WO2000031316A1 - Co-Ti ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF - Google Patents

Co-Ti ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF Download PDF

Info

Publication number
WO2000031316A1
WO2000031316A1 PCT/JP1999/003479 JP9903479W WO0031316A1 WO 2000031316 A1 WO2000031316 A1 WO 2000031316A1 JP 9903479 W JP9903479 W JP 9903479W WO 0031316 A1 WO0031316 A1 WO 0031316A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
alloy
sputtering
less
thin film
Prior art date
Application number
PCT/JP1999/003479
Other languages
French (fr)
Japanese (ja)
Inventor
Kazushige Takahashi
Hirohito Miyashita
Original Assignee
Japan Energy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corporation filed Critical Japan Energy Corporation
Priority to EP99970555A priority Critical patent/EP1091015A4/en
Priority to KR1020007007879A priority patent/KR20010034218A/en
Publication of WO2000031316A1 publication Critical patent/WO2000031316A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by physical means, e.g. sputtering, evaporation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Definitions

  • the present invention relates to a Co-based alloy sputtering target which has a low oxygen content, has good film forming uniformity (uniformity), and can provide a low-particle sputtered thin film.
  • a sputtering method As a method of forming a semiconductor thin film, a sputtering method is widely used.
  • a substrate serving as an anode is opposed to a target serving as a cathode, and an electric field is generated by applying a high voltage between the substrate and the target under an inert gas atmosphere.
  • the ionized electrons collide with the inert gas to form plasma, and the cations in the plasma collide with the target surface and strike out the constituent atoms of the target. This is based on the principle that a film is formed by adhesion.
  • the magnetron sputtering method is a method in which a magnet is set on the back side of a target and a sputtering is performed by generating a magnetic field in the direction perpendicular to the electric field on the surface of the getter. It has the features of being able to stabilize and increase the density and to increase the sputtering rate.
  • a thin film is formed on a substrate by using such a magnetron sputtering method.
  • the sintered body target has a problem that the oxygen content is high and the resistance of the C 0 — Ti alloy thin film is increased.
  • the sintered target cannot have a density of 100%, and as a result, the low density of the sintered target has been one of the causes of particle generation .
  • the range of the film forming conditions for obtaining the desired characteristics was extremely narrow, and a satisfactory Co—Ti alloy target could not be obtained.
  • a Co—Ti alloy target is produced by a melting method, the amount of oxygen is reduced, the production process of the target and the film formation process are shortened, and a good thin film with uniformity can be obtained.
  • the present invention relates to a Co—Ti alloy sputtering target and a method for producing the same. Disclosure of the invention
  • the present inventors can improve the uniformity of film formation and reduce the amount of oxygen by manufacturing a Co—Ti alloy sputtering target by a vacuum melting method. It was found that thin films with good reproducibility and high quality could be obtained under stable manufacturing conditions.
  • the present invention is based on this finding,
  • the ingot After forming a Co-Ti alloy ingot by vacuum melting and forming a Co-Ti alloy containing 5 Ti 0.5 to 20 at%, the ingot is formed into a target by hot working. For producing a Co—Ti alloy sputtering target
  • FIG. 1 is a schematic explanatory view showing a composition analysis position on a wafer.
  • the Co—Ti alloy sputtering target of the present invention contains Ti 0.5 to 20 at%.
  • the balance is basically Co and may contain acceptable unavoidable impurities.
  • high-purity Co and Ti are dissolved in a vacuum. Although high-purity Co is used as a raw material for Co, its purity is commercially available 9 9. More than 9% can be used. Use Ti with a purity of 99.955% or more.
  • this Co-Ti alloy After smelting this Co-Ti alloy, it is made into a predetermined block (ingot), hot forged or rolled, and then finished to form a flat plate or other target shape that can be set in a magnetron sputtering device. I do.
  • the above hot working is 800-1190. Perform in the range of C. This hot working is effective as a means for making a relatively coarse structure as it is and making it finer and for refining crystal grains.
  • the alloy target of the present invention obtained as described above has an oxygen content of 100 ppm or less and a crystal grain size of 50 / ⁇ or less.
