JPH04180550A - Formation of metallic layer for forming conductor pattern - Google Patents

Formation of metallic layer for forming conductor pattern

Info

Publication number
JPH04180550A
JPH04180550A JP30988590A JP30988590A JPH04180550A JP H04180550 A JPH04180550 A JP H04180550A JP 30988590 A JP30988590 A JP 30988590A JP 30988590 A JP30988590 A JP 30988590A JP H04180550 A JPH04180550 A JP H04180550A
Authority
JP
Japan
Prior art keywords
metal layer
forming
rare gas
metal
conductor pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30988590A
Other languages
Japanese (ja)
Inventor
Hiromitsu Kobayashi
博光 小林
Mika Misawa
三澤 美香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30988590A priority Critical patent/JPH04180550A/en
Publication of JPH04180550A publication Critical patent/JPH04180550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a metallic layer which can automatically form conductor patterns with high dimensional accuracy by ionizing a rare gas in a hermetic chamber and bringing the ions into collision against a conductor metal to drive out its molecules, and adding an inert gas into the rare gas. CONSTITUTION:A substrate 1 consisting of ceramics, etc., and the conductor metal 2, such as Al, are disposed to face each other into the hermetic chamber 3. The rare gas 4, such as Ar, is introduced into this hermetic chamber 3, and after the inside of the chamber is vacuum evacuated to a prescribed pressure, a voltage is impressed between the conductor metal 2 and the wall surface to ionize the rare gas. The ionized rare gas 4 is brought into contact with the conductor metal 2 to drive out the molecules of the conductor metal 2 into the hermetic chamber 3 and to stick the molecules to the surface of a substrate 1, by which a metallic layer 5 for forming the conductor patterns is formed. An inert gas 6 such as N2 is added at 1 to 10% into the rare gas packed in the hermetic chamber 3. The surface of the above- mentioned metallic layer 5 is thereby formed as a uniform and fine satin surface. A resist is adhered with good stability to this metallic layer 5 and the conductor patterns of the high dimensional accuracy are formed by the automatic wet process etching.

Description

【発明の詳細な説明】 〔概   要〕 導体パターン形成用金属層の形成方法に関し、形成した
金属層の湿式エツチングプロセスを自動化できるととも
に、湿式エツチングして形成される導体パターンの寸法
精度を高められるようにすることを目的とし、 基板と導体金属とを密室に臨ませ、密室に充填した稀ガ
スをイオン化させて導体金属に衝突させ、導体金属の分
子を密室内にはじき出して基板の表面に付着させて導体
パターン形成用金属層を気相成長させる導体パターン形
成用金属層の形成方法において、 密室内に充填する稀ガス中に不活性ガスを添加する構成
とした。
[Detailed Description of the Invention] [Summary] Regarding the method for forming a metal layer for forming a conductor pattern, it is possible to automate the wet etching process of the formed metal layer and improve the dimensional accuracy of the conductor pattern formed by wet etching. In order to achieve this, the substrate and the conductive metal are placed in a closed room, and the rare gas filled in the closed room is ionized and collides with the conductive metal, causing molecules of the conductive metal to be ejected into the closed room and attached to the surface of the substrate. In the method for forming a metal layer for forming a conductor pattern in which the metal layer for forming a conductor pattern is grown in vapor phase, an inert gas is added to the rare gas filled in the closed chamber.

こ産業上の利用分野〕 本発明は、薄膜多層基を反の製造方法2こ開−特;二導
体パターン形成用金属層の形成方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for manufacturing a thin film multilayer substrate, and particularly to a method for forming a metal layer for forming a two-conductor pattern.

(従来の技術〕 薄膜多層基板の表面に導体パターンを形成する方法とし
て、例えば第5図(a)に示すように、いわゆる、気相
成長法によって基板101の表面に金属層105を形成
し、同図(b)に示すように、金属層105の導体パタ
ーンとして必要な部分にレジスト107を付着させ、同
図(C)に示すように、湿式エツチングで金属層105
の導体パターン108として不要な部分をエツチングし
て除去した後、レジス)107を剥離して導体パターン
108を形成する方法がある。
(Prior Art) As a method of forming a conductive pattern on the surface of a thin film multilayer substrate, for example, as shown in FIG. As shown in FIG. 5B, a resist 107 is attached to the portions of the metal layer 105 that are required as conductive patterns, and as shown in FIG.
There is a method of etching and removing unnecessary portions of the conductor pattern 108, and then peeling off the resist 107 to form the conductor pattern 108.

