JPS6250461A - Method for depositing thin film by sputtering - Google Patents
Method for depositing thin film by sputteringInfo
- Publication number
- JPS6250461A JPS6250461A JP18854985A JP18854985A JPS6250461A JP S6250461 A JPS6250461 A JP S6250461A JP 18854985 A JP18854985 A JP 18854985A JP 18854985 A JP18854985 A JP 18854985A JP S6250461 A JPS6250461 A JP S6250461A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- sputtering
- high frequency
- deposited
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はスパッタリングを用いた薄膜の堆積法に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of depositing thin films using sputtering.
基板または基板ホルダーにバイアス電圧を印加しながら
スパッタを行うバイアススパッタを用いると、基板表面
段差部での膜の被覆率の改善やマイクロクラブクの発生
の防止が可能であることが知られている。さらに本発明
者は、バイアススパッタを用いれば、例えば集積回路装
置の配線における微細なコンタクト孔やスルーホールに
配線金属を埋め込み堆積し、かつこの堆積膜表面の段差
を著しく小さくできる(平坦化できる)ことを見出した
。この様な特徴は、集積回路の配線を多層化する上で極
めて重要である。It is known that by using bias sputtering, which performs sputtering while applying a bias voltage to the substrate or substrate holder, it is possible to improve the film coverage at the stepped portions of the substrate surface and to prevent the occurrence of microcracks. . Furthermore, the present inventor has discovered that by using bias sputtering, it is possible to fill and deposit wiring metal into, for example, minute contact holes and through holes in the wiring of integrated circuit devices, and to significantly reduce (flatten) the level difference on the surface of this deposited film. I discovered that. Such characteristics are extremely important in multilayering the wiring of integrated circuits.
しかし、さらに詳細な検討を行うことにより、この様な
微細な孔(もしくは溝、一般的には凹部)の埋め込みは
、微細な孔のアスペクト比(深さと直径または平面寸法
との比)が0.8程度以上になると、微細孔は完全には
埋め込まれず、孔の中に空洞が残ることが明らかになっ
た。これは、次のような理由による。すなわち、従来の
バイアススパッタリングにおいては、ターゲットからス
パッタされた原子や分子の堆積と、スパッタガスイオン
が基板バイアスによって加速されて基板表面に入射する
ことによって生じるスパッタエツチングとが基板表面で
同時に起こっている。スパッタガスイオンは、基板表面
にほぼ垂直に発生するバイアス電界によって加速される
ので、はぼ基板表面に垂直に入射するが、ターゲットか
らスパッタされた原子や分子の基板表面への入射には種
々の方向の成分があり、たとえば斜めから入射する成分
も大きい。従゛って、高いアスペクト比の微細孔部に従
来のバイアススパッタリング法を用いて膜を堆積すると
、第2図(a)に示した様に、膜堆積の進行とともに、
基板1の微細孔2の入口部に斜め入射成分により堆積膜
3に“張り出し”4が成長し、微細孔内に入射する堆積
原子がこの“張り出し”4で捕らえられる割合が増加す
るため微細孔内への入射の割合が減少する。すると益々
“張り出し″は成長し、益々微細孔内への堆積原子の入
射が減少するという悪循環となり結局微細孔入口が塞が
れ、中に第2図(b)の様に空洞5が残るものと考えら
れる。However, a more detailed study revealed that the filling of such fine holes (or grooves, generally recesses) is difficult because the aspect ratio (ratio of depth to diameter or planar dimension) of the fine hole is 0. It has become clear that when the diameter is about .8 or higher, the micropores are not completely filled and cavities remain inside the pores. This is due to the following reasons. In other words, in conventional bias sputtering, deposition of atoms and molecules sputtered from the target and sputter etching, which occurs when sputter gas ions are accelerated by the substrate bias and incident on the substrate surface, occur simultaneously on the substrate surface. . Sputtering gas ions are accelerated by a bias electric field that is generated almost perpendicular to the substrate surface, so they are generally incident perpendicularly to the substrate surface, but there are various factors that affect the incidence of atoms and molecules sputtered from the target onto the substrate surface. There is a directional component, and for example, a component incident from an angle is also large. Therefore, when a film is deposited in a micropore with a high aspect ratio using the conventional bias sputtering method, as the film deposition progresses, as shown in FIG. 2(a),
An "overhang" 4 grows in the deposited film 3 due to the obliquely incident component at the entrance of the fine hole 2 of the substrate 1, and the proportion of deposited atoms that enter the fine hole being captured by this "overhang" 4 increases. The rate of incidence inward decreases. As a result, the "overhang" grows more and more, and the incidence of deposited atoms into the micropores becomes more and more reduced, resulting in a vicious cycle that eventually closes the micropore entrances, leaving a cavity 5 inside as shown in Figure 2(b). it is conceivable that.