  • the oxygen content of the Co—Ti alloy sputtering target of the present invention can be set to 80 ppm or less, and the crystal grain size can be set to 30 or less.
  • the reason for setting the Ti content of the Co—Ti alloy sputtering target of the present invention to 0.5 to 20 at% is that if the Ti content exceeds 20 at%, the flatness of the sputtering film becomes poor. This is because the specific resistance increases, and if it is less than 0.5 at%, the effect of containing Ti is lost.
  • a target having an oxygen content of 1 OOP pm or less can be easily obtained.
  • the oxygen content exceeds 1 OOp pm, the resistance of the Co—Ti alloy thin film increases, so the upper limit is set. It is necessary to be within this range.
  • the content is 80 ppm or less.
  • the reason for performing the hot working in the range of 800 to 1190 ° C is to eliminate Ti segregation at the ingot stage and perform hot working without causing cracks.
  • the Co—Ti alloy sputtering target of the present invention has a maximum magnetic permeability in the in-plane direction.
  • Corrected ⁇ paper (Rule S1)
  • the permeability is less than 30, and the maximum permeability in the thickness direction is 5 or more and less than 100.
  • the variation of the Ti concentration in the Co—Ti alloy target of the present invention becomes ⁇ 0.2 wt% or less, a stable thin film with good reproducibility can be obtained.
  • the oxygen content of the thin film obtained by sputtering can be set to 100 ppm or less and further to 80 ppm or less similarly to the target, a low-resistance film can be formed.
  • the thin film itself has a uniform thickness, has no component segregation, has a dense structure, and can be obtained as a thin film excellent in uniformity. Examples and comparative examples
  • Co-Ti alloy was vacuum-melted using a vacuum induction melting furnace, using Co with a purity of 99.99% or more and Ti with a purity of 99.955% or more.
  • the dissolved products are Co-10at% Ti and Co-15at% Ti.
  • Table 1 shows the composition of these alloys. After melting and manufacturing of the Co—Ti alloy, the obtained ingot (170 ⁇ 200 ⁇ 301;) is soaked (held at 1100 ° C. for 2 hours). Hot rolled in a pass.
  • Samples were cut out from these hot-rolled sheets and subjected to oxygen content analysis, magnetic property measurement and microscopic structure observation.
  • the amount of oxygen was analyzed using an oxygen analyzer of LE CO.
  • Magnetic properties were measured with a B-H meter using a 4 ⁇ I coil at a maximum magnetic field of 1000 Oe.
  • the microstructure was observed using an optical microscope after the cross section was polished and further etched.
  • Table 2 shows the results of the oxygen content analysis. As shown in Table 2, two types of C 0 — T i The oxygen content of the alloy was 75 ppm, and the result was that the oxygen content was lower than that of the sintered product of the comparative example described later. In the measurement results of the magnetic properties, the maximum magnetic permeability in the in-plane direction was less than 30 and the maximum magnetic permeability in the thickness direction was 5 or more and less than 100, and a low magnetic permeability Co—Ti alloy was obtained. Furthermore, according to the observation with an optical microscope, it had a dense structure without cracks or component segregation.
  • Co powder having a purity of 99.99% or more and Ti powder having a purity of 99.995% or more were used as raw materials and sintered at 1150 ° C. in vacuum using a hot press apparatus.
  • Table 1 shows the composition of these alloys.
  • Example 2 The results of the oxygen content analysis are shown in Table 2 same as in Example 1. As shown in Table 2, the oxygen content of the two Co-Ti sintered products of Comparative Example 1 was 36 Oppm and 37 Oppm, respectively, and the oxygen content increased compared to the melt-rolled product of Example 1 and was poor. The result was.
  • a mosaic target was prepared to compare the integrated rolled plate target with the sintered plate target.
  • the Co and Ti of this mosaic target were obtained by melting and rolling under the same conditions as in Example 1 individually with the same purity as in Example 1. Then, a Ti chip (3 mm square) was placed on a Co target so that the rolled sheet obtained in this manner had the same area ratio of the sputtered surface as in Example 1, and the same size ( ⁇ 3 ⁇ ) mosaic target.
