JPS6320377B2 - - Google Patents

Info

Publication number
JPS6320377B2
JPS6320377B2 JP56057029A JP5702981A JPS6320377B2 JP S6320377 B2 JPS6320377 B2 JP S6320377B2 JP 56057029 A JP56057029 A JP 56057029A JP 5702981 A JP5702981 A JP 5702981A JP S6320377 B2 JPS6320377 B2 JP S6320377B2
Authority
JP
Japan
Prior art keywords
oxide glass
thin film
gas
oxide
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56057029A
Other languages
Japanese (ja)
Other versions
JPS57172742A (en
Inventor
Kinya Kato
Hiroo Ito
Hirohiko Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56057029A priority Critical patent/JPS57172742A/en
Publication of JPS57172742A publication Critical patent/JPS57172742A/en
Publication of JPS6320377B2 publication Critical patent/JPS6320377B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Description

【発明の詳細な説明】 本発明は二酸化ケイ素、一酸化鉛、三酸化ホウ
素、酸化亜鉛等の酸化物を一種以上成分として含
む酸化物ガラスの微粒子を基板上にスパツタリン
グ法で堆積し、変形温度以上の所望の温度で加熱
焼成する酸化物ガラス薄膜の形成法に関する。こ
こで言う変形温度とは酸化物ガラスの粘度が1011
〜1012ポアズとなる温度である。
Detailed Description of the Invention The present invention involves depositing fine particles of oxide glass containing one or more types of oxides such as silicon dioxide, lead monoxide, boron trioxide, and zinc oxide on a substrate by a sputtering method, and The present invention relates to a method for forming an oxide glass thin film by heating and baking at the above desired temperature. The deformation temperature referred to here means that the viscosity of the oxide glass is 10 11
The temperature is ~10 12 poise.

上記の酸化物ガラス薄膜の用途としては、薄膜
回路用セラミツク基板のグレーズ、薄膜回路の層
間絶縁膜、半導体素子、IC、LSIの表面保護膜等
がある。従来、上記の用途の酸化物ガラス薄膜
は、基板上に粉末ガラス(ガラスフリツト)を堆
積したのち、変形温度以上の所望の温度で加熱焼
成して形成されていた。粉末ガラスの堆積法とし
ては、大別して次の4方法が知られている。
Applications of the above oxide glass thin film include glazes for ceramic substrates for thin film circuits, interlayer insulating films for thin film circuits, and surface protection films for semiconductor elements, ICs, and LSIs. Conventionally, oxide glass thin films for the above-mentioned uses have been formed by depositing powdered glass (glass frit) on a substrate and then heating and baking it at a desired temperature above the deformation temperature. The following four methods are known as methods for depositing powdered glass.

(1) 粉末ガラスを有機溶媒に懸濁させた液中に基
板を置いて行なう沈殿法(遠心分離沈殿法を含
む) (2) 粉末ガラスの有機溶媒懸濁液に電解質を加え
た液中に基板を置いて行なう電気泳動法 (3) 粉末ガラスとニトロセルロース等の粘結剤と
有機溶媒から成るインク状の混合物を基板上に
塗布する塗布法(ドクターブレード法、印刷法
を含む) (4) 粉末ガラスとホトレジストの混合物を基板上
に塗布し、不用部分を露光、現像処理により除
去するホトレジスト法 上記の方法に用いる粉末ガラスは、一般に約
80μm以下の異なる粒径の混合物として供給され
る。したがつて、所望の膜厚の酸化物ガラス薄膜
を形成するには、膜厚以下の粒径の粉末ガラスの
みを沈降法等により選別して用いる必要があつ
た。しかし、粒径の有効な選別法がないため、
1μm以下から、数μmの酸化物ガラス薄膜を膜
厚制御よく形成することは、上記方法では事実上
不可能であるという欠点があつた。
(1) A precipitation method in which a substrate is placed in a suspension of powdered glass in an organic solvent (including centrifugal precipitation) (2) A precipitation method in which an electrolyte is added to a suspension of powdered glass in an organic solvent. Electrophoresis method performed with a substrate placed (3) Coating method in which an ink-like mixture consisting of powdered glass, a binder such as nitrocellulose, and an organic solvent is applied onto a substrate (including doctor blade method and printing method) (4 ) A photoresist method in which a mixture of powdered glass and photoresist is applied onto a substrate, and unnecessary areas are removed by exposure and development.The powdered glass used in the above method is generally approximately
Supplied as a mixture of different particle sizes below 80 μm. Therefore, in order to form an oxide glass thin film with a desired thickness, it has been necessary to select and use only powdered glass having a particle size smaller than the film thickness by a sedimentation method or the like. However, since there is no effective method for particle size selection,
The above method has a drawback in that it is virtually impossible to form an oxide glass thin film of 1 μm or less to several μm in thickness with good control.

