JPH05335564A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05335564A
JPH05335564A JP13953192A JP13953192A JPH05335564A JP H05335564 A JPH05335564 A JP H05335564A JP 13953192 A JP13953192 A JP 13953192A JP 13953192 A JP13953192 A JP 13953192A JP H05335564 A JPH05335564 A JP H05335564A
Authority
JP
Japan
Prior art keywords
gate
film
substrate
ions
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13953192A
Other languages
Japanese (ja)
Inventor
Tetsuo Izawa
哲夫 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13953192A priority Critical patent/JPH05335564A/en
Publication of JPH05335564A publication Critical patent/JPH05335564A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To maintain impurities on retrograde by implanting ions of the same conductivity type as that of a substrate into the inside of the substrate after formation of a gate oxide film and a gate, and performing channel doping, and performing annealing for activation limitedly at low temperature and in a short time. CONSTITUTION:A polysilicon film 4 is grown as an electrode film all over the surface of a substrate. A high-concentration p-type layer 5 is formed by implanting B<+> ions into the surface of the polysilicon substrate 1. The polysilicon film 4 is patterned into a gate, and with the gate as a mask, a source 6 and a drain 7 are formed by implanting As<+> ions, and also the gate is doped with arsenic. A PSG film 8 is grown as a layer insulating film on the substrate. Next, by the RTA by lamp heating, the heat treatment at 900 deg.C and in a short time of 20 sec is performed on the substrate. In this case, since the heat treatment time is very short, the impurities having ions implanted are electrically activated, but rediffusion hardly occurs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
係り,特にMOS FET の製造方法に関する。近年, MOS FE
T は微細化されチャネル長が短くなってきたが,これに
伴いFETがパンチスルー降伏せず, 高電流駆動力を有す
ることが要求されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing method, and more particularly to a MOS FET manufacturing method. MOS FE in recent years
Although T has been miniaturized and the channel length has become shorter, the FET is required to have high current drive capability without punch-through breakdown due to this.

【0002】[0002]

【従来の技術】従来, 半導体装置はそれに搭載する素子
の寸法を縮小することにより, 高速化と高集積化を進め
てきた。しかしながら,搭載する素子がMOS FET の場合
にチャネル長を縮小すると, しきい値電圧Vthの低下や
パンチスルー降伏電圧の低下等のいわゆる短チャネル効
果が発生し, これが半導体装置の微細化を阻む障害にな
っていた。
2. Description of the Related Art Conventionally, semiconductor devices have been made faster and highly integrated by reducing the size of the elements mounted therein. However, when the channel length is reduced when the mounted element is a MOS FET, so-called short channel effects such as a decrease in threshold voltage V th and a decrease in punch-through breakdown voltage occur, which hinders miniaturization of semiconductor devices. It was an obstacle.

【0003】短チャネル効果は, チャネル長が短くなる
とともに, チャネル領域全体に対するソース・ドレイン
から延びる空乏層の占める領域の割合が増大し,電位が
ゲートでなく, ドレインによって主に支配されるように
なることにより生ずる。
The short channel effect is such that as the channel length is shortened, the ratio of the region occupied by the depletion layer extending from the source / drain to the entire channel region is increased, and the potential is mainly controlled not by the gate but by the drain. It is caused by becoming.

【0004】したがって,この短チャネル効果を抑制し
ながらチャネル長を縮小させようとすると, 基板すなわ
ちチャネル領域の不純物濃度を増加させてソース・ドレ
インからの空乏層の延びを小さく抑えるようにしてい
る。その際, 通常チャネル長の寸法縮小率と同等か,あ
るいは−1/2 乗倍の比率でゲート絶縁膜を薄膜化する
と, しきい値電圧を上昇させることなく, 短チャネル効
果も抑制できる。
Therefore, when it is attempted to reduce the channel length while suppressing the short channel effect, the impurity concentration of the substrate, that is, the channel region is increased to suppress the extension of the depletion layer from the source / drain to be small. At that time, if the gate insulating film is thinned at a rate equal to the dimension reduction ratio of the normal channel length or at a ratio of -1/2 power, the short channel effect can be suppressed without increasing the threshold voltage.

