JPS60204877A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPS60204877A
JPS60204877A JP6020784A JP6020784A JPS60204877A JP S60204877 A JPS60204877 A JP S60204877A JP 6020784 A JP6020784 A JP 6020784A JP 6020784 A JP6020784 A JP 6020784A JP S60204877 A JPS60204877 A JP S60204877A
Authority
JP
Japan
Prior art keywords
target
gas
substrate
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6020784A
Other languages
Japanese (ja)
Other versions
JPH0225427B2 (en
Inventor
Katsutaro Ichihara
勝太郎 市原
Yoshiaki Terajima
喜昭 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6020784A priority Critical patent/JPS60204877A/en
Publication of JPS60204877A publication Critical patent/JPS60204877A/en
Publication of JPH0225427B2 publication Critical patent/JPH0225427B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form uniformly a dense thin film having high quality over a large area in formation of the thin film in which sputtering is utilized by controlling the flow rate of supply gas, the atomic weight of the gas, the pressure in a vessel, the atomic weight of a target and the space between the target and a substrate by the specific equations. CONSTITUTION:A target 2 and a substrate 3 are disposed to face each other in a vessel 1 having a gas supply line 5 and discharge line 6 and a target 2 is sputtered by the gaseous ions formed by glow discharge of supply gas to form a prescribed thin film on the substrate 3. The flow rate of the supply gas, designated as Q(SCCM), the atomic weight of said gas as MG, the pressure in the vessel 1 as P(Torr), the atomic weight of the target 2 as Mr and the space between the target 2 and the substrate 3 as d(cm) are so controlled as to attain 0.5X10<-3=P<=20X10<-3>, P/Q<=2X10<-3>, 0.001<=Pd, Pd<=(Ma+Mr)<2>/20MaMr.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、スパッタリングを利用して金属ヤ金属化合物
等の薄膜を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of forming a thin film of a metal compound or the like using sputtering.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

スパッタリング現象を利用してtill!を形成する技
術として、Ar、Kr、Xeなどの希ガスをグロー放電
して生成されるガスイオンをターゲット近傍に形成され
る強電界領域において加速し、このガスイオンによりタ
ーゲット物質をスパッタリングにより放出して、これを
ターゲットに対向する基板上に被着させる技術が知られ
ている。このスパッタリングは、簡単な装置構成で大面
積の基板に金属ヤ金属化合物のS*を形成することがで
きるため、耐蝕用、装飾用、その他機能性11111の
コーティングなど、幅広い分野で実用されている。
Till! using sputtering phenomenon! As a technique for forming a target material, the gas ions generated by glow discharge of a rare gas such as Ar, Kr, or Xe are accelerated in a strong electric field region formed near the target, and the target material is released by sputtering using these gas ions. A technique is known in which this is deposited on a substrate facing a target. This sputtering method can form S* of a metal compound on a large-area substrate with a simple equipment configuration, so it is used in a wide range of fields such as corrosion-resistant, decorative, and other functional 11111 coatings. .

しかしながら、スパッタリング法で形成された111Q
の品質は、ターゲット物質のみならずグロー放電のパラ
メータに大きく依存するものであり、実用レベルにおい
ても放電パラメータの不備による事故(低品質、再現性
の欠如等)を招いているのが現状である。
However, 111Q formed by sputtering method
The quality of glow discharge depends not only on the target material but also on the parameters of the glow discharge, and even at a practical level, accidents (low quality, lack of reproducibility, etc.) due to inadequate discharge parameters are currently occurring. .

〔発明の目的〕[Purpose of the invention]

本発明は、上記した点に鑑み、グロー放電条件を規定す
る事により、不純物の取込みゃダメージが少なく、かつ
、緻密な高量′MN膜を大面積に1って一様に形成する
ことを可能とした薄膜形成方法を提供することを目的と
する。
In view of the above-mentioned points, the present invention makes it possible to uniformly form a dense, high-density MN film over a large area while minimizing damage caused by the incorporation of impurities by defining glow discharge conditions. The purpose of the present invention is to provide a thin film forming method that makes it possible to form a thin film.