一方、粉末ガラスを用いない酸化物ガラスの微
粒子の堆積法としてスパツタリング法が考えられ
る。スパツタリング法は1μm以下から数μmの
膜厚の薄膜を膜厚制御よく堆積できるので、多く
の材料の薄膜形成法として用いられている。しか
し、スパツタリング法を上記用途に使用する酸化
物ガラス薄膜の形成法に用いる場合、スパツタリ
ング雰囲気として一般に使用されているアルゴン
ガスを用いると加熱焼成時にアワが発生し、酸化
物ガラス薄膜表面に酸化物ガラス薄膜の膜厚以上
の凹凸を残すため、実用上上記用途の酸化物ガラ
ス薄膜形成に用いることができないという欠点が
あつた。
On the other hand, a sputtering method can be considered as a method for depositing fine particles of oxide glass without using powdered glass. The sputtering method is used as a method for forming thin films of many materials because it can deposit thin films with a thickness of 1 μm or less to several μm with good thickness control. However, when using the sputtering method to form oxide glass thin films for the above applications, if argon gas, which is commonly used as a sputtering atmosphere, is used, bubbles will occur during heating and baking, and oxides will form on the surface of the oxide glass thin film. Since it leaves unevenness larger than the thickness of the glass thin film, it has the disadvantage that it cannot be practically used to form an oxide glass thin film for the above-mentioned purpose.

本発明は、基板上にスパツタリング法により酸
化物ガラスの微粒子を堆積し、変形温度以上の所
望の温度で加熱焼成し、酸化物ガラス薄膜を形成
する工程において、スパツタリング雰囲気の主成
分、すなわち90%以上の成分としてヘリウムガ
ス、ネオンガスの各々または両者の混合ガスを用
いることを特徴とし、その目的は1μm以下から
数μmの膜厚の酸化物ガラス薄膜を膜厚制御よく
かつアワ発生なく形成する方法を提供するにあ
る。以下実施例について本発明を詳細に説明す
る。
In the process of depositing fine particles of oxide glass on a substrate by a sputtering method and heating and baking them at a desired temperature higher than the deformation temperature to form an oxide glass thin film, the main component of the sputtering atmosphere, that is, 90% It is characterized by using helium gas, neon gas, or a mixture of both gases as the above components, and its purpose is to form an oxide glass thin film with a thickness of 1 μm or less to several μm with good thickness control and without forming bubbles. is to provide. The present invention will be described in detail with reference to Examples below.

実施例 1 一酸化鉛20重量%、二酸化ケイ素80重量%から
成る溶融酸化物ガラスターゲツトを用い、3×
10-4Torrのヘリウムガス雰囲気中でイオンビー
ムスパツタリング法(ターゲツトへの照射イオン
ビームのエネルギー1KeV、電流密度約0.7mA/
cm2)により、熱酸化膜を形成したシリコン基板上
に酸化物ガラス微粒子を堆積し、酸素、窒素(体
積比1:1)から成る雰囲気中に平均昇温速度毎
秒20℃で挿入し温度850℃、時間30分の加熱焼成
を行ない、アワ発生のない膜厚2.1μmの酸化物ガ
ラス薄膜を形成した。
Example 1 Using a molten oxide glass target consisting of 20% by weight lead monoxide and 80% by weight silicon dioxide, 3×
Ion beam sputtering method in a helium gas atmosphere of 10 -4 Torr (the energy of the ion beam irradiating the target is 1 KeV, the current density is approximately 0.7 mA/
Oxide glass particles were deposited on a silicon substrate on which a thermal oxide film had been formed (cm 2 ), and then inserted into an atmosphere consisting of oxygen and nitrogen (volume ratio 1:1) at an average heating rate of 20°C per second to a temperature of 850°C. C. for 30 minutes to form an oxide glass thin film with a thickness of 2.1 μm without generation of bubbles.