【0005】しかしながら,一様にチャネル領域の不純
物を増加させると, チャネル内のキャリアに印加される
垂直電界が増加する。そのためにキャリアの移動度が低
下し,寸法を縮小するほどには電流が増加せず,高速化
が促進されにくくなる。
However, if the impurities in the channel region are increased uniformly, the vertical electric field applied to the carriers in the channel increases. As a result, the carrier mobility decreases, the current does not increase to the extent that the size is reduced, and it is difficult to accelerate the speedup.

【0006】また, ホットキャリア効果等による信頼性
の低下を抑制する要請より, チャネル長が 0.5〜0.6 μ
m程度のデバイスから, 電源電圧VDDがこれまでの5 V
より3.3 V 程度に引下げられるようになってきた。この
ために, しきい値電圧以上の動作領域, すなわちVDD
thを大きくとって電流駆動力を確保するために, しき
い値電圧も一層低い値が要求されるようになり,この傾
向はデバイスの微細化が進む限り続くものである。
In addition, the channel length is 0.5 to 0.6 μm due to the demand for suppressing the decrease in reliability due to the hot carrier effect.
Power supply voltage V DD is 5 V
It has come to be reduced to about 3.3 V. For this reason, the operating region above the threshold voltage, that is, V DD
In order to secure a current driving force by increasing V th , a lower threshold voltage is required, and this tendency continues as device miniaturization progresses.

【0007】上記のように, 一様にチャネル領域の不純
物を増加させてデバイスを縮小した場合の問題点を解決
するために, レトログレードの濃度分布, すなわちパン
チスルーを生じやすいソース・ドレインの接合と同じ深
さ近傍の濃度を高めにした不純物分布を形成して短チャ
ネル効果を抑制し,かつ, キャリアの移動度を高く保つ
ようにしている。図2にこのようなパンチスルー抑止構
造のFET の断面図を示す。
As described above, in order to solve the problem when the device is reduced in size by uniformly increasing the impurities in the channel region, the retrograde concentration distribution, that is, the source-drain junction which is apt to cause punch-through By forming an impurity distribution with a higher concentration near the same depth as above, the short channel effect is suppressed and the carrier mobility is kept high. Figure 2 shows a cross-sectional view of an FET with such a punch-through suppression structure.

【0008】図2において,1はp型半導体基板,2は
フィールド酸化膜,3はゲート酸化膜,4はゲート,5
は高濃度p型層である。この構造ではチャネル領域の下
側に高濃度p型層5が形成されている。
In FIG. 2, 1 is a p-type semiconductor substrate, 2 is a field oxide film, 3 is a gate oxide film, 4 is a gate, and 5 is a gate oxide film.
Is a high concentration p-type layer. In this structure, the high-concentration p-type layer 5 is formed below the channel region.

【0009】[0009]

【発明が解決しようとする課題】しかしながら,レトロ
グレードの濃度分布を形成しても,一般に行われてい
る,イオン注入によってチャネルドープし,その後にゲ
ート絶縁膜を形成する製造方法においては,ゲート絶縁
膜形成の酸化工程が一般に高温であるために,注入直後
の不純物分布が熱拡散により崩れ,一様な濃度分布にな
ってしまう。
However, even if a retrograde concentration distribution is formed, in the conventional manufacturing method of channel doping by ion implantation and then forming the gate insulating film, the gate insulating film is formed. Since the oxidation process of film formation is generally at a high temperature, the impurity distribution immediately after implantation is destroyed by thermal diffusion, resulting in a uniform concentration distribution.

【0010】図3はゲート酸化によりチャネル領域の深
さ方向の不純物分布が変化する様子を説明する図であ
る。図で(1) は注入直後,(2) はゲート酸化後の濃度プ
ロファィルを示す。
FIG. 3 is a diagram for explaining how the impurity distribution in the depth direction of the channel region changes due to gate oxidation. In the figure, (1) shows the concentration profile immediately after implantation, and (2) shows the concentration profile after gate oxidation.

【0011】ここで,ゲート酸化が高温であることは,
主に信頼性からの要請によるものである。このことは,
拡散係数の大きい硼素をチャネルドープに用いるnチャ
ネルMOS FET においてはpチャネルMOS FET より深刻な
問題である。
Here, the high temperature of gate oxidation means that
This is mainly due to the requirement of reliability. This is
This is a serious problem in an n-channel MOS FET using boron having a large diffusion coefficient for channel doping, as compared with a p-channel MOS FET.

