JPH05211328A - Mos transistor and manufacturing method thereof - Google Patents

Mos transistor and manufacturing method thereof

Info

Publication number
JPH05211328A
JPH05211328A JP4007025A JP702592A JPH05211328A JP H05211328 A JPH05211328 A JP H05211328A JP 4007025 A JP4007025 A JP 4007025A JP 702592 A JP702592 A JP 702592A JP H05211328 A JPH05211328 A JP H05211328A
Authority
JP
Japan
Prior art keywords
region
drain
source
impurity concentration
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4007025A
Other languages
Japanese (ja)
Inventor
Fujio Asakura
藤雄 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4007025A priority Critical patent/JPH05211328A/en
Publication of JPH05211328A publication Critical patent/JPH05211328A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To keep the balance between the decrease amount in the lateral direction and the increase amount in the depth direction by a method wherein a Vr control region wherein the impurity concentration is constant in the drain direction but gradually higher from the substrate surface to the depth direction is provided on the near-source part of a channel region. CONSTITUTION:A field oxide film 2, a gate insulating film 3 and a gate electrode 4 are successively formed on a silicon substrate 1. Next, a resist covered drain region is implanted with B ions to form a DSA region 5. Next, after the formation of a sidewall 6 comprising tungsten, the substrate 1 surface is implanted with B ions making an oblique angle of 45 deg. therewith from the part above a prospective source region to a channel region so as to form a Vr control region 8 wherein the impurity concentration is to get higher in the drain side. Next, the sidewall 6 is etched away and implanted with arsenic ions to form a source 9 and a drain 10. Through these procedures, the Vr control region wherein the impurity concentration in the channel region is constants in the drain direction but higher in the depth direction can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はDSA(diffusi
on self−alignment)型MOS電界効
果トランジスタとその製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to DSA (diffusi).
on self-alignment) type MOS field effect transistor and its manufacturing method.

【0002】[0002]

【従来の技術】MOSデバイスの高速化・高集積化にと
もない、ドレイン飽和電流を増大させることと、ドレイ
ン近傍の高電界で発生したアバランシェホットエレクト
ロンによるデバイス特性劣化の抑制とが重要な課題とな
っている。
2. Description of the Related Art With the increase in speed and integration of MOS devices, it is important to increase drain saturation current and to suppress deterioration of device characteristics due to avalanche hot electrons generated in a high electric field near the drain. ing.

【0003】このためチャネル領域の不純物濃度をソー
ス側で高く、ドレイン側に向って低くした構造が提案さ
れている。
Therefore, a structure has been proposed in which the impurity concentration of the channel region is high on the source side and low on the drain side.

【0004】さらにDMOS(DSA型)構造において
劣っていたしきい値電圧の制御性を向上させるため、チ
ャネル領域のソース近傍にドレイン側に向って不純物濃
度の変化が小さい局所チャネル領域が形成されているも
のがある。
Further, in order to improve the controllability of the threshold voltage, which was inferior to the DMOS (DSA type) structure, a local channel region having a small change in impurity concentration toward the drain side is formed near the source of the channel region. There is something.

【0005】図2に示すように、真性(π型)シリコン
基板1にフィールド酸化膜2、ゲート絶縁膜3およびゲ
ート電極4が形成され、ソース9端からドレインに向っ
てDSA領域5が形成されている。さらに層間絶縁膜1
1のコンタクト開口を通して金属配線12が形成されて
いる。
As shown in FIG. 2, a field oxide film 2, a gate insulating film 3 and a gate electrode 4 are formed on an intrinsic (π-type) silicon substrate 1, and a DSA region 5 is formed from a source 9 end to a drain. ing. Furthermore, the interlayer insulating film 1
The metal wiring 12 is formed through one contact opening.

【0006】[0006]

【発明が解決しようとする課題】しきい値電圧はチャネ
ル領域のソース端の不純物濃度でほぼ決まるので、しき
い値電圧の制御性はかなり向上している。
Since the threshold voltage is almost determined by the impurity concentration at the source end of the channel region, the controllability of the threshold voltage is considerably improved.

【0007】ところが、例えばイオン注入によってチャ
ネル領域の不純物分布を形成したのち、熱処理によるア
ニール工程を避けることはできない。アニール工程にお
いて半導体基板とゲート絶縁膜との間で不純物が偏析し
たり、ドレイン方向に不純物が拡散する。そのためしき
い値電圧が変動したり、しきい値電圧のばらつきが大き
くなってしまう。
However, after forming the impurity distribution in the channel region by, for example, ion implantation, the annealing process by heat treatment cannot be avoided. In the annealing process, impurities are segregated between the semiconductor substrate and the gate insulating film, or impurities are diffused in the drain direction. Therefore, the threshold voltage fluctuates or the threshold voltage varies greatly.