〔発明の概要〕[Summary of the invention]

本発明は、第1に、スパッタリング容器内の供給ガス圧
力P [torrlを0.5X1o′3以上、20X1
0−3以下とする。下限はダメージの少ない薄膜を得る
ために必要であり、上限は大面積にユリ均一なill膜
を得るために必要な条件である。第2に、供給ガス流量
をQ [SCCM]としたとき、P/Qの1直を2×1
0°3以下とする。これは、形成される薄膜への不純物
の取込みを1−分に小さくする上で重要な条件である。
The present invention firstly provides that the supply gas pressure P [torrl in the sputtering container is 0.5X1o'3 or more, 20X1
0-3 or less. The lower limit is necessary to obtain a thin film with little damage, and the upper limit is a necessary condition to obtain a uniform ill film over a large area. Second, when the supply gas flow rate is Q [SCCM], one shift of P/Q is 2×1
0°3 or less. This is an important condition in order to reduce the incorporation of impurities into the formed thin film to within 1 minute.

第3に、ターゲットの原子量をMy、供給ガスの原子」
をMa、ターゲラ1〜と基板の間の距離をd[cIIコ
としたとき、Pd≦(Ma+Mr)2/20〜Ia M
Tなる条件に設定する。これは、m密な薄膜を得る上で
重要である。ただし、Pdが余り小さいと放電が不安定
になるので、下限は0.001とする。
Third, the atomic mass of the target is My, and the atoms of the supply gas are
When Ma is the distance between Targetera 1~ and the substrate is d[cII, Pd≦(Ma+Mr)2/20~Ia M
Set the condition to be T. This is important in obtaining a dense thin film. However, if Pd is too small, the discharge will become unstable, so the lower limit is set to 0.001.

また、供給ガスが多成分ガスの場合、Maは各元素の原
子量×原子成分比の和とし、ターゲットが多成分の場合
のMTも同様とする。
Further, when the supplied gas is a multi-component gas, Ma is the sum of the atomic weight of each element x the atomic component ratio, and the same applies to MT when the target is multi-component.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、グロー放電の条件を最適設計すること
により、スパッタリングにより得られる薄膜への不純物
の取込みやダメージが少なく、緻密で高品質かつ大面積
に亙っで均一なfillを得ることができる。
According to the present invention, by optimally designing the glow discharge conditions, it is possible to obtain a dense, high-quality, and uniform fill over a large area with less incorporation of impurities and damage to the thin film obtained by sputtering. can.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本発明の実施に用いた平行平板型スパッタ装
置の概略構成図である。図において、1は薄膜形成容器
、2は8インチφのターゲット、3は120sφの基板
、4はRFIIL5はガス供給系、6は排気系である。
FIG. 1 is a schematic diagram of a parallel plate type sputtering apparatus used in carrying out the present invention. In the figure, 1 is a thin film forming container, 2 is an 8 inch diameter target, 3 is a 120 s diameter substrate, 4 is an RFIIL 5 is a gas supply system, and 6 is an exhaust system.

以上の構成により、容器1を真空排気した後、ガス供給
系を操作して容器1内にガスを一定流量で導入し、容器
1内のガス圧力を一定に保った後、電源4を投入してタ
ーゲット2に電力を印加する。これにより、ターゲット
2と基板3との間にガスのグロー放電が励起され、ター
ゲット近傍には陰極暗部と称される高電界領域が形成さ
れる。グロー放電中のガスイオンはこの高電界領域でタ
ーゲット2方向に加速され、ターゲット2に衝突してタ
ーゲット物質をスパッタリング放出し、この放出粒子が
ターゲット2に対向して配置された基板3の上にfil
lとして被肴されることになる。
With the above configuration, after the container 1 is evacuated, the gas supply system is operated to introduce gas into the container 1 at a constant flow rate, and after the gas pressure inside the container 1 is kept constant, the power source 4 is turned on. power is applied to target 2. As a result, a gas glow discharge is excited between the target 2 and the substrate 3, and a high electric field region called a cathode dark region is formed near the target. The gas ions during the glow discharge are accelerated in the direction of the target 2 in this high electric field region, collide with the target 2, and sputter and release the target material, and the released particles are deposited on the substrate 3 placed opposite the target 2. fil
It will be served as l.