実施例 2 一酸化鉛20重量%、二酸化ケイ素80重量%から
成る溶融酸化物ガラスターゲツトを用い、2×
10-4Torrのネオンガス雰囲気中でイオンビーム
スパツタリング法(ターゲツトへの照射イオンビ
ームのエネルギー1KeV、電流密度0.7mA/cm2
により、熱酸化膜を形成したシリコン基板上に酸
化物ガラス微粒子を堆積し、酸素、窒素(体積比
1:1)から成る雰囲気中に平均昇温速度毎秒20
℃で挿入し温度850℃、時間30分の加熱焼成を行
ない、アワ発生のない膜厚1.8μmの酸化物ガラス
薄膜を形成した。
Example 2 Using a molten oxide glass target consisting of 20% by weight lead monoxide and 80% by weight silicon dioxide, 2×
Ion beam sputtering method in a neon gas atmosphere of 10 -4 Torr (ion beam energy 1 KeV to target, current density 0.7 mA/cm 2 )
Oxide glass particles are deposited on a silicon substrate on which a thermal oxide film has been formed, and the average heating rate is 20 per second in an atmosphere consisting of oxygen and nitrogen (volume ratio 1:1).
℃ and heated and baked for 30 minutes at a temperature of 850℃ to form an oxide glass thin film with a thickness of 1.8 μm without generation of bubbles.

実施例 3 一酸化鉛50重量%、二酸化ケイ素50重量%から
成る溶融酸化物ガラスターゲツトを用い、2×
10-4Torrのネオンガス雰囲気中でイオンビーム
スパツタリング法(ターゲツトへの照射イオンビ
ームのエネルギー1KeV、電流密度約0.7mA/
cm2)により、熱酸化膜を形成したシリコン基板上
に酸化物ガラス微粒子を堆積し、酸素、窒素(体
積比1:1)から成る雰囲気中に平均昇温速度毎
秒20℃で挿入し温度800℃、時間30分の加熱焼成
を行ない、アワ発生のない膜厚1μmの酸化物ガ
ラス薄膜を形成した。
Example 3 Using a molten oxide glass target consisting of 50% by weight lead monoxide and 50% by weight silicon dioxide, 2×
Ion beam sputtering method in a neon gas atmosphere of 10 -4 Torr (the energy of the ion beam irradiating the target is 1 KeV, the current density is approximately 0.7 mA/
Oxide glass fine particles were deposited on a silicon substrate on which a thermal oxide film had been formed (cm 2 ), and then inserted into an atmosphere consisting of oxygen and nitrogen (volume ratio 1:1) at an average heating rate of 20°C per second to a temperature of 800°C. C. for 30 minutes to form an oxide glass thin film with a thickness of 1 μm without generation of bubbles.

実施例 4 一酸化鉛80重量%、三酸化ホウ素10重量%、酸
化亜鉛8重量%、二酸化ケイ素2重量%から成る
溶融酸化物ガラスターゲツトを用い、2×
10-4Torrのネオンガス雰囲気中でイオンビーム
スパツタリング法(ターゲツトへの照射イオンビ
ームのエネルギー1KeV、電流密度0.7mA/cm2
により、熱酸化膜を形成したシリコン基板上に酸
化物ガラス微粒子を堆積し、酸素、窒素(体積比
1:1)から成る雰囲気中に平均昇温速度毎秒20
℃で挿入し温度650℃、時間30分の加熱焼成を行
ない、アワ発生のない膜厚1μmの酸化物ガラス
薄膜を形成した。
Example 4 Using a molten oxide glass target consisting of 80% by weight lead monoxide, 10% by weight boron trioxide, 8% by weight zinc oxide, and 2% by weight silicon dioxide, 2×
Ion beam sputtering method in a neon gas atmosphere of 10 -4 Torr (ion beam energy 1 KeV to target, current density 0.7 mA/cm 2 )
Oxide glass particles are deposited on a silicon substrate on which a thermal oxide film has been formed, and the average heating rate is 20 per second in an atmosphere consisting of oxygen and nitrogen (volume ratio 1:1).
℃ and heated and baked for 30 minutes at a temperature of 650℃ to form an oxide glass thin film with a thickness of 1 μm without generation of bubbles.

