2)、BPSG膜のフロ
ー工程(例えば、900℃O2)等がある。ここでSi
3N4膜(15)は酸化性雰囲気中の酸素を通さない性
質を有しているので、酸素の影響によるソース・ドレイ
ンの増速拡散を防止できる。
Here, the Si3N4 film (15) is similarly
Since it acts as a channeling prevention film for s+ ions, there is no need to tilt the ion beam from the vertical direction to prevent channeling as in the conventional method, and it is possible to form an N+ source/drain (18) with good left-right symmetry. It has the advantage of being able to After that, with the Si3N4 film (15) attached, a heat treatment process is performed in an oxidizing atmosphere.
. Examples of the heat treatment process include a source/drain diffusion process (for example, 950°C O2+N2), a BPSG film flow process (for example, 900°C O2), and the like. Here Si
Since the 3N4 film (15) has a property of not allowing oxygen in the oxidizing atmosphere to pass through, it can prevent accelerated diffusion of the source and drain due to the influence of oxygen.

【0014】特に、N−ソース・ドレイン(16)の増
速拡散が防止されるので、LDDトラン ジスタの実効
チャンネル長の制御性を向上できるという利点を有する
。さらに、Si3N4膜(15)は約500Åと比較的
薄い膜厚で形成され、サイドウォ ールスペーサ(17
)はSiO2よりなるので、従来のようにサイドウォー
ルスペーサの全部をSi3N4で形成した場合と比べて
ストレスの影響を小さくすることができる という利点
も有している。
In particular, since accelerated diffusion of the N-source/drain (16) is prevented, there is an advantage that the controllability of the effective channel length of the LDD transistor can be improved. Furthermore, the Si3N4 film (15) is formed with a relatively thin film thickness of about 500 Å, and the sidewall spacer (17) is formed with a relatively thin film thickness of about 500 Å.
) is made of SiO2, it also has the advantage that the influence of stress can be reduced compared to the conventional case in which the entire sidewall spacer is made of Si3N4.

【0015】[0015]

【発明の効果】以上説明したように、本発明によれば従
来のようにチャネリングを防止するためにイオンビーム
を垂直方向から傾斜させる必要がないので、左右対称性
の良いN−ソース・ドレイン(16)及びN+ソース・
ドレイン(18)を容易に形成することができる。
As explained above, according to the present invention, there is no need to tilt the ion beam from the vertical direction in order to prevent channeling as in the conventional method, so that N-source/drain (N-source/drain) with good bilateral symmetry can be obtained. 16) and N+ source・
A drain (18) can be easily formed.

【0016】さらに本発明によれば、酸素の影響による
N−ソース・ドレイン(16)及びN+ソース・ドレイ
ン(18)の増速拡散を防止し、特にLDDトランジス
タの実効チャンネル長の制御性を向上できる効果を有す
る。
Furthermore, according to the present invention, accelerated diffusion of the N- source/drain (16) and N+ source/drain (18) due to the influence of oxygen is prevented, and in particular, controllability of the effective channel length of the LDD transistor is improved. It has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例に係る第1の断面図である。FIG. 1 is a first cross-sectional view according to an embodiment of the present invention.

【図2】本発明の実施例に係る第2の断面図である。FIG. 2 is a second sectional view according to an embodiment of the present invention.

【図3】本発明の実施例に係る第3の断面図である。FIG. 3 is a third sectional view according to an embodiment of the present invention.

【図4】本発明の実施例に係る第4の断面図である。FIG. 4 is a fourth sectional view according to the embodiment of the present invention.

【図5】従来例に係る断面図である。FIG. 5 is a sectional view of a conventional example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  一導電型の半導体基板上にゲート絶縁
膜及び導電層を順次形成する工程と、前記導電層に選択
的に異方性のエッチング処理を施し、ゲート電極を形成
する工程と、前記半導体基板の全面に窒化シリコン膜を
形成した後に、前記ゲート電極をマスクとして第1の不
純物イオンをイオン注入法により前記半導体基板中に打
ち込み、逆導電型の低濃度ソース・ドレインを形成する
工程と、前記ゲート電極の側壁に前記窒化シリコン膜を
介してSiO2よりなるサイドウォールスペーサを形成
した後に、前記ゲート電極及び前記サイドウォールスペ
ーサをマスクとして第2の不純物イオンをイオン注入法
により前記基板中に打ち込み、逆導電型の高濃度ソース
・ドレインを形成する工程と、酸化性雰囲気中での熱処
理工程とを有することを特徴とするLDDトランジスタ
の製造方法。
1. A step of sequentially forming a gate insulating film and a conductive layer on a semiconductor substrate of one conductivity type, and a step of selectively performing anisotropic etching treatment on the conductive layer to form a gate electrode, After forming a silicon nitride film on the entire surface of the semiconductor substrate, using the gate electrode as a mask, first impurity ions are implanted into the semiconductor substrate by an ion implantation method to form a low concentration source/drain of opposite conductivity type. After forming a sidewall spacer made of SiO2 on the sidewall of the gate electrode via the silicon nitride film, second impurity ions are implanted into the substrate using the gate electrode and the sidewall spacer as a mask. 1. A method for manufacturing an LDD transistor, comprising a step of implanting a high concentration source/drain of opposite conductivity type, and a heat treatment step in an oxidizing atmosphere.
【請求項2】  前記第1及び第2の不純物イオンが燐
イオン及び砒素イオンであることを特徴とする請求項1
記載のLDDトランジスタの製造方法。
2. Claim 1, wherein the first and second impurity ions are phosphorus ions and arsenic ions.
A method of manufacturing the LDD transistor described above.
JP1017791A 1991-01-30 1991-01-30 Manufacture of ldd transistor Pending JPH04245442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1017791A JPH04245442A (en) 1991-01-30 1991-01-30 Manufacture of ldd transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1017791A JPH04245442A (en) 1991-01-30 1991-01-30 Manufacture of ldd transistor