この様な空洞が残っていると、集積回路装置の配線等へ
の応用において製造工程で空洞内へ不純物や薬品が入り
込んで製造上の問題や信頼性の劣化を引起したり、配線
抵抗の増加を引起したりするので好ましくない。If such cavities remain, impurities and chemicals may enter the cavities during the manufacturing process when applied to the wiring of integrated circuit devices, causing manufacturing problems, deterioration of reliability, and increased wiring resistance. This is not desirable as it may cause
本発明の目的は、この様な従来のバイアススパッタによ
る薄膜堆積法の欠点を大幅に改善した新規な薄膜堆積法
を提供することにある。An object of the present invention is to provide a novel thin film deposition method that greatly improves the drawbacks of the conventional thin film deposition method using bias sputtering.
本発明のスパッタリングによる薄膜の堆積法は、基板ま
たは基板ホルダーにバイアス電圧を印加しながらスパッ
タリングを行うバイアススパッタリングを、堆積すべき
薄膜の非ガス組成元素の化合物ガスを含む雰囲気中で行
うことを特徴としている。The method of depositing a thin film by sputtering of the present invention is characterized in that bias sputtering, in which sputtering is performed while applying a bias voltage to a substrate or a substrate holder, is performed in an atmosphere containing a compound gas of a non-gas composition element of the thin film to be deposited. It is said that
本発明による方法では、スパッタリングガスは、膜組成
の非ガス元素化合物ガスを含んでいるので、バイアス電
圧に引かれて基板にほぼ垂直に入射するイオンには、膜
組成の非ガス元素化合物イオンも含まれている。この膜
組成の非ガス元素化合物イオンは、基板表面に入射した
場合に膜堆積に寄与する、すなわち、ターゲットからの
スパッタ原子または分子の基板表面への垂直入射成分が
実効的に増加したことと同じ効果をもたらす。従って微
細孔内での膜堆積速度が上り、微細孔人口に発生する“
張り出し′”が人口を塞ぐ前に微細孔内を埋め込んでし
まうことができるので、従来法の場合よりも高アスペク
ト比の孔まで埋め込み堆積が可能となっているものと考
えられる。In the method according to the present invention, since the sputtering gas contains a non-gaseous elemental compound gas having a film composition, the ions that are attracted by the bias voltage and are almost perpendicularly incident on the substrate also contain non-gaseous elemental compound ions having a film composition. include. Non-gas elemental compound ions in this film composition contribute to film deposition when incident on the substrate surface, i.e. equivalent to an effective increase in the normal incidence component of sputtered atoms or molecules from the target onto the substrate surface. bring about an effect. Therefore, the film deposition rate within the micropores increases, and “
It is thought that because the micropores can be filled before the overhang ''' blocks the population, it is possible to fill and deposit holes with a higher aspect ratio than in the conventional method.
本発明の実施例において用いたスパッタ装置は標準的な
平行平板二電極型高周波スパッタ装置である。そのペル
ジャ一部の模式図を第3図に示す。The sputtering apparatus used in the examples of the present invention is a standard parallel plate two-electrode high frequency sputtering apparatus. A schematic diagram of a part of the Perjar is shown in Figure 3.