なお、上記実施例に使用したターゲツトによ
り、スパツタリング雰囲気としてアルゴンガス
(1×10-4Torr)を用い他の条件については実施
例と同一の条件で酸化物ガラス薄膜を形成した場
合には、すべての酸化物ガラス薄膜でアワ発生が
見られた。
By the way, depending on the target used in the above example, when an oxide glass thin film was formed using argon gas (1 x 10 -4 Torr) as the sputtering atmosphere and under the same conditions as in the example, all Foam was observed in the oxide glass thin film.

上記本発明の作用は次のように説明される。す
なわち、スパツタリング法では、スパツタリング
雰囲気ガスを放電によりイオン化し、そのイオン
を電界で加速し、ターゲツト(酸化物ガラス薄膜
の材料であり、一般には酸化物ガラス薄膜と概ね
同一の組成を有する)に衝突させ、酸化物ガラス
微粒子をたたき出し(スパツタリング効果)、タ
ーゲツトの近傍に置いた基板上に酸化物ガラス微
粒子を堆積する。この場合、雰囲気ガスが堆積し
た酸化物ガラス微粒子間に閉じ込められる。した
がつて、この閉じ込められた雰囲気ガスが加熱焼
成時に、酸化物ガラス微粒子の変形、さらに微粒
子間の結合に伴ない集合し、熱膨脹によりアワと
なる。したがつて、アワ発生を防止するために
は、アワとなる前に酸化物ガラスを透過し酸化物
ガラス薄膜の外部に逃げやすいガスをスパツタリ
ング雰囲気として用いることが有効である。溶融
石英でのガスの透過係数はヘリウムガスで約1.2
×10-7c.c.(STP)cm-1sec-1atm-1(550℃)、ネオ
ンガスで約1.2×10-9c.c.(STP)cm-1sec-1atm-1
(550℃)、アルゴンガスで約7×10-14c.c.(STP)
cm-1sec-1atm-1(650℃)であることが知られてい
る。このようなガスの酸化物ガラスの透過係数の
差が本発明の作用をもたらしている。
The operation of the present invention described above will be explained as follows. In other words, in the sputtering method, the sputtering atmosphere gas is ionized by electric discharge, the ions are accelerated by an electric field, and then collide with a target (the material of the oxide glass thin film, which generally has the same composition as the oxide glass thin film). The oxide glass particles are sputtered out (sputtering effect), and the oxide glass particles are deposited on a substrate placed near the target. In this case, the atmospheric gas is trapped between the deposited oxide glass particles. Therefore, during heating and firing, this trapped atmospheric gas deforms the oxide glass particles and aggregates as the particles bond together, causing foam to form due to thermal expansion. Therefore, in order to prevent the formation of wrinkles, it is effective to use as the sputtering atmosphere a gas that easily passes through the oxide glass and escapes to the outside of the oxide glass thin film before forming bubbles. The gas permeability coefficient in fused silica is approximately 1.2 for helium gas.
×10 -7 cc (STP) cm -1 sec -1 atm -1 (550℃), approximately 1.2 × 10 -9 cc (STP) cm -1 sec -1 atm -1 with neon gas
(550℃), approximately 7×10 -14 cc (STP) with argon gas
cm -1 sec -1 atm -1 (650℃). The effect of the present invention is brought about by the difference in the permeability coefficient of the oxide glass for such a gas.