  • a thin film was formed on a silicon wafer by using a sputtering apparatus, and the generation state of particles of> 0.3 zm and fluctuation of the composition in the thin film were examined.
  • the particle generation was analyzed quantitatively using a particle counter, and the composition of the components in the thin film was analyzed using EPMA.
  • the sputtering conditions were as follows: distance between substrates: 60 mm, gas pressure (Ar): 0.5 Pa, and voltage: 500 V.
  • Table 3 shows the particle measurement results. As is clear from Table 3, the amount of particles generated in the target prepared by the melt rolling in Example 1 was 0 Zcm 2 and 0.02 particles / cm 2 , which were extremely small.
  • the sintered compact target of Comparative Example 1 showed a bad result because the amount of generated particles was more than one digit.
  • Table 4 shows the measurement results of the variation in the composition (T i) of the thin film formed on the silicon wafer.
  • Figure 1 shows the measurement points of the thin film formed on the silicon wafer.
  • Table 4 shows the analysis values corresponding to the measurement points in Fig. 1.
  • the amount of variation in the composition (T i) is small for the integrated melting and rolling target of Example 1 and the sintered target of Comparative Example 1.
  • mossy targets have poor compositional fluctuations on the wafer and are poor.
  • the mosaic target has a small amount of particles generated and the manufacturing process is simple, although it appears to have advantages, it is unsuitable because of such compositional variations.
  • an integrated target (Example 1) produced by melting and rolling, which generates a small amount of particles and has a small variation in the composition of the thin film formed on the wafer, is the best target.
  • the Co—Ti alloy sputtering target of the present invention has a Ti content of 0.5 to 20 at%, an ingot of the same alloy by melting and ingot, and the ingot is hot-worked to have a crystal grain size of 50 m. Below, the oxygen content was reduced to less than 100 ppm.
  • the Co—Ti alloy target manufactured in this manner can have a Ti concentration variation within 0.2 wt%, and has a low magnetic permeability, low resistance, and a sputtered thin film with few particles on the wafer. Can be formed.
  • the discharge is stable, the fluctuation of the deposition rate is small, the range of the deposition conditions for the Co-Ti alloy thin film can be widened, and stable deposition with good reproducibility is possible.
  • it has excellent characteristics as compared with the conventional mosaic target or sintered target, and has a remarkable effect that the cost can be reduced.

Abstract

A method of manufacturing a Co-Ti alloy sputtering target containing not more than 100 ppm of oxygen and having a grain size of not larger than 50 νm, comprising forming a Co-Ti alloy ingot by vacuum-melting and casting a Co-Ti alloy containing 0.5 to 20 wt.% of Ti, and then hot-working the ingot. The Co-Ti alloy sputtering target containing the above small amount oxygen is useful for forming a sputtering thin film which is excellent in film-forming uniformity and has few particles.

Description

明 細 書  Specification
C o— T i合金スパッタリングタ一ゲット及びその製造方法 技術分野 Technical field of Co—Ti alloy sputtering target
本発明は、 酸素含有量が少なく、 成膜のユニフォーミティー (均一性) が良好 で低パ一ティクルのスパッタリング薄膜を得ることができる C o系合金スパッタ リングターゲッ卜に関する。  The present invention relates to a Co-based alloy sputtering target which has a low oxygen content, has good film forming uniformity (uniformity), and can provide a low-particle sputtered thin film.
背景技術 Background art
半導体薄膜の形成方法として、 スパッタリング法が広く用いられている。 スパ ッタリング法は、 陽極となる基板と陰極となるターゲットとを対向させ、 不活性 ガス雰囲気下でこれらの基板とタ一ゲッ卜の間に高電圧を印加して電場を発生さ せるものであり、 この時電離した電子と不活性ガスが衝突してブラズマが形成さ れ、 このプラズマ中の陽イオンがターゲット表面に衝突してターゲット構成原子 を叩きだし、 この飛び出した原子が対向する基板表面に付着して膜が形成される という原理を用いたものである。  As a method of forming a semiconductor thin film, a sputtering method is widely used. In the sputtering method, a substrate serving as an anode is opposed to a target serving as a cathode, and an electric field is generated by applying a high voltage between the substrate and the target under an inert gas atmosphere. At this time, the ionized electrons collide with the inert gas to form plasma, and the cations in the plasma collide with the target surface and strike out the constituent atoms of the target. This is based on the principle that a film is formed by adhesion.