【0012】さらに,ゲート酸化に,不活性ガスで酸素
を希釈して通常の熱酸化より高温で酸化する分圧酸化法
を用いる場合はより一層深刻である。この分圧酸化法で
形成された酸化膜は薄膜化しても絶縁性が優れているた
め,MOS FET の微細化において重要な技術となってきて
いる。
Furthermore, the use of a partial pressure oxidation method in which oxygen is diluted with an inert gas and oxidized at a higher temperature than normal thermal oxidation is more serious in gate oxidation. The oxide film formed by this partial pressure oxidation method has excellent insulating properties even when it is thinned, and is therefore becoming an important technology in the miniaturization of MOS FETs.

【0013】本発明は, 高温ゲート酸化工程が含まれて
も, レトログレードの不純物分布を持つチャネルプロフ
ァイルを保存する製造プロセスを提供し,MOS FET の短
チャネル効果を抑制し, 半導体装置の微細化に寄与する
ことを目的とする。
The present invention provides a manufacturing process for preserving a channel profile having a retrograde impurity distribution even if a high temperature gate oxidation process is included, suppressing the short channel effect of a MOS FET, and miniaturizing a semiconductor device. The purpose is to contribute to.

【0014】[0014]

【課題を解決するための手段】上記課題の解決は,1)
一導電型半導体基板1上にゲート絶縁膜3を形成し,該
ゲート絶縁膜上全面にゲート電極膜4を被着する第一工
程と,次いで,該ゲート電極膜と該ゲート絶縁膜を通し
て該半導体基板内部に平均投影飛程が存在するようなエ
ネルギーで一導電型不純物イオンを注入する第二工程
と,次いで,該一導電型不純物の深さ方向の分布が該半
導体基板内部で極大値を有し該半導体基板表面ではこれ
より低濃度であることが保たれるように選択された温
度,時間で該半導体基板を熱処理する第三工程とを有す
る半導体装置の製造方法,あるいは2)前記第二工程の
後に,ゲート電極膜上全面に第2のゲート電極膜を被着
する工程を有する前記1)記載の半導体装置の製造方法
により達成される。
[Means for Solving the Problems] 1)
A first step of forming a gate insulating film 3 on one conductivity type semiconductor substrate 1 and depositing a gate electrode film 4 on the entire surface of the gate insulating film, and then passing through the gate electrode film and the gate insulating film to form the semiconductor The second step of implanting one conductivity type impurity ions with energy such that an average projection range exists inside the substrate, and then, the distribution of the one conductivity type impurities in the depth direction has a maximum value inside the semiconductor substrate. And a second step of heat treating the semiconductor substrate at a temperature and for a time selected so that the concentration of the semiconductor substrate is kept lower than that, or 2) the second method This is achieved by the method for manufacturing a semiconductor device according to 1), which has a step of depositing a second gate electrode film on the entire surface of the gate electrode film after the step.

【0015】[0015]

【作用】本発明では, ゲート酸化膜およびゲートを形成
後に, 基板内部に平均投影飛程を持つようなエネルギー
で基板と同導電型のイオンを注入してチャネルドープを
行い,イオン注入後の不純物の活性化アニールを低温且
つ短時間に限定して行うことにより, レトログレードの
不純物分布を保つようにしている。
According to the present invention, after the gate oxide film and the gate are formed, ions of the same conductivity type as the substrate are implanted with energy having an average projected range inside the substrate to perform channel doping, and impurities after the ion implantation are performed. The activation anneal is performed at a low temperature for a short time to maintain the retrograde impurity distribution.

【0016】したがって,パンチスルーストッパとして
機能するための深いところにある,イオン注入された不
純物が再分布することはない。
Therefore, the ion-implanted impurities, which are deeply located to function as the punch-through stopper, are not redistributed.

【0017】[0017]

【実施例】図1(A) 〜(D) は本発明の実施例を説明する
断面図である。図1(A) において,選択酸化(LOCOS) 法
により,シリコン(Si)基板1に素子形成領域を画定表出
するフィールド酸化膜として二酸化シリコン(SiO2)膜2
を形成する。
1 (A) to 1 (D) are sectional views for explaining an embodiment of the present invention. In FIG. 1 (A), a silicon dioxide (SiO 2 ) film 2 is formed as a field oxide film that defines and exposes an element formation region on a silicon (Si) substrate 1 by a selective oxidation (LOCOS) method.
To form.