したがつて、本発明は雰囲気ガスで言えば、ヘ
リウムガス、ネオンガスに限ることなく、両者の
混合ガス、またはヘリウムガス、ネオンガス、両
者の混合ガスを主成分(90%以上)とする混合ガ
スに適用できることは明らかである。また、酸化
物ガラスの組成について言えば、実施例に示した
組成に限ることなく、例えばガラスハンドブツク
(朝倉書店昭和50年発行)第2編第6章記載の酸
化物ガラス等、その他の酸化物ガラスに適用でき
ることは明らかである。また、本発明の適用可能
な酸化物ガラス薄膜の膜厚は、酸化物ガラスの特
性(ガスの透過係数、表面エネルギー)、昇温速
度、焼成温度に依存する。第1図は表面エネルギ
ー3×10-4atm・cm、ガスの透過係数が溶融石英
と同程度である酸化物ガラスについての本発明の
適用可能な最大膜厚LOと焼成温度TBの関係を示
す図である。LOは本発明の適用可能な最大膜厚、
TBは焼成温度を示し、昇温速度は毎秒20℃であ
る。1はスパツタリング雰囲気としてヘリウムガ
スを用いた場合の適用可能な最大膜厚、2はネオ
ンガスを用いた場合の適用可能な最大膜厚を示
す。昇温速度を毎秒1℃とすると約3倍の膜厚ま
で適用可能となる。さらに、本発明の適用可能な
スパツタリング法、実施例に示すイオンビームス
パツタリング法に限定されることなく、例えば二
極スパツタリング法、三極スパツタリング法、お
よびマグネトロン効果を応用したマグネトロンス
パツタリング法等、スパツタリング効果を用いる
すべての方式に適用できる。また、スパツタリン
グ雰囲気の圧力、投入電力などの諸条件について
も特に限定されることなく通常の条件が適用でき
る。
Therefore, in terms of atmospheric gases, the present invention is not limited to helium gas and neon gas, but also applies to mixtures of both gases, helium gas, neon gas, and mixtures containing helium gas, neon gas, and mixtures of both gases as a main component (90% or more). The applicability is clear. In addition, regarding the composition of oxide glass, it is not limited to the composition shown in the examples, and other oxide glasses such as the oxide glass described in Chapter 6 of Part 2 of Glass Handbook (published in 1975 by Asakura Shoten), etc. It is obvious that it can be applied to glass. Further, the film thickness of the oxide glass thin film to which the present invention can be applied depends on the characteristics of the oxide glass (gas permeability coefficient, surface energy), heating rate, and firing temperature. Figure 1 shows the relationship between the maximum film thickness L O to which the present invention can be applied and the firing temperature T B for an oxide glass with a surface energy of 3 × 10 -4 atm cm and a gas permeability coefficient comparable to that of fused silica. FIG. L O is the maximum applicable film thickness of the present invention,
T B indicates the firing temperature, and the heating rate is 20°C per second. 1 indicates the maximum applicable film thickness when helium gas is used as the sputtering atmosphere, and 2 indicates the maximum applicable film thickness when neon gas is used. If the temperature increase rate is 1° C./sec, it becomes possible to apply the film up to about three times the thickness. Furthermore, the sputtering method to which the present invention can be applied is not limited to the ion beam sputtering method shown in the examples, but includes, for example, a bipolar sputtering method, a triode sputtering method, a magnetron sputtering method that applies the magnetron effect, etc. , can be applied to all methods using sputtering effects. Further, various conditions such as the pressure of the sputtering atmosphere and the input power are not particularly limited, and ordinary conditions can be applied.