現在、 一般に行なわれているスパッタリングの殆どは、 いわゆるマグネトロン スパッタリングと呼ばれている方法が使用されている。 マグネトロンスパッタリ ング法は、 ターゲットの裏側に磁石をセットして夕一ゲット表面に電界と垂直方 向に磁界を発生させてスパッタリングを行なう方法であり、 このような直交電磁 界空間内ではプラズマの安定化および高密度化が可能であり、 スパッタ速度を大 きくすることができるという特徴を有している。  At present, most of the commonly used sputtering uses a method called so-called magnetron sputtering. The magnetron sputtering method is a method in which a magnet is set on the back side of a target and a sputtering is performed by generating a magnetic field in the direction perpendicular to the electric field on the surface of the getter. It has the features of being able to stabilize and increase the density and to increase the sputtering rate.
一般に、 このようなマグネトロンスパッタリング法を用い、 薄膜を基板上に形 成することが行なわれている。  In general, a thin film is formed on a substrate by using such a magnetron sputtering method.
従来、 C o - T i合金スパッタリング薄膜は T i含有量の厳密なコントロール が必要であり、 ウェハー上に均一に成膜されることが必要であった。  Conventionally, a Co-Ti alloy sputtering thin film requires strict control of the Ti content, and it has been necessary to form a uniform film on a wafer.
このような C o— T i合金のスパッタリング薄膜を形成する方法の 1つとして 、 まず C oターゲットと T iターゲットの 2種類のターゲットを準備し、 これを 基板上に交互にスパッタリングし、 所定厚みに成膜後さらに熱処理して所定の C o— T i合金薄膜とすることが行なわれていた。 しかし、 これは薄膜を形成する 工程が多数回あり、 それだけ膜厚のコントロール等が複雑になり、 コスト高にな つて実用的ではない欠点を有していた。 As one method of forming such a Co—Ti alloy sputtering thin film, first, two types of targets, a Co target and a Ti target, are prepared, and these are alternately sputtered on a substrate to a predetermined thickness. After film formation, heat treatment An o-Ti alloy thin film has been used. However, this involves a number of steps of forming a thin film, which complicates the control of the film thickness and the like, and has the disadvantage that it is costly and impractical.
このため、 上記に替わる方法として C o板と T iとを交互に平面的に並べて E 置した、 いわゆるモザイクターゲットを使用することが考えられた。 これはスパ ッタリングの際に、 いちいち C oタ一ゲットと T iターゲットの 2種類のターゲ ットを交換する必要がないので、 効率的ではあるが成膜のユニフォーミティーが 悪く、 C o— T i合金の組成がウェハー上で不均一になりやすく、 これも品質が 悪く実用的でない欠点があった。  Therefore, as an alternative to the above, it was conceivable to use a so-called mosaic target in which Co plates and Ti were alternately arranged in a plane and placed E. This is efficient because the sputtering target does not need to exchange the two types of targets, the Co target and the Ti target, each time. The composition of the i-alloy tends to be non-uniform on the wafer, which also has the disadvantage of poor quality and impractical.
以上のような欠点があつたため、 シリサイドや W, Mo等の高融点金属タ一ゲ ットにおいてよく用いられている焼結体 (品) ターゲットが使用された。  Due to the above-mentioned disadvantages, a sintered product target, which is often used for high melting point metal targets such as silicide and W and Mo, was used.