【0018】次いで, 例えば, 基板を850 ℃の乾燥酸素
雰囲気中で熱酸化し, 厚さ 5 nm のゲート酸化膜として
SiO2膜3を形成する。次いで,気相成長(CVD) 法によ
り,基板上全面にゲート電極膜として厚さ100nmのポリ
シリコン膜4を成長する。
Next, for example, the substrate is thermally oxidized in a dry oxygen atmosphere at 850 ° C. to form a gate oxide film with a thickness of 5 nm.
The SiO 2 film 3 is formed. Then, a 100 nm-thickness polysilicon film 4 is grown as a gate electrode film on the entire surface of the substrate by a vapor phase growth (CVD) method.

【0019】図1(B) において,基板表面より硼素イオ
ン(B+ ) をエネルギー 60 KeV,ドーズ量5E12cm-2の条件
で注入し,高濃度p型層5を形成する。この条件でイオ
ン注入を行うと, 高濃度p型層5は基板表面からほぼ0.
1 μmのところにピークを持ち, 表面に向かって除々に
低濃度となる。
In FIG. 1B, boron ions (B + ) are implanted from the surface of the substrate under the conditions of an energy of 60 KeV and a dose amount of 5E12 cm −2 to form a high concentration p-type layer 5. When ion implantation is performed under these conditions, the high-concentration p-type layer 5 is almost zero from the substrate surface.
It has a peak at 1 μm and gradually becomes low concentration toward the surface.

【0020】図1(C) において,ポリシリコン膜4をパ
ターニングしてゲートとし,ゲートをマスクにして砒素
イオン (As+ ) をエネルギー 20 KeV,ドーズ量4E15cm-2
の条件で注入して,ソース6,ドレイン7を形成すると
ともにゲートにも砒素をドープする。
In FIG. 1C, the polysilicon film 4 is patterned to form a gate, and the gate is used as a mask for arsenic ions (As + ) with an energy of 20 KeV and a dose of 4E15 cm -2.
Then, the source 6 and the drain 7 are formed and the gate is also doped with arsenic.

【0021】図1(D) において,CVD 法により,基板上
に層間絶縁膜として厚さ300 nmのりん珪酸ガラス(PSG)
膜8を成長する。次いで, ランプ加熱等によるラピッド
・サーマル・アニーリング(RTA) により, 基板に 900
℃, 20秒の短時間の熱処理を行う。この場合, 熱処理時
間が非常に短いため,イオン注入された不純物は電気的
に活性化するが, 再拡散は殆ど起こらない。
In FIG. 1 (D), a 300 nm-thick phosphosilicate glass (PSG) film is formed as an interlayer insulating film on the substrate by the CVD method.
The film 8 is grown. Next, rapid thermal annealing (RTA) using lamp heating, etc.
Heat treatment at ℃ for 20 seconds. In this case, since the heat treatment time is very short, the ion-implanted impurities are electrically activated, but re-diffusion hardly occurs.

【0022】ついで,PSG 膜8にコンタクトホール9を
形成し,アルミニウム(Al)配線10を形成し,最後に, そ
の上に保護膜としてカバーPSG 膜11を被着して完成す
る。この実施例では,ゲート電極膜4を一回の工程で堆
積した場合について説明したが,高濃度p型層5をより
急峻なプロファィルに,あるいはより深く形成したい場
合はゲート電極膜4を二回に分けて堆積を行う。この場
合の実施例を以下に示す。
Next, a contact hole 9 is formed in the PSG film 8, an aluminum (Al) wiring 10 is formed, and finally, a cover PSG film 11 is deposited thereon as a protective film to complete the process. In this embodiment, the case where the gate electrode film 4 is deposited in one step has been described. However, when it is desired to form the high-concentration p-type layer 5 into a steeper profile or deeper, the gate electrode film 4 is formed into two layers. Deposition is performed in batches. An example of this case is shown below.