基板101に金属層105を形成する気相成長法におい
ては、例えば第4図に示すように、基板101と導体金
属102とを密室103に臣Rませ、密室103内を例
えば10−’Pa程度に減圧して真空状態Sこし、to
  ’Pa程度二こなるまで純アルコン(Ar)等の稀
ガス104を密室Sこ充填した後、稀ガス104をイオ
ン化させて導体金属1゜2に衝突させ、導体金属102
の分子を密室1゜3内−二はしき出して基板101の表
面に付着させることにより、基板101の表面シこ導体
パターン形成用金属層105が気相成長する。
In the vapor phase growth method for forming the metal layer 105 on the substrate 101, for example, as shown in FIG. Reduce the pressure to a vacuum state S, to
After filling a closed room S with a rare gas 104 such as pure arcon (Ar) until the temperature reaches about 2 Pa, the rare gas 104 is ionized and collided with the conductive metal 1°2.
By forcing out the molecules from the closed room 1.3 and attaching them to the surface of the substrate 101, a metal layer 105 for forming a conductive pattern on the surface of the substrate 101 is grown by vapor phase growth.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、気相成長により形成された金属層105の表
面には、例えば第6図に示す写真のように、多数の金属
結晶が突出しており、しかも、この金属結晶の粒径のバ
ラツキが大きく、また、分布密度のバラツキも非常に大
きい。
By the way, a large number of metal crystals protrude from the surface of the metal layer 105 formed by vapor phase growth, as shown in the photograph shown in FIG. Moreover, the variation in distribution density is also very large.

このため、金属層105の表面へのレジスl−107の
付着状態が不安定になり、湿式エツチングのエンチング
液に浸漬した時にレジスト107と金属層105との間
にエツチング液が浸入して導体パターン108が食われ
たり、レジスト107が剥離して導体パターン108が
形成されなかったすすることかある。
For this reason, the state of adhesion of the resist l-107 to the surface of the metal layer 105 becomes unstable, and when the resist 107 is immersed in an etching solution for wet etching, the etching solution enters between the resist 107 and the metal layer 105, and the conductor pattern is damaged. The conductor pattern 108 may be eaten away or the resist 107 may be peeled off so that the conductor pattern 108 is not formed.

また上記MIX層105の表面へのレジスト1゜7の付
着状態の不安定さは、エツチング時間を不安定にし、基
板101ごとにエツチング状態を確認しながらエツチン
グをする必要があり、エツチングプロセスを自動化する
ことができないという問題もある。
Furthermore, the instability of the adhesion state of the resist 1.7 to the surface of the MIX layer 105 makes the etching time unstable, and it is necessary to perform etching while checking the etching state for each substrate 101. Therefore, the etching process cannot be automated. There is also the problem of not being able to do so.

本発明は、上記の事情を鑑みてなされたものであり、形
成した金属層の湿式エツチングプロセスを自動化できる
とともに、湿式エツチングして形成される導体パターン
の寸法精度を高められるようにした導体パターン形成用
金属層の形成方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a conductor pattern forming method that can automate the wet etching process of the formed metal layer and improve the dimensional accuracy of the conductor pattern formed by wet etching. An object of the present invention is to provide a method for forming a metal layer for use in the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、例えば第1図に示すように、基板1、!:導
体金属2とを密室3に臨ませ、密室3に充填した稀ガス
4をイオン化させて導体金属2に衝突させ、導体金属2
の分子を密室3内にはじき出して基板1の表面に付着さ
せて導体パターン形成用金属層5を気相成長させる導体
パターレ形成用金属層の形成方法にδいて、上記の目的
を達成するため、密室2内に充填する稀ガス4中に不活
性カス6を添加する、という手段を講している。
For example, as shown in FIG. 1, the present invention provides a substrate 1,! : The conductor metal 2 is placed facing the closed room 3, and the rare gas 4 filled in the closed room 3 is ionized and collides with the conductor metal 2.
In order to achieve the above object, there is a method for forming a metal layer for forming a conductor pattern, in which molecules of the metal layer 5 for forming a conductor pattern are ejected into the closed room 3 and attached to the surface of the substrate 1 to form a metal layer 5 for forming a conductor pattern in a vapor phase. A measure is taken to add inert scum 6 to the rare gas 4 filling the closed chamber 2.