ターゲット10としてタングステン板を用い、高周波電
源11より高周波電力を供給する。ターゲットに対向し
て配置された基板ホルダー12には、もう一つの高周波
電源13より高周波電力を供給することにより、基板1
4に負の自己直流バイアス電圧を誘起させる。スパッタ
ガスとしては、アルゴンに六弗化タングステン(WFe
)ガスを約50%加えて用いた。基板14には、表面に
厚さ1.2μmのシリコン酸化膜を成長させこの酸化膜
に直径1.5μmのコンタクト孔を開孔したシリコンウ
ェハを用いた。A tungsten plate is used as the target 10, and high frequency power is supplied from a high frequency power source 11. By supplying high frequency power from another high frequency power source 13 to the substrate holder 12 placed facing the target, the substrate 1
4 to induce a negative self-direct current bias voltage. Argon and tungsten hexafluoride (WFe) are used as sputtering gas.
) gas was added by approximately 50%. As the substrate 14, a silicon wafer was used in which a silicon oxide film with a thickness of 1.2 μm was grown on the surface and a contact hole with a diameter of 1.5 μm was formed in this oxide film.
ターゲット電力約1kW、基板自己バイアス電圧約−6
00Vで、タングステンをバイアススパッタすることに
より従来の方法では、埋め込むことができなかった微細
な高アスペクト比のコンタクト孔をタングステン膜で埋
め込むことができた。第1図は、以上の方法によって基
板14の表面の微細孔15を埋め込んで膜16を堆積し
た構造の断面模式図である。微細孔の堆積膜中には空洞
は生ぜず、微細孔は完全に埋め込まれた。Target power approximately 1kW, substrate self-bias voltage approximately -6
By bias sputtering tungsten at 00V, it was possible to fill with a tungsten film a fine contact hole with a high aspect ratio, which could not be filled with the conventional method. FIG. 1 is a schematic cross-sectional view of a structure in which the fine holes 15 on the surface of the substrate 14 are filled and a film 16 is deposited by the method described above. No cavities were formed in the deposited film with micropores, and the micropores were completely buried.
上記実施例においては、タングステンターゲットと六弗
化タングステンを含む雰囲気との組合せを用いたが、モ
リブデンターゲットと弗化モリブデンを含む雰囲気との
組合せ、シリコンターゲットとシランを含む雰囲気との
組合せ、あるいは石英ターゲットとシランあるいはシラ
ンと酸素とを含む雰囲気との組合せのごとく、材料を問
わず金属、半導体、絶縁物薄膜の堆積に広く用いること
ができるのは明らかである。In the above examples, a combination of a tungsten target and an atmosphere containing tungsten hexafluoride was used, but a combination of a molybdenum target and an atmosphere containing molybdenum fluoride, a combination of a silicon target and an atmosphere containing silane, or a combination of a quartz target and an atmosphere containing silane was used. It is clear that the combination of targets and silane or silane and oxygen containing atmospheres can be widely used for the deposition of metal, semiconductor, and insulator thin films of any material.
また、スパッタリング方式として高周波スパッタリング
のみでなく、直流スパッタリング、直流バイアス印加等
種々のスパッタリング方式に適用できることも明らかで
ある。Furthermore, it is clear that the sputtering method can be applied not only to high frequency sputtering but also to various sputtering methods such as DC sputtering and DC bias application.
本発明による方法を用いることにより、基板表面の細か
い凹部を埋め込んで薄膜を堆積することが可能となる。By using the method according to the invention, it is possible to deposit thin films filling small recesses on the surface of a substrate.
第1図は本発明による方法によって基板表面の微細孔を
埋め込んで膜を堆積した構造の断面模式第2図は従来の
方法で膜を堆積した構造の断面模式図、
第3図は本発明による方法の実施例で用いた高周波スパ
ック装置のペルジャ一部模式図である。
1.14 ・・・・・・・・・ 基板2.15 ・
・・・・・・・・ 微細孔3.16 ・・・・・・・
・・ 堆積膜4 ・・・・・・・・・・・・ 張り出し
5 ・・・・・・・・・・・・ 空洞
10 ・・・・・・・・・・・・ ターゲット11、
13・・・・・・・・・ 高周波電源12 ・・・・
川・川・ 基板ホルタ−13・・・・・・・・・川 基
板
代理人 弁理士 岩 佐 義 幸
第1図
(a)
(b)
第2図
高周波電源
第3図Figure 1 is a schematic cross-sectional view of a structure in which a film is deposited by filling micropores on the substrate surface by the method according to the present invention. Figure 2 is a schematic cross-sectional diagram of a structure in which a film is deposited by a conventional method. Figure 3 is a schematic cross-sectional diagram of a structure in which a film is deposited by a conventional method. It is a partial schematic diagram of the Pelger of the high frequency spacing apparatus used in the example of a method. 1.14 ...... Board 2.15 ・
・・・・・・・・・ Micropore 3.16 ・・・・・・・・・
... Deposited film 4 ...... Overhang 5 ...... Cavity 10 ...... Target 11,
13... High frequency power supply 12...