以上説明したように、スパツタリング雰囲気に
酸化物ガラス中の透過係数の大きいガス、すなわ
ちヘリウムガス、ネオンガスの各々または両者の
混合ガスを主成分としたガスを用いて酸化物ガラ
スの微粒子を堆積しているので、従来法で実現で
きなかつた1μm以下から数μmの膜厚の酸化物
ガラス薄膜を膜厚制御よくかつアワ発生なく形成
できる利点がある。
As explained above, fine particles of oxide glass are deposited in the sputtering atmosphere using a gas with a large permeability coefficient in oxide glass, that is, a gas mainly composed of helium gas, neon gas, or a mixture of both. Therefore, there is an advantage that an oxide glass thin film with a thickness of 1 μm or less to several μm, which could not be achieved by conventional methods, can be formed with good thickness control and without the occurrence of wrinkles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、酸化物ガラス薄膜の膜厚に関して、
本発明の適用限界を示す図である。
Figure 1 shows the thickness of the oxide glass thin film.
It is a figure showing the application limit of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上にスパツタリング法により酸化物ガラ
スの微粒子を堆積し、該基板を該酸化物ガラスの
変形温度以上の所望の温度で加熱焼成して酸化物
ガラス薄膜を形成する工程において、スパツタリ
ング雰囲気の主成分としてヘリウムガス、ネオン
ガスの各々または両者の混合ガスを用いることを
特徴とする酸化物ガラス薄膜形成法。
1. In the step of depositing fine particles of oxide glass on a substrate by a sputtering method and heating and baking the substrate at a desired temperature higher than the deformation temperature of the oxide glass to form an oxide glass thin film, the main sputtering atmosphere is A method for forming an oxide glass thin film characterized by using helium gas, neon gas, or a mixture of both as components.
JP56057029A 1981-04-17 1981-04-17 Forming method of thin film of oxide glass Granted JPS57172742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56057029A JPS57172742A (en) 1981-04-17 1981-04-17 Forming method of thin film of oxide glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56057029A JPS57172742A (en) 1981-04-17 1981-04-17 Forming method of thin film of oxide glass

Publications (2)

Publication Number Publication Date
JPS57172742A JPS57172742A (en) 1982-10-23
JPS6320377B2 true JPS6320377B2 (en) 1988-04-27

Family

ID=13044004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56057029A Granted JPS57172742A (en) 1981-04-17 1981-04-17 Forming method of thin film of oxide glass

Country Status (1)

Country Link
JP (1) JPS57172742A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986227A (en) * 1982-11-10 1984-05-18 Toshiba Corp Forming method for glass film
JPS6148434A (en) * 1984-08-17 1986-03-10 Nippon Telegr & Teleph Corp <Ntt> Process for forming glass film
JPS61170561A (en) * 1985-01-25 1986-08-01 Nippon Telegr & Teleph Corp <Ntt> Formation of high melting point metal film
JPH073818B2 (en) * 1985-01-28 1995-01-18 日本電信電話株式会社 Method for forming silicon oxide film

Also Published As

Publication number Publication date
JPS57172742A (en) 1982-10-23

Similar Documents

Publication Publication Date Title
US3720541A (en) Transparent articles
US4250428A (en) Bonded cathode and electrode structure with layered insulation, and method of manufacture
US4424101A (en) Method of depositing doped refractory metal silicides using DC magnetron/RF diode mode co-sputtering techniques
US3258413A (en) Method for the fabrication of tantalum film resistors
JPS6320377B2 (en)
US3558461A (en) Thin film resistor and preparation thereof
JPS61193441A (en) Method of forming metal thin film and therefor device
JPS58122724A (en) Manufacture of semiconductor element
US2961352A (en) Resistance films and method of making
JP3078853B2 (en) Oxide film formation method
Maissel et al. Sputter-etching of heterogeneous surfaces
US3647662A (en) Technique for the fabrication of hafnium nitride resistor
US3630871A (en) Cathodic sputtering method
US3486222A (en) Resistor fabrication
JPS61292817A (en) Formation of transparent conducting metal oxide film
JPS593814A (en) Method of producing transparent conductive film
JPS5973413A (en) Insulating material of thin film and its preparation
US3575833A (en) Hafnium nitride film resistor
JPH0691041B2 (en) Reactive sputter etching method
JPS6329504A (en) Bias sputtering
JP2960644B2 (en) Surface-treated aluminum nitride substrate
US6291362B1 (en) Method of fabricating dielectric layer and fluorescent film for plasma display device
JPH05279846A (en) Target for sputtering and formation of sputtered tion film
JPH0344007A (en) Manufacture of thin film resistor
JP2688999B2 (en) Method for producing transparent conductive film