しかし、 この焼結体ターゲットの製造工程でいくつか問題があった。 それは半 導体装置用に適した高純度の C o粉末原料の入手が困難なため、 その粉末を得る ための特別な製造工程を必要とし、 極めて高価になったということである。 また、 焼結体ターゲットは酸素含有量が高くなり、 C 0— T i合金薄膜の抵抗 が増加するという問題も生じた。  However, there were some problems in the manufacturing process of this sintered compact target. This means that it is difficult to obtain high-purity Co powder raw materials suitable for semiconductor devices, which requires a special manufacturing process to obtain the powder, and is extremely expensive. In addition, the sintered body target has a problem that the oxygen content is high and the resistance of the C 0 — Ti alloy thin film is increased.
焼結体タ一ゲットはどんなに製造条件を改良したところで、 1 0 0 %の密度を 持つということは有り得ず、 この結果焼結体ターゲットの密度が低いことにより パーティクル発生の原因の 1つとなった。  No matter how the manufacturing conditions are improved, the sintered target cannot have a density of 100%, and as a result, the low density of the sintered target has been one of the causes of particle generation .
さらに、 スパッタリング成膜時に A rガスを高くしないと放電せず、 このため 放電が不安定になり、 かつデポレート (成膜速度) の変動が激しく、 また透磁率 の制御が非常に困難であるという欠点があつた。  Furthermore, it is said that the discharge does not occur unless the Ar gas is increased during sputtering film formation, which makes the discharge unstable, that the deposition rate (film formation rate) fluctuates greatly, and that it is very difficult to control the magnetic permeability. There were drawbacks.
以上から、 目的とする特性を得るための成膜条件の範囲が極めて狭く、 満足し 得る C o— T i合金ターゲットが得られていなかった。  As described above, the range of the film forming conditions for obtaining the desired characteristics was extremely narrow, and a satisfactory Co—Ti alloy target could not be obtained.
本発明は、 C o— T i合金ターゲットを溶解法によって作製し酸素量を低減さ せ、 ターゲットの製造工程及び成膜工程を短縮化するとともに、 ュニフォーミテ ィ一の良好な薄膜を得ることができる C o— T i合金スパッタリングターゲット 及びその製造方法にある。 発明の開示 According to the present invention, a Co—Ti alloy target is produced by a melting method, the amount of oxygen is reduced, the production process of the target and the film formation process are shortened, and a good thin film with uniformity can be obtained. The present invention relates to a Co—Ti alloy sputtering target and a method for producing the same. Disclosure of the invention
上記の課題を解決するために、 本発明者らは真空溶解法により C o— T i合金 スパッタリングタ一ゲットを製造することにより、 成膜のユニフォーミティーを 改善し、 酸素量を低減することができ、 安定した製造条件で再現性よくかつ品質 の良い薄膜を得ることができるとの知見を得た。  In order to solve the above-mentioned problems, the present inventors can improve the uniformity of film formation and reduce the amount of oxygen by manufacturing a Co—Ti alloy sputtering target by a vacuum melting method. It was found that thin films with good reproducibility and high quality could be obtained under stable manufacturing conditions.
本発明はこの知見に基ずき、  The present invention is based on this finding,
1 T i 0. 5〜2 0 a t %を含有し真空溶解法により作製されたことを特徴と する C o— T i合金スパッ夕リングタ一ゲット A Co—Ti alloy sputtering target containing 1 Ti 0.5 to 20 at% and manufactured by a vacuum melting method.
2 酸素含有量が 1 0 0 p pm以下であることを特徴とする上記 1に記載のスパ ッタリングタ一ゲッ卜  (2) The sputtering target as described in (1) above, wherein the oxygen content is 100 ppm or less.
3 結晶粒径が 5 0 / m以下であることを特徴とする上記 1又は 2に記載のスパ ッタリングタ一ゲッ卜  (3) The sputtering target as described in (1) or (2) above, wherein the crystal grain size is 50 / m or less.
4ターゲットにおける面内方向の最大透磁率が 3 0未満、 板厚方向の最大透磁率 が 5以上 1 0 0未潢であることを特徴とする上記 1〜 3記載のスパッタリング夕 —ゲット  (4) The sputtering target according to (1) to (3) above, wherein the maximum magnetic permeability in the in-plane direction of the target is less than 30, and the maximum magnetic permeability in the thickness direction is 5 or more and less than 100.