Kawa, Kawa, Substrate Holter 13...... Kawa Substrate Agent Patent Attorney Yoshiyuki Iwasa Figure 1 (a) (b) Figure 2 High Frequency Power Supply Figure 3
Claims (1)
ながらスパッタリングを行うバイアススパッタリングを
、堆積すべき薄膜の非ガス組成元素の化合物ガスを含む
雰囲気中で行うことを特徴とするスパッタリングによる
薄膜の堆積法。(1) A method for depositing a thin film by sputtering, characterized in that bias sputtering, in which sputtering is performed while applying a bias voltage to a substrate or a substrate holder, is performed in an atmosphere containing a compound gas of a non-gas composition element of the thin film to be deposited. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18854985A JPS6250461A (en) | 1985-08-29 | 1985-08-29 | Method for depositing thin film by sputtering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18854985A JPS6250461A (en) | 1985-08-29 | 1985-08-29 | Method for depositing thin film by sputtering |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6250461A true JPS6250461A (en) | 1987-03-05 |
Family
ID=16225641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18854985A Pending JPS6250461A (en) | 1985-08-29 | 1985-08-29 | Method for depositing thin film by sputtering |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6250461A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02232843A (en) * | 1989-03-06 | 1990-09-14 | Matsushita Electric Ind Co Ltd | Video tape recorder |
WO2012032772A1 (en) * | 2010-09-09 | 2012-03-15 | 富士フイルム株式会社 | Master disc manufacturing method and master disc |
-
1985
- 1985-08-29 JP JP18854985A patent/JPS6250461A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02232843A (en) * | 1989-03-06 | 1990-09-14 | Matsushita Electric Ind Co Ltd | Video tape recorder |
WO2012032772A1 (en) * | 2010-09-09 | 2012-03-15 | 富士フイルム株式会社 | Master disc manufacturing method and master disc |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0697660B2 (en) | Thin film formation method | |
JP2002534807A (en) | Method for depositing copper seed layer to promote improved feature surface coverage | |
US4208257A (en) | Method of forming an interconnection | |
JPH08293483A (en) | Flattening method for solid surface with gas cluster ion beam | |
JPS6250461A (en) | Method for depositing thin film by sputtering | |
JPH0294520A (en) | Dry etching method | |
JPS58122724A (en) | Manufacture of semiconductor element | |
JPH0684539B2 (en) | Thin film formation method by sputtering | |
JPS634062A (en) | Bias sputtering device | |
JP3727693B2 (en) | TiN film manufacturing method | |
JPS5987834A (en) | Forming method of thin-film | |
JPS6351630A (en) | Method of forming electrode for silicon substrate | |
JPS6047738B2 (en) | Contact formation method for semiconductor devices | |
JPH08209340A (en) | Inorganic extremely thin leaf piece and its production | |
JP2753379B2 (en) | Method for manufacturing semiconductor device | |
JPS61198636A (en) | Thin film former | |
JPS637364A (en) | Bias sputtering device | |
JPS63153266A (en) | Sputtering device | |
JPS6333825A (en) | Plasma chemical vapor growth apparatus | |
JPS634066A (en) | Bias sputtering device | |
JPS63124420A (en) | Dry etching method | |
JPS6136376B2 (en) | ||
SU841071A1 (en) | Method of manufacturing thin-film circuits | |
JPS6266629A (en) | Forming method for thin film | |
JPH02275626A (en) | Dry etching method |