以上の装置構成を用いて、ターゲット2としてFeとT
bの二種類を、供給ガスとしてArガスとXeガスの二
種類を使用して、供給ガスの圧力P、流IQ、ターゲッ
ト2と基板3間のIIl隔dを変化させて薄膜を形成す
る実験を行なった。以下、その実験データを参照して本
発明の有用性を明らかにする。
Using the above device configuration, Fe and T are used as targets 2.
Experiment to form a thin film by using two types of gases, Ar gas and Xe gas, and changing the pressure P of the gas supply, the flow IQ, and the IIl distance d between the target 2 and the substrate 3. I did this. Hereinafter, the usefulness of the present invention will be clarified with reference to the experimental data.

第2図は、形成された薄膜の膜厚の分布を測定したデー
タである。これは、Feターゲッ1−とArガスを使用
し、ガス流層Qを24 [SCCM]、RFパワーを3
00 [W] 、ターゲット−基板間隔をdを75[a
e+]とし、ガス圧力が2 [mtorr]と50 [
m torrlの二種類の場合について10分間のスパ
ッタリングをおこなって試料を形成し、基板上の半径3
[α]〜6[1]の範囲で膜厚を測定した結果である。
FIG. 2 shows data obtained by measuring the thickness distribution of the formed thin film. This uses Fe target 1- and Ar gas, gas flow layer Q is 24 [SCCM], and RF power is 3
00 [W], target-substrate distance d is 75 [a
e+], and the gas pressure is 2 [mtorr] and 50 [mtorr].
Samples were formed by performing sputtering for 10 minutes for two types of cases with a radius of 3 m torrl on the substrate.
These are the results of measuring film thickness in the range of [α] to 6[1].

第2図の縦軸は膜堆積速度(膜厚をスパッタ時間で除し
た値)であり、横軸は基板中心からの距離である。図か
ら明らかなように、膜j「積速度はガス圧力50 [m
 torrlの場合の方が2 [mtorr]の場合よ
り大きいが、50[mtorr]では膜厚が著しく不均
一である。第3図は堆積速度勾配とArガス圧力の関係
を示すデータである。第3図の縦軸は第2図のプロット
点を結ぶ直線の傾斜で示してあり、第3図の数値が小さ
い程、膜厚の均一性が良い。
The vertical axis in FIG. 2 is the film deposition rate (the value obtained by dividing the film thickness by the sputtering time), and the horizontal axis is the distance from the center of the substrate. As is clear from the figure, the stacking velocity of the membrane j is gas pressure 50 [m
The film thickness is larger in the case of torrl than in the case of 2 [mtorr], but the film thickness is significantly non-uniform at 50 [mtorr]. FIG. 3 shows data showing the relationship between deposition rate gradient and Ar gas pressure. The vertical axis in FIG. 3 is indicated by the slope of the straight line connecting the plot points in FIG. 2, and the smaller the numerical value in FIG. 3, the better the uniformity of the film thickness.

薄膜の用途によっては膜厚の均一性に余り拘らない場合
もあるが、例えば、平均膜厚i oo。
Depending on the application of the thin film, the uniformity of the film thickness may not be so important; for example, the average film thickness i oo.

[人]の膜で半径5[α]の基板上に±250E人]以
内の膜厚分布が許されるような緩い仕(泰の場合でも、
ガス圧力は20 [m torr]以下に抑えなければ
ならないことが第3図より明らかである。ガス圧力が高
いと膜厚が不均一になる理由は。
A loose specification that allows a film thickness distribution within ±250E on a substrate with a radius of 5 [α] for a [human] film (even in the case of Thailand,
It is clear from FIG. 3 that the gas pressure must be kept below 20 m torr. Why does the film thickness become uneven when the gas pressure is high?

グロー放電中のガスイオン密度の分布がガス圧力の増加
に従って放電の中心軸近傍に偏ってくるためである。
This is because the distribution of gas ion density during glow discharge becomes biased toward the vicinity of the central axis of the discharge as the gas pressure increases.

一方、ガス圧力が余り低すぎると、前記したように膜堆
積速度が低下してしまう。例えば、ガス圧力以外は第2
図と同じ条件では、ガス圧力0゜5 m torrの場
合、堆積速度は50[人/min]であり、2 [mt
orr]の場合に対して約1/2に低下する。また、よ
り低ガス圧では膜面へ入射するガスイオンのエネルギー
が過剰に増加し、膜の受けるダメージが大きくなる。
On the other hand, if the gas pressure is too low, the film deposition rate will decrease as described above. For example, other than gas pressure
Under the same conditions as shown in the figure, when the gas pressure is 0°5 m torr, the deposition rate is 50 [person/min] and 2 [mt
orr]. Furthermore, at lower gas pressures, the energy of gas ions incident on the membrane surface increases excessively, resulting in greater damage to the membrane.