〔作   用〕[For production]

本発明においては、密室3中に稀ガス1中に混ぜて充填
された不活性ガス6は、密室3中にはしき出された金属
分子と衝突して基板lの表面に付着し、基板lの表面シ
こ付着する金属分子の粒境面に隙間を生しさせて金属結
晶の成長を抑制し、金属結晶粒径を微細化させると思わ
れる。その結果、基板lの表面が平均的に微細な粗荒面
、いわゆる、梨地面となり、レジストとの付着力が安定
する。
In the present invention, the inert gas 6 mixed with the rare gas 1 and filled in the closed chamber 3 collides with the metal molecules pushed out into the closed chamber 3 and adheres to the surface of the substrate l. It is thought that the growth of metal crystals is suppressed by creating gaps at the grain boundaries of metal molecules that adhere to the surface of the metal, thereby making the metal crystal grain size finer. As a result, the surface of the substrate l becomes an averagely finely roughened surface, a so-called satin surface, and the adhesion to the resist becomes stable.

本発明において、稀ガス4への不活性ガス6の添加量は
、稀ガス4のI〜lO%程度とすることが好ましい。不
活性ガス6の添加量が1%を下回ると、不活性ガス6の
添加により金属層5の表面を改善する効果が薄くなるの
で好ましくない。また、不活性ガス6の添加量が10%
を上回る場合二こ:よ、金属層5の組織が粗二こ−って
電気的特性が損なわれるので好ましくない。
In the present invention, it is preferable that the amount of the inert gas 6 added to the rare gas 4 is about I to 10% of the rare gas 4. If the amount of the inert gas 6 added is less than 1%, the effect of improving the surface of the metal layer 5 by adding the inert gas 6 becomes weak, which is not preferable. In addition, the amount of inert gas 6 added is 10%.
If it exceeds 2, the structure of the metal layer 5 will become coarse and the electrical characteristics will be impaired, which is not preferable.

〔実 施 例] 以下、本発明の一実施例に係る導体パターン形成用金属
層の形成方法を第1図ないし第3図に基づき説明する。
[Example] Hereinafter, a method for forming a metal layer for forming a conductor pattern according to an example of the present invention will be described with reference to FIGS. 1 to 3.

この方法では、まず、第1図に示すように、基板1と導
体金属2とはそれぞれその一面どうしが対向するように
密室3に臨ませる。
In this method, first, as shown in FIG. 1, the substrate 1 and the conductive metal 2 are placed facing the closed room 3 with their respective surfaces facing each other.

基板1は、特に限定はされないが、ここでは常法により
形成されたセラミック基板を使用した。
Although the substrate 1 is not particularly limited, a ceramic substrate formed by a conventional method was used here.

また、導体金属2は、薄膜多層基板の導体パターンに使
用できる金属であればよく、例えば、アルミニウム(八
l)、銅(Cu) 、クローム(Cr)、モリブデン(
Mo)等を使用することができる。ここでは、比較的速
く金属層5を気相成長させることができるアルミニウム
を使用した。
The conductor metal 2 may be any metal that can be used for conductor patterns of thin film multilayer substrates, such as aluminum (8L), copper (Cu), chromium (Cr), molybdenum (
Mo) etc. can be used. Here, aluminum was used, which allows the metal layer 5 to be grown in a vapor phase relatively quickly.