【0023】上記実施例と同様にゲート酸化膜3を形成
し,1層目ゲート電極膜を膜厚 20nmで堆積し,硼素イ
オンをエネルギー 35 KeV,ドーズ量5E12cm-2の条件で注
入して高濃度p型層5を形成する。次いで, 2層目ゲー
ト電極膜を膜厚 20 nmで堆積し,合計厚さ 100 nm のゲ
ートを形成する。
A gate oxide film 3 is formed in the same manner as in the above embodiment, a first-layer gate electrode film is deposited to a film thickness of 20 nm, and boron ions are implanted under the conditions of an energy of 35 KeV and a dose amount of 5E12 cm -2 to obtain a high voltage. The concentration p-type layer 5 is formed. Then, a second-layer gate electrode film is deposited with a film thickness of 20 nm to form a gate with a total thickness of 100 nm.

【0024】この場合, ゲート電極膜を一回で形成した
場合に比べて,低いエネルギーで同じ深さに形成可能な
ため,高濃度p型層5は広がりが小さく抑えられ急峻な
不純物分布となる。
In this case, since the gate electrode film can be formed at the same depth with a lower energy as compared with the case where the gate electrode film is formed once, the high-concentration p-type layer 5 is suppressed to have a small spread and has a steep impurity distribution. .

【0025】以上の実施例ではp型基板にnチャネル素
子を形成する場合について説明したが,本発明はpチャ
ネル素子を形成する場合にも全く同様に適用できる。
In the above embodiments, the case where the n-channel element is formed on the p-type substrate has been described, but the present invention can be applied to the case where the p-channel element is formed.

【0026】[0026]

【発明の効果】本発明によれば, 高温ゲート酸化工程が
含まれても, レトログレードの不純物分布を持つチャネ
ルプロファイルを保存する製造プロセスを提供し,MOS
FET の短チャネル効果を抑制し, 半導体装置の微細化に
寄与することを目的とする。
According to the present invention, there is provided a manufacturing process for preserving a channel profile having a retrograde impurity distribution even if a high temperature gate oxidation process is included.
The purpose is to suppress the short channel effect of FET and contribute to miniaturization of semiconductor devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を説明する断面図FIG. 1 is a sectional view illustrating an embodiment of the present invention.

【図2】 パンチスルー抑止構造のFET の断面図[Figure 2] Cross-sectional view of FET with punch-through suppression structure

【図3】 ゲート酸化によりチャネル領域の深さ方向の
不純物分布が変化する様子を説明する図
FIG. 3 is a diagram for explaining how the impurity distribution in the depth direction of the channel region changes due to gate oxidation.

【符号の説明】[Explanation of symbols]

1 半導体基板でSi基板 2 フィールド酸化膜でSiO2膜 3 ゲート酸化膜でSiO2膜 4 ゲート電極膜でポリシリコン膜 5 高濃度p型層 6 ソース 7 ドレイン 8 層間絶縁膜でPSG 膜 9 コンタクトホール 10 金属配線でAl配線 11 カバーPSG 膜1 Semiconductor substrate is Si substrate 2 Field oxide film is SiO 2 film 3 Gate oxide film is SiO 2 film 4 Gate electrode film is polysilicon film 5 High concentration p-type layer 6 Source 7 Drain 8 Interlayer insulation film is PSG film 9 Contact hole 10 Metal wiring and Al wiring 11 Cover PSG film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一導電型半導体基板1上にゲート絶縁膜
3を形成し,該ゲート絶縁膜上全面にゲート電極膜4を
被着する第一工程と, 次いで,該ゲート電極膜と該ゲート絶縁膜を通して該半
導体基板内部に平均投影飛程が存在するようなエネルギ
ーで一導電型不純物イオンを注入する第二工程と, 次いで,該一導電型不純物の深さ方向の分布が該半導体
基板内部で極大値を有し該半導体基板表面ではこれより
低濃度であることが保たれるように選択された温度,時
間で該半導体基板を熱処理する第三工程とを有すること
を特徴とする半導体装置の製造方法。
1. A first step of forming a gate insulating film 3 on a one-conductivity-type semiconductor substrate 1 and depositing a gate electrode film 4 on the entire surface of the gate insulating film, and then the gate electrode film and the gate. A second step of implanting one conductivity type impurity ions at an energy such that an average projected range exists inside the semiconductor substrate through an insulating film; and And a third step of heat-treating the semiconductor substrate at a temperature and for a time selected so as to keep the concentration at the maximum value on the surface of the semiconductor substrate lower than that of the semiconductor substrate. Manufacturing method.
【請求項2】 前記第二工程の後に,ゲート電極膜上全
面に第2のゲート電極膜を被着する工程を有することを
特徴とする請求項1記載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of depositing a second gate electrode film on the entire surface of the gate electrode film after the second step.
JP13953192A 1992-06-01 1992-06-01 Manufacture of semiconductor device Withdrawn JPH05335564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13953192A JPH05335564A (en) 1992-06-01 1992-06-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13953192A JPH05335564A (en) 1992-06-01 1992-06-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05335564A true JPH05335564A (en) 1993-12-17