以上に述べた理由から、ガス圧は、大面積基板に均一な
膜厚で薄膜を形成するために20[mt。
For the reasons stated above, the gas pressure is set at 20 [mt] in order to form a thin film with a uniform thickness on a large area substrate.

rrl以下に押えられるべきであり、また、膜を迅速に
形成するためにはO15[mtorr]以上に設定され
るべきである。
rrl or less, and in order to quickly form a film, it should be set to O15 [mtorr] or more.

次に、ガス圧Pとガス流IQの関係について説明する。Next, the relationship between gas pressure P and gas flow IQ will be explained.

通常のNll形成装置の容器のリーク量は10°’ [
m torr・I/5ecl程度であり、これをscc
M単位に[118と、7.9X10’[SCCM]とな
る。この程度の真空濶れを有する容器にプロセス用ガス
(本発明の場合、Ar。
The amount of leakage from the container of a normal Nll forming device is 10°' [
m torr・I/5ecl, and this is scc
The unit of M is [118, which is 7.9X10' [SCCM]. A process gas (in the case of the present invention, Ar) is placed in a container having this level of vacuum leakage.

Kr、Keなと)をQ [SCCM]流し、容器内の圧
力をP [torr]に保持した場合、不純物ガス分圧
p c [torr]は、(Q)7/9xlOうとする
と)、 Pc=7.9x10うP/Q [torr]で与えられ
、基板の単位面積当りに毎秒入射する不純物ガス粒子層
fine [c*4sec’ ]は、nc”;3.54
X10 xpc −2,8x10 P/Q となる。一方、基板の単位面積当りに毎秒入射するター
ゲット粒子密度nT [c*4s e c’ ] ハ、
膜の堆積速度をD[人SeC’l]、ターゲット粒子の
原子直径をa[人]とすると、 rLr ’=DX 10 /a3 で与えられる。a43[人〕であり、D42[人5ec
4]!:すると、nr47.4×、o++となる。不純
物の少ない膜を得るためには、n7>noでなければな
らない。ガスとしてAr、ターゲットとしてTbとFe
の混合ターゲット(Tb30%)を使用し、RFパワー
300 [W]でP/Qを変化してTbFe膜を形成し
た。その結果、P/Q≦2X10’ [torr/SC
CM] (nc≧1、lX104n丁)の範囲で垂直磁
化膜が得られたのに対し、P/Q≧3×10°’ [t
orr/ S CCMI (nc≧1.lX104ny
>の範囲では不純物の影響が大きく面内磁化膜となった
。膜内に含有する不純物の許容量は膜の用途によって異
なるが、上記実験結果によれば、プロセス用ガス圧力P
 トjj スm l Q +7)比P / Q 1.t
 2 X 10°3[tOrr/SCCM]以下に設定
されるべきである。
When Q [SCCM] is flowed (Kr, Ke) and the pressure inside the container is maintained at P [torr], the impurity gas partial pressure p c [torr] is (Q)7/9xlO), Pc= The impurity gas particle layer fine [c*4sec'] which is given by 7.9x10p/Q [torr] and incident per second per unit area of the substrate is nc"; 3.54
X10 xpc -2,8x10 P/Q. On the other hand, the density of target particles incident per second per unit area of the substrate nT [c*4s e c']
When the deposition rate of the film is D [seC'l] and the atomic diameter of the target particle is a [man], it is given by rLr'=DX 10 /a3. a43 [person] and D42 [person 5ec
4]! : Then, nr47.4×, o++. In order to obtain a film with few impurities, n7 must be greater than no. Ar as gas, Tb and Fe as targets
A TbFe film was formed using a mixed target (30% Tb) with RF power of 300 [W] and varying P/Q. As a result, P/Q≦2X10' [torr/SC
CM] (nc≧1, l×104n), whereas P/Q≧3×10°′ [t
orr/S CCMI (nc≧1.lX104ny
In the range >, the influence of impurities was large, resulting in an in-plane magnetized film. The allowable amount of impurities contained in the membrane varies depending on the membrane's use, but according to the above experimental results, the process gas pressure P
Tojj Sum Q +7) Ratio P/Q 1. t
It should be set to 2×10°3 [tOrr/SCCM] or less.