この後、密室3内の空気を10−’Pa程度になるまで
排気し、稀ガス4と不活性ガス6とを密室3の内圧か1
0−’Pj程度;こなるまで充填するつ稀カス4として
;よ、アルゴン<Ar) 、ヘリウム(He) 、2オ
ン(Ne> 、クリプトン(K、r) 、キセノン(X
e>等を使用することが可能であるか、ここでは、最も
多用されているアルゴン(Ar)を使用した。
After this, the air in the closed room 3 is exhausted to about 10-'Pa, and the rare gas 4 and inert gas 6 are
About 0-'Pj; As a rare scum 4 filled until the
Argon (Ar), which is most commonly used, was used here.

不活性ガス6としては、窒素(N2)、二酸化炭素(C
O□)等を使用することが可能であるか、ここでは窒素
(N2)を使用した。
As the inert gas 6, nitrogen (N2), carbon dioxide (C
Nitrogen (N2) was used here.

稀ガス4への不活性ガス6の添加量は、0〜30%の範
囲で種々異ならせて最適範囲を求めることにした。
The amount of inert gas 6 added to rare gas 4 was varied in the range of 0 to 30% to find the optimum range.

この後、密室3の基板1側の壁面と導体金属2との間に
所定の電圧を印加して稀ガス4をイオン化させ、導体金
属2に衝突させて金属分子を密室3内に飛び出させて基
板1の表面に付着させ、基板1の表面に金属層5を気相
成長させる。
After that, a predetermined voltage is applied between the wall surface of the closed chamber 3 on the substrate 1 side and the conductive metal 2 to ionize the rare gas 4, and cause it to collide with the conductive metal 2, causing metal molecules to jump out into the closed chamber 3. The metal layer 5 is attached to the surface of the substrate 1, and the metal layer 5 is vapor-phase grown on the surface of the substrate 1.

このようにして金属層5を形成した基板1について顕微
鏡で金属層5の表面を観察し、金属層5の表面に現れた
結晶の平均粒径を不活性ガスの濃度との関係で測定した
結果をグラフで表すと第2図に示すようになる。
The surface of the metal layer 5 on the substrate 1 on which the metal layer 5 was formed in this manner was observed under a microscope, and the average grain size of the crystals appearing on the surface of the metal layer 5 was measured in relation to the concentration of the inert gas. When expressed in a graph, it becomes as shown in Fig. 2.

また、この後、第5図に示したような手順で湿式エツチ
ングを行い、導体パターンの形成状態を観察した。
Further, after this, wet etching was performed according to the procedure shown in FIG. 5, and the formation state of the conductor pattern was observed.

基板1の表面に形成された金属層5の表面を顕微鏡で観
察すると、第2図に示すように不活性ガス6の添加量が
約1%以上の範囲で、結晶粒の粒径が1.2μm以下に
小さくなり、また、例えば第3図に示す写真のように、
結晶粒の粒径のバラツキが殆どなく、しかも、緻密に平
均的に分布する微細な梨地であることが観察された。
When the surface of the metal layer 5 formed on the surface of the substrate 1 is observed under a microscope, as shown in FIG. 2, when the amount of inert gas 6 added is approximately 1% or more, the grain size of the crystal grains is 1.5%. It becomes smaller than 2 μm, and for example, as shown in the photograph shown in Figure 3,
It was observed that there was almost no variation in the grain size of the crystal grains, and moreover, it was a fine satin finish that was densely and evenly distributed.

このように不活性ガス6の添加により金属層5の表面が
梨地面となる原因は、密室3中に稀ガスl中に混ぜて充
填された不活性ガス6が、密室3中にはじき出された金
属分子と衝突して基板lの表面に付着し、基板lの表面
に付着する金属分子の粒境面に隙間を生じさせて金属結
晶の成長を抑制し、金属結晶粒径を微細化させると思わ
れる。
The reason why the surface of the metal layer 5 becomes matte due to the addition of the inert gas 6 is that the inert gas 6 mixed with the rare gas 1 and filled in the closed room 3 is forced out into the closed room 3. It collides with metal molecules and adheres to the surface of the substrate l, creating gaps at the grain boundary surfaces of the metal molecules adhering to the surface of the substrate l, suppressing the growth of metal crystals, and making the metal crystal grain size finer. Seem.