5 T i 0. 5〜2 0 a t %を含有する C o— T i合金を真空溶解及び铸造によ り C o— T i合金インゴットを形成した後、 該インゴットを熱間加工によりター ゲットとしたことを特徴とする C o— T i合金スパッタリング夕一ゲットの製造 方法  After forming a Co-Ti alloy ingot by vacuum melting and forming a Co-Ti alloy containing 5 Ti 0.5 to 20 at%, the ingot is formed into a target by hot working. For producing a Co—Ti alloy sputtering target
、 を提供するものである。 図面の簡単な説明  , Are provided. BRIEF DESCRIPTION OF THE FIGURES
図 1はウェハ一上での組成分析位置を示す概略説明図である。 発明の実施の形態  FIG. 1 is a schematic explanatory view showing a composition analysis position on a wafer. Embodiment of the Invention
本発明の C o— T i合金スパッタリングタ一ゲットは T i 0. 5〜2 0 a t % を含有する。 残部は基本的に C oであり、 許容される不可避的不純物を含有して もよい。 該ターゲットの製造に際しては、 まず高純度の C oと T iを真空中で溶 解する。 C oの原料としては高純度の C oを使用するが、 市販されている純度 9 9. 9%以上のものが使用できる。 T iは純度 99. 995%以上のものを使用 する。 The Co—Ti alloy sputtering target of the present invention contains Ti 0.5 to 20 at%. The balance is basically Co and may contain acceptable unavoidable impurities. In manufacturing the target, first, high-purity Co and Ti are dissolved in a vacuum. Although high-purity Co is used as a raw material for Co, its purity is commercially available 9 9. More than 9% can be used. Use Ti with a purity of 99.955% or more.
この Co— T i合金を溶製後所定のブロック (インゴット) に铸造し、 これを 熱間で鍛造又は圧延加工し、 さらに仕上げ加工して平板状その他のマグネトロン スパッタリング装置にセットできるターゲット形状に成形する。  After smelting this Co-Ti alloy, it is made into a predetermined block (ingot), hot forged or rolled, and then finished to form a flat plate or other target shape that can be set in a magnetron sputtering device. I do.
上記の熱間加工は 800〜1190。 Cの範囲で行なう。 この熱間加工は籙造 のままの比較的粗い組織を、 より緻密にし結晶粒を微細化する手段として有効で ある。  The above hot working is 800-1190. Perform in the range of C. This hot working is effective as a means for making a relatively coarse structure as it is and making it finer and for refining crystal grains.
この熱間加工によって、 本発明のターゲッ卜の品質をさらに向上させることが できる。  By this hot working, the quality of the target of the present invention can be further improved.
以上によって得られた本発明の合金ターゲットの酸素含有量は 100p pm以 下であり、 結晶粒径は 50 /ΛΠΙ以下の緻密な§ ^を持つ。  The alloy target of the present invention obtained as described above has an oxygen content of 100 ppm or less and a crystal grain size of 50 / ΛΠΙ or less.
さらに本発明の Co— T i合金スパッタリングターゲットの酸素含有量を 80 p pm以下に、 また結晶粒径は 30 以下にすることもできる。  Further, the oxygen content of the Co—Ti alloy sputtering target of the present invention can be set to 80 ppm or less, and the crystal grain size can be set to 30 or less.
本発明の Co— T i合金スパッタリングターゲットの T i含有量を 0. 5〜2 0 a t %とする理由は、 T i含有量が 20 a t %を超えるとスパッタリング膜の 膜の平坦度が 匕し比抵抗が増加するためであり、 また 0. 5 a t%未満である と T i含有の効果がなくなるからである。  The reason for setting the Ti content of the Co—Ti alloy sputtering target of the present invention to 0.5 to 20 at% is that if the Ti content exceeds 20 at%, the flatness of the sputtering film becomes poor. This is because the specific resistance increases, and if it is less than 0.5 at%, the effect of containing Ti is lost.