第4図は、躾の原子数密度(膜の緻密さに対応)の実測
データを示す図である。ガスはArとXeの二種類を、
ターゲラ1−はFeとTbの二種類を使用し、RFパワ
ー300 [W] 、ガス1124[SCCM]、ター
ゲット−基板間隔75[jw+]でサンプルを形成し、
誘導結合プラズマを用いた発光分光法により膜の質量を
測定し、それを躾の体積で除して原子数密度を算出した
。膜厚勾配によるエラーを避けるため、サンプルの形状
は基板ホルダーと同心の円環としたe A rガス−F
eターゲットの組合わせでは、ガス圧10 [mtor
r]以下では膜の原子数密度はバルクの体心立方晶のF
eの密度8.5X10 [a−3]GC近イlil ヲ
示すが、10 [mtorr1以上では膜の緻密性が減
少している。Arガス−Tbターゲットの組合わせでは
、ガス圧3 Q [mtorr]以下の範囲で、躾の原
子数密度はバルクの六方晶のTbの密度である3、lX
10 に近い値に維持される。Xeガス−Tbターゲッ
トの組合わせでは、ガス圧10[m torr1以上で
膜の緻密性が減少している。
FIG. 4 is a diagram showing actually measured data of the atomic number density (corresponding to the denseness of the film) of the film. There are two types of gas: Ar and Xe.
Targetera 1- uses two types of Fe and Tb, and forms samples with RF power of 300 [W], gas of 1124 [SCCM], and target-substrate distance of 75 [jw+].
The mass of the membrane was measured by optical emission spectroscopy using inductively coupled plasma, and the atomic number density was calculated by dividing it by the volume of the membrane. In order to avoid errors due to film thickness gradients, the shape of the sample was a ring concentric with the substrate holder.
In the e-target combination, the gas pressure is 10 mtor
r], the atomic number density of the film is F of the bulk body-centered cubic crystal.
The density of e is 8.5×10 [a-3] GC near illumination, but at 10 [mtorr1 or higher, the density of the film decreases. In the combination of Ar gas and Tb target, in the gas pressure range below 3 Q [mtorr], the atomic number density of the capacitor is 3,1X, which is the density of bulk hexagonal Tb.
It is maintained at a value close to 10. In the combination of Xe gas and Tb target, the denseness of the film decreases at a gas pressure of 10 m torr or more.

基板面へ入射する粒子は、ターゲット粒子の他にスパッ
タガス粒子や不純物ガス粒子があるが、これらのうち最
も入射頻度が高いのは、スパッタガス粒子である。膜が
ち密であるためには、基板面へのターゲット粒子の被着
の際に基板面或いは膜面に物理吸着したスパッタガス粒
子層をターゲット粒子がはじきとばしてam成因子とな
ることが必要であり、そのためにはターゲット粒子があ
る程度のエネルギーを持っていることが必要である。タ
ーゲツト面からスパッタリング放出される際のターゲッ
ト粒子のエネルギーは平均的に10[eV]程度と十分
に大きいが、スパッタ放出した粒子は基板面へ被着する
前に気相中においてガス粒子と衝突してエネルギーを失
う。スパッタ放出してから基板へ入射する迄に失うエネ
ルギーは、衝突の回数と一回の衝突で失うエネルギーの
積で与えられる。−回の衝突で失うエネルギー係数は、
ターゲット粒子の原子量MTとガス粒子の原子層Maを
用いて、2MaMy/ (MO+MT ) 2で与えら
れ、衝突の回数はガス圧力Pとターゲット−基板間隔d
の積pdに比例する。故にち密な膜を得るためには、 Pd X 2Ma My / (MG +MT ) 2
がある値より小さくなければならず、前記のデータから
、 Pd≦(MO+MT ) 2/20MG MTであれば
、膜の1!密性はバルクの約90%以上に保たれること
がわかる。
Particles that are incident on the substrate surface include sputter gas particles and impurity gas particles in addition to target particles, but among these particles, sputter gas particles have the highest incidence frequency. In order for the film to be dense, it is necessary for the target particles to repel the layer of sputtered gas particles physically adsorbed to the substrate surface or film surface when the target particles are attached to the substrate surface, and to become an am-forming factor. This requires that the target particles have a certain amount of energy. The energy of the target particles when sputtered and emitted from the target surface is on average about 10 [eV], which is sufficiently large, but the sputtered particles collide with gas particles in the gas phase before depositing on the substrate surface. and lose energy. The energy lost from sputtering until it hits the substrate is given by the product of the number of collisions and the energy lost in one collision. The energy coefficient lost in − collisions is
Using the atomic weight MT of the target particle and the atomic layer Ma of the gas particle, it is given by 2MaMy/(MO+MT)2, and the number of collisions is determined by the gas pressure P and the target-substrate distance d.
It is proportional to the product pd. Therefore, in order to obtain a dense film, Pd X 2Ma My / (MG + MT) 2
must be smaller than a certain value, and from the above data, if Pd≦(MO+MT)2/20MG MT, then 1! It can be seen that the density is maintained at about 90% or more of the bulk.