第2図から明らかなように、不活性ガス6の添加量が約
1%を下回ると、金属層5の表面の結晶粒の粒径が大き
くなる。ま1こ、結晶粒のri径及び分布↓こもバラツ
キがある。
As is clear from FIG. 2, when the amount of inert gas 6 added is less than about 1%, the grain size of the crystal grains on the surface of metal layer 5 increases. Also, there are variations in the ri diameter and distribution of crystal grains.

また、不活性ガス6の添加量が約10%を上回る範囲で
は、金属層5の組織が粗であることが観察された。そこ
で、この金属層5について電気的特性を調べたところ、
不活性ガス6の添加量が約10%以下の場合に比べて電
気的特性が著しく低下することが確かめられた。
Furthermore, it was observed that the structure of the metal layer 5 was coarse in a range where the amount of inert gas 6 added exceeded about 10%. Therefore, when we investigated the electrical characteristics of this metal layer 5, we found that
It was confirmed that the electrical characteristics were significantly lower than when the amount of inert gas 6 added was about 10% or less.

更に、湿式エツチングにおいては、不活性ガス6の添加
量が約1%を下回る場合には、レジストの剥離や導体パ
ターンの食われが発生しているが、約1%以上の場合に
は、レジストの剥離や導体パターンの食われは見出され
ず、その寸法精度が十分高いことが観察された。
Furthermore, in wet etching, when the amount of inert gas 6 added is less than about 1%, the resist peels off and the conductor pattern is eaten away, but when the amount is more than about 1%, the resist No peeling or erosion of the conductor pattern was found, and it was observed that the dimensional accuracy was sufficiently high.

また、エツチング時間は不活性ガス6の添加量が約1%
以上の範囲では金属層5の表面の結晶粒の大きさに対応
することが確かめられた。したがって、不活性ガス6の
添加量をコントロールして金属層5の表面の結晶粒の大
きさをコントロールすること二こより、エノナン7’ 
Q闇をコ5・ドロー・しできることになり、その結果 
各基板lごとにエツチング状態を確認じながちエツチン
グする必要がなくなり、湿式エツチングプロセスを自動
化することが可能になる。
In addition, the etching time is approximately 1% of the amount of inert gas 6 added.
It was confirmed that the above range corresponds to the size of the crystal grains on the surface of the metal layer 5. Therefore, by controlling the amount of the inert gas 6 added to control the size of the crystal grains on the surface of the metal layer 5, it is possible to control the size of the crystal grains on the surface of the metal layer 5.
Q Darkness can be drawn by 5, and the result is
It is no longer necessary to check the etching state of each substrate l, and it becomes possible to automate the wet etching process.

なお、上記の一実施例では、1つの導体金属2を用いて
基viI上に1層の金属層5を形成しているが、異なる
導体金属2を順次用いて基板1に金属層5を2層以上積
層してもよい。例えば、アルミニウム層の上にチタン(
Ti)層を積層したり、アルミニウム層の上にクローム
層を積層したり、クローム層の上にアルミニウム層を積
層したりすることができる。
In the above embodiment, one metal layer 5 is formed on the base viI using one conductor metal 2, but two metal layers 5 are formed on the substrate 1 by sequentially using different conductor metals 2. More than one layer may be laminated. For example, titanium (
Ti) layer, a chrome layer on an aluminum layer, or an aluminum layer on a chrome layer.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明においては、基板に気相成長によ
り金属層を形成する際に、稀ガスに不活性ガスを添加す
ることにより金属層の表面を粒径のバラツキがほとんど
ない微細な結晶粒が緻密に平均して分布する梨地面に形
成することができ、レジストを安定良く付着させること
力・できる。その結果、湿式エツチングによって寸法精
度の高い導体パターンを形成することができる。
As described above, in the present invention, when forming a metal layer on a substrate by vapor phase growth, by adding an inert gas to a rare gas, the surface of the metal layer is formed into fine crystals with almost no variation in grain size. It can be formed on a satin surface where grains are densely and evenly distributed, and the resist can be attached stably. As a result, a conductor pattern with high dimensional accuracy can be formed by wet etching.