【0008】本発明の目的は、しきい値電圧の制御性を
改善したDSA型MOSトランジスタの構造およびその
製造方法を提供することにある。
An object of the present invention is to provide a structure of a DSA type MOS transistor with improved controllability of threshold voltage and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】本発明のDSA型MOS
トランジスタは、半導体基板表面にソース・ドレイン拡
散層、ゲート絶縁膜、、ゲート電極が形成され、チャネ
ル領域の不純物濃度がソース側で高く、ドレイン側に向
って低くなっていて、さらに前記チャネル領域のソース
近傍に不純物濃度がドレイン側に向って一定で、かつ前
記半導体基板表面から深さ方向に不純物濃度が次第に高
くなっている局所チャネル領域が形成されたものであ
る。
Means for Solving the Problems The DSA type MOS of the present invention
In a transistor, a source / drain diffusion layer, a gate insulating film, and a gate electrode are formed on the surface of a semiconductor substrate, and the impurity concentration of the channel region is high on the source side and low on the drain side. A local channel region is formed near the source in which the impurity concentration is constant toward the drain side, and the impurity concentration gradually increases from the surface of the semiconductor substrate in the depth direction.

【0010】本発明のDSA型MOSトランジスタの製
造方法は、半導体基板表面に形成されたゲート電極のソ
ース側にストッピングパワーの大きいマスク材からなる
側壁を形成する工程と、ソース拡散層直上からチャネル
領域に向って前記半導体前記半導体基板表面に斜めにイ
オン注入する工程とを含むものである。
The method of manufacturing a DSA type MOS transistor of the present invention comprises a step of forming a side wall made of a mask material having a large stopping power on the source side of a gate electrode formed on the surface of a semiconductor substrate, and a channel immediately above the source diffusion layer. And ion-implanting the semiconductor obliquely into the surface of the semiconductor substrate toward the region.

【0011】[0011]

【作用】ショックレーによるgradual chan
nel近似によると、しきい値電圧はソース端の不純物
分布で決まる。チャネル領域のソース近傍において、ド
レインに向って不純物濃度が一定にしても、アニールな
どの熱処理工程の拡散によって、しきい値電圧が変動し
たり、ばらつきが大きくなることは避けられない。
[Action] Gradual chan with Shockley
According to the nel approximation, the threshold voltage is determined by the impurity distribution at the source end. Even if the impurity concentration is constant toward the drain in the vicinity of the source in the channel region, it is unavoidable that the threshold voltage fluctuates or becomes large due to diffusion in a heat treatment step such as annealing.

【0012】DSAMOSのチャネル領域の不純物濃度
はソース側で高く、ドレイン側に向って低くなってい
る。そこでチャネル領域のソース近傍に不純物濃度がド
レイン側に向って一定で、しかも不純物濃度が基板表面
から深さ方向に次第に高くなったVT 制御領域を設け
る。
The impurity concentration of the channel region of the DSAMOS is high on the source side and low on the drain side. Therefore, in the vicinity of the source of the channel region, a V T control region is provided in which the impurity concentration is constant toward the drain side and the impurity concentration gradually increases from the substrate surface in the depth direction.

【0013】VT 制御領域においては、熱処理工程で不
純物が横方向に拡散しても、より深い領域からチャネル
表面に不純物が拡散して、補償することができる。深さ
方向の濃度勾配を制御することにより、横方向の減少量
と深さ方向の補充量とを均衡させることができる。
In the V T control region, even if the impurities diffuse laterally in the heat treatment process, the impurities can be diffused from the deeper region to the channel surface to compensate. By controlling the concentration gradient in the depth direction, the reduction amount in the lateral direction and the replenishment amount in the depth direction can be balanced.

【0014】ゲート電極のソース側にストッピングパワ
ーの大きいマスク材を用いて斜めイオン注入することに
より、VT 制御領域を形成することができる。VT 制御
領域では、基板表面から深さ方向に向かって次第に不純
物濃度が高くなっている。
By obliquely implanting ions on the source side of the gate electrode using a mask material having a large stopping power, the V T control region can be formed. In the V T control region, the impurity concentration gradually increases from the substrate surface in the depth direction.