一方、pdが余り小さいと、放電開始電圧が上昇する。On the other hand, if pd is too small, the discharge starting voltage will increase.

放電が不安定になる。などの不都合が生じるので、Pd
の下限としては、0.001 [t。
Discharge becomes unstable. Pd
The lower limit of 0.001 [t.

r「・α〕程度が適当である。An appropriate value is r'.α].

以上のように本発明の設定条件に従ってスパッタリング
すれば、ダメージや不純物取込みが少なく、かつ緻密な
薄膜を大面積に屋って均一に形成することができる。
As described above, by sputtering according to the set conditions of the present invention, it is possible to uniformly form a dense thin film over a large area with little damage or impurity incorporation.

なお本発明は実施例に記載した平行平板型RFスパッタ
装置を用いたsi!形成方法に限られるものではなく、
DCスパッタ法、マグネトロンスパッタ法、同軸スパッ
タ法、多極スパッタ法1反応性スパッタ法等、全てのス
パッタリング現象を利用した1M形成方法に適用するこ
とができる。
Note that the present invention is based on the si! It is not limited to the formation method,
It can be applied to all 1M forming methods that utilize sputtering phenomena, such as DC sputtering, magnetron sputtering, coaxial sputtering, multi-pole sputtering, and one-reactive sputtering.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するためのスパッタ装
置を示す図、第2図は形成されたN躾の膜堆積速度分布
を示す図、第3図は同じく膜堆積速度勾配とガス圧の関
係を示す図、第4図は同じく形成された膜の原子数密度
とガス圧の関係を示す図である。 1・・・NNI形成容器、2・・・ターゲット、3・・
・基板、4・・・RFI源、5・・・ガス供給系、6・
・・排気系。 出願人代理人 弁理士 鈴江武彦 第1図 第2図
FIG. 1 is a diagram showing a sputtering apparatus for explaining an embodiment of the present invention, FIG. 2 is a diagram showing a formed N-type film deposition rate distribution, and FIG. 3 is a diagram showing the film deposition rate gradient and gas FIG. 4 is a diagram showing the relationship between the atomic number density and the gas pressure of a similarly formed film. 1... NNI formation container, 2... target, 3...
・Substrate, 4...RFI source, 5...Gas supply system, 6.
・Exhaust system. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 ガス供給系及び排気系を有する容器内にターゲットとこ
れに対向する基板を配置して、供給ガスのグロー放電に
より生成されたガスイオンによりターゲットをスパッタ
リングして前記基板上に所定のWIl!を形成する方法
において、供給ガスの流量をQ [SCCM] 、この
ガスの原子量をMa、容器内の圧力をp [tOrr]
 、ターゲットの原子量をM T sターゲットと基板
の間隔をd[cIR]としたとき、 ■0.5X10’≦P≦20X10’3■P/Q≦2X
10−3 ■0.001≦Pd、かつ、 Pd≦(Ma十〜IT )t/20MGMTなる条件を
満たすことを特徴とするms形成方法。
[Claims] A target and a substrate facing the target are arranged in a container having a gas supply system and an exhaust system, and the target is sputtered onto the substrate by gas ions generated by glow discharge of the supply gas. Predetermined WIl! , the flow rate of the feed gas is Q [SCCM], the atomic weight of this gas is Ma, and the pressure inside the container is p [tOrr].
, When the atomic weight of the target is M T s and the distance between the target and the substrate is d [cIR], ■0.5X10'≦P≦20X10'3■P/Q≦2X
10-3 (1) An ms forming method characterized by satisfying the following conditions: 0.001≦Pd and Pd≦(Ma~IT)t/20MGMT.
JP6020784A 1984-03-28 1984-03-28 Formation of thin film Granted JPS60204877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6020784A JPS60204877A (en) 1984-03-28 1984-03-28 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6020784A JPS60204877A (en) 1984-03-28 1984-03-28 Formation of thin film