また、稀ガスに添加する不活性カスの添加量をコントロ
ールして金属層の表面に形成される結晶粒の粒径をコン
トロールすることにより湿式エツチングのエツチング時
間をコントロールすることができるので、湿式エツチン
グプロセスを自動化することができる。
In addition, the etching time of wet etching can be controlled by controlling the amount of inert scum added to the rare gas and controlling the particle size of crystal grains formed on the surface of the metal layer. Processes can be automated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る導体パターン形成用金
属層の形成方法の説明図であり、第2図は不活性ガスの
添加量と金属層の結晶粒の平均粒径との関係を示す粒径
制御特性図であり、第3図は上記実施例により形成され
た金属層の表面の粒子の構造を示す写真であり、第4図
は従来の導体パターン形成用金属層の形成方法の説明図
であり、第5図は湿式エツチングの手順の説明図であり
、第6図は従来方法により形成された金属層の表面の粒
子の構造を示す写真である。 図中、 1・・・基板、 2・・・導体金属、 3・・・密室、 4・・・稀ガス、 5・・・金属層、 6・・・不活性ガス。 代 理 人 弁理士  井 桁 貞 −、ニー6 不活
性ガス(N2) 本発明による金属層形成方法の説明図 第1図 不活性ガス(Nり流量と平均粒径との関係を示す粒径制
御特性図図面の浄書 犯−11により形成された金属層の表面の粒子の構造を
示す図従来の金属層形成方法の説明図 第4図 湿式エツチングの手順の説明図 第5図 図面の浄書 X2000 従来方法により形成された金属層の表面の粒子の構造を
示す図第  6  図 手続補正書(旅) 平成 3年 3月μ日 平成 2缶 特許願 第309885号2、発明の名称 導体パターン形成用金属層の形成方法 3、補正をする者 事件との関係  特許出願人 住所 神奈川県用崎市中頁区上小田中1015番地(5
22)名称富士通株式会社 代表者  関  澤   義 5、補正命令の日付 平成 3年 2月12日 (発送旧)
FIG. 1 is an explanatory diagram of a method for forming a metal layer for forming a conductor pattern according to an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the amount of inert gas added and the average grain size of crystal grains in the metal layer. FIG. 3 is a photograph showing the particle structure on the surface of the metal layer formed by the above example, and FIG. 4 is a graph showing the conventional method for forming a metal layer for forming a conductor pattern. FIG. 5 is an explanatory diagram of the wet etching procedure, and FIG. 6 is a photograph showing the structure of particles on the surface of a metal layer formed by a conventional method. In the figure, 1...Substrate, 2...Conductor metal, 3...Closed room, 4...Rare gas, 5...Metal layer, 6...Inert gas. Agent Patent Attorney Sada Igeta -, Ni 6 Inert gas (N2) Explanatory diagram of the metal layer forming method according to the present invention Figure 1 Particle size control showing the relationship between inert gas (N2 flow rate and average particle size) Characteristic diagram Diagram showing the structure of the particles on the surface of the metal layer formed by the engraving machine 11 of the drawing Fig. 4 An explanatory diagram of the conventional metal layer forming method Fig. 4 An explanatory diagram of the wet etching procedure Fig. 5 Fig. Figure 6 shows the structure of particles on the surface of a metal layer formed by the method. Figure 6. Procedural Amendment (Travel) March 1991, 2000 Patent Application No. 309885 2, Name of Invention Metal for Forming Conductive Patterns Layer Formation Method 3, Relationship with the Amendment Case Patent Applicant Address 1015 Kamiodanaka, Nakapage-ku, Yozaki City, Kanagawa Prefecture (5
22) Name: Fujitsu Limited Representative Yoshi Sekizawa 5 Date of amendment order: February 12, 1991 (old shipping)

Claims (1)