【0015】不純物濃度は、ソースからドレインに向っ
て一定で、イオンの入射方向の飛程に相当する深さでピ
ークとなるガウス分布となる。この不純物分布はチャネ
ル領域のソース端において、横方向に一定で縦方向に次
第に高くなる。
The impurity concentration is constant from the source to the drain, and has a Gaussian distribution which has a peak at a depth corresponding to the range of ions in the incident direction. This impurity distribution is constant in the horizontal direction and gradually increases in the vertical direction at the source end of the channel region.

【0016】[0016]

【実施例】本発明の一実施例について、図1(a)〜
(c)を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to (c).

【0017】はじめに図1(a)に示すように、真性
(π型)シリコン基板1にLOCOS選択酸化法により
フィールド酸化膜2を形成したのち、熱酸化して厚さ1
0nmのゲート絶縁膜3を形成する。つぎにCVD法に
より厚さ500nmのポリシリコンを堆積したのち、フ
ォトレジスト(図示せず)をマスクとして選択エッチン
グして、ゲート長0.4μmのゲート電極4を形成す
る。
First, as shown in FIG. 1A, a field oxide film 2 is formed on an intrinsic (π-type) silicon substrate 1 by a LOCOS selective oxidation method and then thermally oxidized to a thickness of 1.
A gate insulating film 3 having a thickness of 0 nm is formed. Next, after depositing polysilicon having a thickness of 500 nm by the CVD method, selective etching is performed using a photoresist (not shown) as a mask to form a gate electrode 4 having a gate length of 0.4 μm.

【0018】つぎにドレイン領域をフォトレジスト(図
示せず)で覆ったのち、ボロンを加速エネルギー30k
eV、注入量(ドース)2×1013cmー2イオン注入す
る。つぎにフォトレジストを除去したのち、1000℃
の窒素雰囲気で120分間アニールして、DSA領域5
を形成する。
Next, after covering the drain region with a photoresist (not shown), boron is accelerated with an acceleration energy of 30 k.
eV, implantation amount (dose) 2 × 10 13 cm −2 ion implantation. Next, after removing the photoresist, 1000 ° C.
Annealing for 120 minutes in the nitrogen atmosphere of DSA region 5
To form.

【0019】つぎに図1(b)に示すように、イオン注
入のマスクとなる厚さ0.1μmのタングステンからな
るサイドウォール6を形成したのち、フォトレジスト7
をパターニングする。つぎにソース予定領域直上からチ
ャネル領域に向って基板1表面に45゜の角度で斜めイ
オン注入する。このときボロンを加速エネルギー60k
eV、注入量(ドース)2×1013cmー2イオン注入し
て、チャネル領域のソース端に不純物濃度がドレイン側
に向って高くなるVT 制御領域8を形成する。
Next, as shown in FIG. 1B, a sidewall 6 made of tungsten having a thickness of 0.1 μm to serve as a mask for ion implantation is formed, and then a photoresist 7 is formed.
Pattern. Next, oblique ion implantation is performed from directly above the planned source region toward the channel region on the surface of the substrate 1 at an angle of 45 °. At this time, the acceleration energy of boron is 60k.
eV, implantation dose (dose) 2 × 10 13 cm −2, and ion implantation is performed to form a V T control region 8 in which the impurity concentration increases toward the drain side at the source end of the channel region.

【0020】つぎに図1(c)に示すように、フォトレ
ジスト7を除去したのち、タングステンからなるサイド
ウォール6を硝酸溶液でエッチングする。つぎに砒素を
加速エネルギー70keV、注入量(ドース)5.0×
1015cm-2イオン注入してソース9、ドレイン10を
形成すると同時に、ゲート電極4のポリシリコンに砒素
をドープする。つぎに900℃の窒素雰囲気で20分間
アニールして注入イオンを活性化する。
Next, as shown in FIG. 1C, after removing the photoresist 7, the sidewalls 6 made of tungsten are etched with a nitric acid solution. Next, arsenic is accelerated at an acceleration energy of 70 keV and an implantation amount (dose) of 5.0 ×
At the same time as forming the source 9 and the drain 10 by ion implantation of 10 15 cm -2, the polysilicon of the gate electrode 4 is doped with arsenic. Next, the implanted ions are activated by annealing in a nitrogen atmosphere at 900 ° C. for 20 minutes.

【0021】そのあと層間絶縁膜11を堆積したのち、
コンタクトホールを開口し、金属配線12を形成して素
子部が完成する。
Then, after depositing the interlayer insulating film 11,
The contact hole is opened, the metal wiring 12 is formed, and the element portion is completed.