Publications (2)

Publication Number Publication Date
JPS60204877A true JPS60204877A (en) 1985-10-16
JPH0225427B2 JPH0225427B2 (en) 1990-06-04

Family

ID=13135467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6020784A Granted JPS60204877A (en) 1984-03-28 1984-03-28 Formation of thin film

Country Status (1)

Country Link
JP (1) JPS60204877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817987A (en) * 2020-06-19 2021-12-21 华为技术有限公司 Electronic equipment and processing method of rear cover of electronic equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR057325A1 (en) 2005-05-25 2007-11-28 Progenics Pharm Inc SYNTHESIS OF (S) -N-METHYLNTREXONE, PHARMACEUTICAL COMPOSITIONS AND USES
PE20090700A1 (en) 2007-03-29 2009-07-13 Progenics Pharm Inc HETEROCYCLIC COMPOUNDS AS ANTAGONISTS OF THE PERIPHERAL OPIOID RECEPTOR
WO2009099411A1 (en) 2008-02-06 2009-08-13 Progenics Pharmaceuticals, Inc. Preparation and use of (r),(r)-2,2'-bis-methylnaltrexone

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JAPANESE JOURNAL OF APPLIED PHYSICS=1981 *
JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY=1982 *
JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY=1983 *
THIN SOLID FILMS=1979 *
THIN SOLID FILMS=1983 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113817987A (en) * 2020-06-19 2021-12-21 华为技术有限公司 Electronic equipment and processing method of rear cover of electronic equipment
CN113817987B (en) * 2020-06-19 2023-04-18 华为技术有限公司 Electronic equipment and processing method of rear cover of electronic equipment

Also Published As

Publication number Publication date
JPH0225427B2 (en) 1990-06-04

Similar Documents

Publication Publication Date Title
JP3343620B2 (en) Method and apparatus for forming a thin film by magnetron sputtering
Maniv et al. Oxidation of an aluminum magnetron sputtering target in Ar/O2 mixtures
Mergel et al. Oxygen incorporation in thin films of In2O3: Sn prepared by radio frequency sputtering
JPH0521347A (en) Sputtering device
Fontana et al. Triode magnetron sputtering TiN film deposition
EP0135118A2 (en) Method of producing fine particles
JPS60204877A (en) Formation of thin film
JPS61235560A (en) Magnetron sputtering device
Xu et al. Be coatings on spherical surface for NIF target development
Yu et al. Surface-discharge characteristics of magnesium oxide thin films prepared by ion beam-assisted deposition
Koike et al. Helicon plasma sputtering system for fabrication of multilayer x‐ray mirrors
US5755937A (en) Apparatus for applying layers of metal onto a surface
Motohiro et al. Study of angular factors in sputter-deposition using the ion beam method
JP3787430B2 (en) Sputtering apparatus and thin film forming method using the same
JPH0314906B2 (en)
Hong et al. Effects of gas ring position and mesh introduction on film quality and thickness uniformity
Agarwal et al. Vacuum-deposited carbon coatings
Nyaiesh et al. The effects of gas composition on discharge and deposition characteristics when magnetron sputtering aluminium
Nenadović et al. Diffusion in Au-Ni thin films
JPS6277477A (en) Thin film forming device
JPH07292474A (en) Production of thin film
Ge et al. Comparison of TiZrV Non-Evaporable Getter Films Deposited by DC Magnetron Sputtering or Quantitative Deposition
JPH01319671A (en) Multielement sputtering device
Xu et al. Gas flow effects on the structure and composition of SiNx/Si/SiNx films prepared by radio-frequency magnetron sputtering
JPH0254754A (en) Formation of film having controlled gradient composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term