Publications (1)

Publication Number Publication Date
JPH04245442A true JPH04245442A (en) 1992-09-02

Family

ID=11743007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1017791A Pending JPH04245442A (en) 1991-01-30 1991-01-30 Manufacture of ldd transistor

Country Status (1)

Country Link
JP (1) JPH04245442A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821147A (en) * 1995-12-11 1998-10-13 Lucent Technologies, Inc. Integrated circuit fabrication
EP0899792A2 (en) * 1997-08-26 1999-03-03 Texas Instruments Incorporated Transistor with structured sidewalls and method
EP1020922A2 (en) * 1998-12-28 2000-07-19 Infineon Technologies North America Corp. Insulated gate field effect transistor and method of manufacture thereof
JP2002033477A (en) * 2000-07-13 2002-01-31 Nec Corp Semiconductor device and its fabricating method
KR100331854B1 (en) * 1999-11-15 2002-04-09 박종섭 Method for fabricating of semiconductor device
JP2008227524A (en) * 2008-04-17 2008-09-25 Fujitsu Ltd Manufacturing method of semiconductor device and production method of dram
JP2009049427A (en) * 2008-10-22 2009-03-05 Renesas Technology Corp Mis type semiconductor device and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821147A (en) * 1995-12-11 1998-10-13 Lucent Technologies, Inc. Integrated circuit fabrication
EP0899792A2 (en) * 1997-08-26 1999-03-03 Texas Instruments Incorporated Transistor with structured sidewalls and method
EP0899792A3 (en) * 1997-08-26 1999-08-25 Texas Instruments Incorporated Transistor with structured sidewalls and method
EP1020922A2 (en) * 1998-12-28 2000-07-19 Infineon Technologies North America Corp. Insulated gate field effect transistor and method of manufacture thereof
EP1020922A3 (en) * 1998-12-28 2001-08-08 Infineon Technologies North America Corp. Insulated gate field effect transistor and method of manufacture thereof
KR100331854B1 (en) * 1999-11-15 2002-04-09 박종섭 Method for fabricating of semiconductor device
JP2002033477A (en) * 2000-07-13 2002-01-31 Nec Corp Semiconductor device and its fabricating method
JP2008227524A (en) * 2008-04-17 2008-09-25 Fujitsu Ltd Manufacturing method of semiconductor device and production method of dram
JP2009049427A (en) * 2008-10-22 2009-03-05 Renesas Technology Corp Mis type semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5552332A (en) Process for fabricating a MOSFET device having reduced reverse short channel effects
JPH04245442A (en) Manufacture of ldd transistor
US5395772A (en) SOI type MOS transistor device
JPH09172176A (en) Manufacture of mos device
JPH0637309A (en) Semiconductor device and manufacture thereof
JP2931243B2 (en) Method for manufacturing semiconductor device
JPH09171970A (en) Manufacture of semiconductor element
JPH04245441A (en) Manufacture of ldd transistor
JP3376305B2 (en) Method for manufacturing semiconductor device
JPS6126264A (en) Manufacture of semiconductor device
KR100190380B1 (en) Method of enlarging cell ratio of access transistor vs. driver transistor
JPH0521454A (en) Manufacture of semiconductor device
JPH08306923A (en) Manufacture of transistor of semiconductor element
JPH05267338A (en) Manufacture of semiconductor device
JPH05315617A (en) Manufacture of insulated type field effect transistor
JP3371600B2 (en) Method for manufacturing MIS transistor
JPH0645434A (en) Manufacture of mos semiconductor device
JPH11204783A (en) Semiconductor device and manufacture therefor
JPH09162393A (en) Semiconductor device manufacturing method
JPH03265172A (en) Manufacture of semiconductor device
JP3030569B2 (en) Manufacturing method of nonvolatile semiconductor memory
JPH01117066A (en) Manufacture of mos type semiconductor device
JPH05211328A (en) Mos transistor and manufacturing method thereof
JP2001156289A (en) Manufacturing method for insulated gate semiconductor device
JPS6367778A (en) Manufacture of semiconductor device