【0022】本実施例において、チャネル領域の不純物
分布がソース側からドレイン側に向って次第に低くな
る。さらに、チャネル領域の不純物濃度がドレイン方向
に一定で、深さ方向に高くなるVT 制御領域7が形成さ
れている。
In this embodiment, the impurity distribution in the channel region gradually decreases from the source side toward the drain side. Further, a V T control region 7 is formed in which the impurity concentration of the channel region is constant in the drain direction and increases in the depth direction.

【0023】そのため、熱処理工程によってソース端チ
ャネル領域の不純物が横方向に拡散しても、VT 制御領
域7のより深い領域から表面方向に不純物が拡散して補
償することができる。深さ方向の濃度勾配を調整するこ
とにより、横方向の減少量と深さ方向の補充量とを均衡
させることができる。
Therefore, even if the impurities in the source end channel region are laterally diffused by the heat treatment process, the impurities can be diffused and compensated in the surface direction from the deeper region of the V T control region 7. By adjusting the concentration gradient in the depth direction, the reduction amount in the lateral direction and the replenishment amount in the depth direction can be balanced.

【0024】本発明は、本実施例で述べたNチャネルM
OSトランジスタのほか、PチャネルMOSトランジス
タを含む一般のMOSデバイスに適用することができ
る。
The present invention is based on the N channel M described in this embodiment.
It can be applied to general MOS devices including P-channel MOS transistors in addition to OS transistors.

【0025】[0025]

【発明の効果】DMOSにおいては、チャネル領域の不
純物濃度がソース側で高く、ドレイン側に向って低くな
っている。本発明では、さらにチャネル領域のソース近
傍に不純物濃度がドレイン側に向って一定で、しかも不
純物濃度が基板表面から深さ方向に次第に高くなったV
T 制御領域が形成されている。
In the DMOS, the impurity concentration of the channel region is high on the source side and low on the drain side. In the present invention, the impurity concentration near the source in the channel region is constant toward the drain side, and the impurity concentration gradually increases from the substrate surface in the depth direction.
A T control region is formed.

【0026】その結果、熱処理工程で不純物が横方向に
拡散しても、より深い領域からチャネル表面に不純物が
拡散して、補償することができる。深さ方向の濃度勾配
を制御することにより、横方向の減少量と深さ方向の補
充量とを均衡させることができる。
As a result, even if the impurities diffuse laterally in the heat treatment step, the impurities can be diffused from the deeper region to the channel surface and compensated. By controlling the concentration gradient in the depth direction, the reduction amount in the lateral direction and the replenishment amount in the depth direction can be balanced.

【0027】したがって、チャネル領域のソース端不純
物濃度によって決まるしきい値電圧が、熱処理工程に対
して安定になり、ばらつきも小さくなった。しきい値電
圧の制御性が飛躍的に向上した。
Therefore, the threshold voltage determined by the impurity concentration at the source end of the channel region is stable with respect to the heat treatment process and the variation is small. The controllability of the threshold voltage is dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を工程順に示す断面図であ
る。
FIG. 1 is a sectional view showing an embodiment of the present invention in the order of steps.

【図2】従来のDSA型MOSトランジスタを示す断面
図である。
FIG. 2 is a sectional view showing a conventional DSA MOS transistor.

【符号の説明】[Explanation of symbols]

1 真性シリコン基板 2 フィールド酸化膜 3 ゲート酸化膜 4 ゲート電極 5 DSA領域 6 サイドウォール 7 フォトレジスト 8 VT 制御領域 9 ソース 10 ドレイン 11 層間絶縁膜 12 金属配線11+ ボロンイオン1 Intrinsic Silicon Substrate 2 Field Oxide Film 3 Gate Oxide Film 4 Gate Electrode 5 DSA Region 6 Sidewall 7 Photoresist 8 VT Control Region 9 Source 10 Drain 11 Interlayer Insulation Film 12 Metal Wiring 11 B + Boron Ion