Family

ID=15247452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13953192A Withdrawn JPH05335564A (en) 1992-06-01 1992-06-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05335564A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162693A (en) * 1999-09-02 2000-12-19 Micron Technology, Inc. Channel implant through gate polysilicon
WO2004017416A1 (en) * 2002-08-19 2004-02-26 Sony Corporation Insulated gate field-effect transistor and its manufacturing method, and imaging device and its manufacturing method
US7772655B2 (en) * 2006-08-09 2010-08-10 Panasonic Corporation Semiconductor device and method of fabricating the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162693A (en) * 1999-09-02 2000-12-19 Micron Technology, Inc. Channel implant through gate polysilicon
US6503805B2 (en) 1999-09-02 2003-01-07 Micron Technology, Inc. Channel implant through gate polysilicon
WO2004017416A1 (en) * 2002-08-19 2004-02-26 Sony Corporation Insulated gate field-effect transistor and its manufacturing method, and imaging device and its manufacturing method
US7374961B2 (en) 2002-08-19 2008-05-20 Sony Corporation Insulated gate field-effect transistor and its manufacturing method, and imaging device and its manufacturing method
KR101013423B1 (en) * 2002-08-19 2011-02-14 소니 주식회사 Solid imaging device and its manufacturing method
US8188523B2 (en) 2002-08-19 2012-05-29 Sony Corporation Insulated gate field effect transistor and method of manufacturing same, and image pickup device and method of manufacturing same
US7772655B2 (en) * 2006-08-09 2010-08-10 Panasonic Corporation Semiconductor device and method of fabricating the same
US7867840B2 (en) 2006-08-09 2011-01-11 Panasonic Corporation Semiconductor device and method of fabricating the same
US7999331B2 (en) 2006-08-09 2011-08-16 Panasonic Corporation Semiconductor device and method of fabricating the same

Similar Documents

Publication Publication Date Title
US5372957A (en) Multiple tilted angle ion implantation MOSFET method
EP1361614B1 (en) Semiconductor device manufacturing method
US5552332A (en) Process for fabricating a MOSFET device having reduced reverse short channel effects
US6436783B1 (en) Method of forming MOS transistor
KR100226758B1 (en) Method of manufacturing cmosfet
JPS5932172A (en) Integrated circuit made of schottky barrier mos device and method of producing same
KR100718823B1 (en) A silicon-germanium transistor and associated methods
US5225357A (en) Low P+ contact resistance formation by double implant
US6060369A (en) Nitrogen bearing sacrificial oxide with subsequent high nitrogen dopant profile for high performance MOSFET
JP2002141502A (en) Semiconductor device and its manufacturing method
JP3356629B2 (en) Method of manufacturing lateral MOS transistor
US6432780B2 (en) Method for suppressing boron penetrating gate dielectric layer by pulsed nitrogen plasma doping
JP2001291679A (en) Method for manufacturing semiconductor device
JPH05335564A (en) Manufacture of semiconductor device
US6245624B1 (en) Methods of fabricating field effect transistors by first forming heavily doped source/drain regions and then forming lightly doped source/drain regions
JP3185386B2 (en) Method for manufacturing semiconductor device
JP2623902B2 (en) Semiconductor device and manufacturing method thereof
US6979658B2 (en) Method of fabricating a semiconductor device containing nitrogen in a gate oxide film
US6864141B1 (en) Method of incorporating nitrogen into metal silicate based dielectrics by energized nitrogen ion beams
JP2997123B2 (en) Method for manufacturing semiconductor device
JPH07161988A (en) Manufacture of semiconductor device
JPH0637106A (en) Manufacture of semiconductor device
JP3376305B2 (en) Method for manufacturing semiconductor device
JP3714396B2 (en) Manufacturing method of semiconductor device
JPH0616559B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803