【特許請求の範囲】 〔1〕基板(1)と導体金属(2)とを密室(3)に臨
ませ、密室(3)に充填した稀ガス(4)をイオン化さ
せて導体金属(2)に衝突させ、導体金属(2)の分子
を密室(3)内にはじき出して基板(1)の表面に付着
させて導体パターン形成用金属層(5)を気相成長させ
る導体パターン形成用金属層の形成方法において、 密室(3)内に充填する稀ガス(4)中に不活性ガス(
6)を添加することを特徴とする導体パターン形成用金
属層の形成方法。 〔2〕稀ガス(4)1に対して1〜10%の不活性ガス
(6)を添加する請求項1に記載の導体パターン形成用
金属層の形成方法。 〔3〕上記稀ガス(4)がアルゴン、ヘリウム、ネオン
、クリプトン、キセノンの中の少なくとも1種であり、
上記不活性ガスが窒素、二酸化炭素の中の少なくとも1
種である請求項1又は2に記載の1体パターン形成用金
属層の形成方法。
[Scope of Claims] [1] The substrate (1) and the conductive metal (2) are placed facing the closed chamber (3), and the rare gas (4) filled in the closed chamber (3) is ionized to form the conductive metal (2). A metal layer for forming a conductor pattern (5) is grown in a vapor phase by causing molecules of the conductor metal (2) to be ejected into a closed chamber (3) and attached to the surface of the substrate (1) to form a metal layer (5) for forming a conductor pattern. In the formation method, an inert gas (
6) A method for forming a metal layer for forming a conductor pattern, characterized by adding the following. [2] The method for forming a metal layer for forming a conductor pattern according to claim 1, wherein 1 to 10% of the inert gas (6) is added to 1 part of the rare gas (4). [3] The rare gas (4) is at least one of argon, helium, neon, krypton, and xenon,
The inert gas is at least one of nitrogen and carbon dioxide.
The method for forming a metal layer for forming a one-piece pattern according to claim 1 or 2, wherein the metal layer is a seed.
JP30988590A 1990-11-14 1990-11-14 Formation of metallic layer for forming conductor pattern Pending JPH04180550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30988590A JPH04180550A (en) 1990-11-14 1990-11-14 Formation of metallic layer for forming conductor pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30988590A JPH04180550A (en) 1990-11-14 1990-11-14 Formation of metallic layer for forming conductor pattern

Publications (1)

Publication Number Publication Date
JPH04180550A true JPH04180550A (en) 1992-06-26

Family

ID=17998488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30988590A Pending JPH04180550A (en) 1990-11-14 1990-11-14 Formation of metallic layer for forming conductor pattern

Country Status (1)

Country Link
JP (1) JPH04180550A (en)

Similar Documents

Publication Publication Date Title
JP3343620B2 (en) Method and apparatus for forming a thin film by magnetron sputtering
CN101213642B (en) Metal film deposition method and film deposition device
JPS6135269B2 (en)
JPH06220627A (en) Film forming device
US5512155A (en) Film forming apparatus
US3945902A (en) Metallized device and method of fabrication
JP2003293126A (en) Sputtering target and manufacturing method therefor
EP2941105A1 (en) Mounting device, manufacturing method of same, and sputtering target used in said manufacturing method
JPH04180550A (en) Formation of metallic layer for forming conductor pattern
JP4825345B2 (en) Sputtering target, barrier layer using the same, and method of forming electronic device
JP3659653B2 (en) Method for providing a layer on a substrate and sputtering apparatus used therefor
JPS6258636A (en) Dry etching process and device thereof
JPH06220618A (en) Vacuum film forming device and surface treatment of its component
WO2000031316A1 (en) Co-Ti ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF
JPS6320377B2 (en)
JPH02164784A (en) Production of ceramic circuit board
JPS60204877A (en) Formation of thin film
JPH05247634A (en) Sputtering device
JPS6410096B2 (en)
JPH02290243A (en) Flat processing method for hard film material
DE1923827A1 (en) Method and device for producing thin-film cermet resistors
JPH0647725B2 (en) Method for reducing internal stress in amorphous tungsten compound film
TWI261626B (en) Sputtering device
JP2019052359A (en) Sputtering device, and thin film production method
JPS6250461A (en) Method for depositing thin film by sputtering