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板表面にソース・ドレイン拡散
層、ゲート絶縁膜、、ゲート電極が形成され、チャネル
領域の不純物濃度がソース側で高く、ドレイン側に向っ
て低くなっていて、さらに前記チャネル領域のソース近
傍に不純物濃度がドレイン側に向って一定で、かつ前記
半導体基板表面から深さ方向に不純物濃度が次第に高く
なっている局所チャネル領域が形成されたDSA型のM
OSトランジスタ。
1. A source / drain diffusion layer, a gate insulating film, and a gate electrode are formed on the surface of a semiconductor substrate, and an impurity concentration of a channel region is high on the source side and low on the drain side, and the channel is further formed. A DSA type M in which a local channel region is formed in the vicinity of the source of the region where the impurity concentration is constant toward the drain side and the impurity concentration is gradually increased in the depth direction from the surface of the semiconductor substrate.
OS transistor.
【請求項2】 半導体基板表面に形成されたゲート電極
のソース側にストッピングパワーの大きいマスク材から
なる側壁を形成する工程と、ソース拡散層直上からチャ
ネル領域に向って前記半導体前記半導体基板表面に斜め
にイオン注入する工程とを含むDSA型のMOSトラン
ジスタの製造方法。
2. A step of forming a sidewall made of a mask material having a large stopping power on the source side of a gate electrode formed on the surface of the semiconductor substrate, and the semiconductor surface of the semiconductor substrate from directly above the source diffusion layer toward the channel region. A method of manufacturing a DSA type MOS transistor including the step of obliquely implanting ions.
JP4007025A 1992-01-20 1992-01-20 Mos transistor and manufacturing method thereof Withdrawn JPH05211328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4007025A JPH05211328A (en) 1992-01-20 1992-01-20 Mos transistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4007025A JPH05211328A (en) 1992-01-20 1992-01-20 Mos transistor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH05211328A true JPH05211328A (en) 1993-08-20

Family

ID=11654505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4007025A Withdrawn JPH05211328A (en) 1992-01-20 1992-01-20 Mos transistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH05211328A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653795A2 (en) * 1993-11-15 1995-05-17 Motorola, Inc. Double implanted laterally diffused MOS device and method thereof
US6071781A (en) * 1996-07-15 2000-06-06 Nec Corporation Method of fabricating lateral MOS transistor
FR2796204A1 (en) * 1999-07-07 2001-01-12 St Microelectronics Sa NMOS or PMOS, MOSFET transistor includes smaller third and fourth dopant pockets implanted in the channel, close to drain and source regions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653795A2 (en) * 1993-11-15 1995-05-17 Motorola, Inc. Double implanted laterally diffused MOS device and method thereof
EP0653795A3 (en) * 1993-11-15 1996-01-31 Motorola Inc Double implanted laterally diffused MOS device and method thereof.
US6071781A (en) * 1996-07-15 2000-06-06 Nec Corporation Method of fabricating lateral MOS transistor
FR2796204A1 (en) * 1999-07-07 2001-01-12 St Microelectronics Sa NMOS or PMOS, MOSFET transistor includes smaller third and fourth dopant pockets implanted in the channel, close to drain and source regions

Similar Documents

Publication Publication Date Title
US5552332A (en) Process for fabricating a MOSFET device having reduced reverse short channel effects
US6468843B2 (en) MIS semiconductor device having an LDD structure and a manufacturing method therefor
US5972754A (en) Method for fabricating MOSFET having increased effective gate length
US20050212060A1 (en) Semiconductor device and method for manufacturing the same
US6258646B1 (en) CMOS integrated circuit and method for implanting NMOS transistor areas prior to implanting PMOS transistor areas to optimize the thermal diffusivity thereof
US5874343A (en) CMOS integrated circuit and method for forming source/drain areas prior to forming lightly doped drains to optimize the thermal diffusivity thereof
US6008100A (en) Metal-oxide semiconductor field effect transistor device fabrication process
US4217599A (en) Narrow channel MOS devices and method of manufacturing
US6159814A (en) Spacer formation by poly stack dopant profile design
JP3206419B2 (en) Method for manufacturing semiconductor device
JPH05211328A (en) Mos transistor and manufacturing method thereof
JPH0298143A (en) Manufacture of ldd structure polysilicon thin film transistor
US5912493A (en) Enhanced oxidation for spacer formation integrated with LDD implantation
US6949471B2 (en) Method for fabricating poly patterns
JPH0637106A (en) Manufacture of semiconductor device
JPS6126264A (en) Manufacture of semiconductor device
JP3371600B2 (en) Method for manufacturing MIS transistor
JPH05267338A (en) Manufacture of semiconductor device
JP3127078B2 (en) Field effect transistor and method of manufacturing the same
KR100334968B1 (en) Method for fabricating buried channel type PMOS transistor
KR940002401B1 (en) Manufacturing method of semiconductor device
JPH0595000A (en) Manufacture of semiconductor device
JPH0778979A (en) Fabrication of semiconductor device
JPH05335564A (en) Manufacture of semiconductor device
JP3066124B2 (en) Method of manufacturing MIS type semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408