また、 本発明において酸素含有量 1 OOP pm以下のターゲットを容易に得る ことができるが、 酸素含有量が 1 OOp pmを超えると C o— T i合金薄膜の抵 抗が増加するので、 上限をこの範囲とすることが必要である。 好ましくは上記に 示す通り、 80ppm以下とするのが良い。  Further, in the present invention, a target having an oxygen content of 1 OOP pm or less can be easily obtained. However, if the oxygen content exceeds 1 OOp pm, the resistance of the Co—Ti alloy thin film increases, so the upper limit is set. It is necessary to be within this range. Preferably, as described above, the content is 80 ppm or less.
結晶粒径は 50 im以下の緻密な組織を持つ本発明の溶製 Co— T i合金ター ゲットを用いてスパッタリング成膜すると、 従来の焼結体ターゲットに比べ格段 に優れたユニフォーミティーを持つ Co— Ti合金薄膜を基板 (ウェハー) 上に 形成することができる。  When a sputtered film is formed by using the in-situ Co—Ti alloy target of the present invention, which has a dense structure with a crystal grain size of 50 im or less, Co with much better uniformity than the conventional sintered compact target is obtained. — Ti alloy thin film can be formed on a substrate (wafer).
上記熱間加工を 800〜1190° Cの範囲で行なう理由はインゴット段階で の T i偏析を解消し、 クラックを生じさせずに熱間加工するためである。  The reason for performing the hot working in the range of 800 to 1190 ° C is to eliminate Ti segregation at the ingot stage and perform hot working without causing cracks.
上記本発明の Co— T i合金スパッタリングターゲットは面内方向の最大透磁  The Co—Ti alloy sputtering target of the present invention has a maximum magnetic permeability in the in-plane direction.
4 Four
訂正された^紙 (規則 S1) 率が 30未満、 板厚方向の最大透磁率が 5以上 100未満となる。 Corrected ^ paper (Rule S1) The permeability is less than 30, and the maximum permeability in the thickness direction is 5 or more and less than 100.
この溶製法による低透磁率の Co— T i合金ターゲットを用いてスパッタリン グすると放電が安定し、 パ一ティクル等の欠陥の少ない薄膜が得られる。  When sputtering is performed using a Co—Ti alloy target having a low magnetic permeability by this smelting method, the discharge is stable, and a thin film having few defects such as particles can be obtained.
また、 本発明の Co— T i合金ターゲットにおける T i濃度のバラツキが ±0 . 2wt%以下となるので、 再現性の良い安定した薄膜を得ることができる。 スパッタリングにより得られた薄膜の酸素含有量もターゲッ卜と同様に 100 p pm以下、 さらには 80 p pm以下とすることができるため、 低抵抗の膜が形 成できる。 さらに、 薄膜それ自体も均一な厚みを持ち、 成分偏析がなく緻密な組 織を有し、 ュニフォ一ミティ一に優れた薄膜を得ることができる。 実施例および比較例  In addition, since the variation of the Ti concentration in the Co—Ti alloy target of the present invention becomes ± 0.2 wt% or less, a stable thin film with good reproducibility can be obtained. Since the oxygen content of the thin film obtained by sputtering can be set to 100 ppm or less and further to 80 ppm or less similarly to the target, a low-resistance film can be formed. Further, the thin film itself has a uniform thickness, has no component segregation, has a dense structure, and can be obtained as a thin film excellent in uniformity. Examples and comparative examples
以下、 実施例および比較例に基づいて説明する。 なお、 本実施例はあくまで一 例であり、 この例によって何ら制限されるものではない。 すなわち、 本発明は特 許請求の範囲によってのみ制限されるものであり、 本発明に含まれる実施例以外 の種々の変形を包含するものである。  Hereinafter, description will be made based on examples and comparative examples. This embodiment is merely an example, and the present invention is not limited to this embodiment. That is, the present invention is limited only by the scope of the patent claims, and encompasses various modifications other than the examples included in the present invention.
(実施例 1 )  (Example 1)
純度 99. 99%以上の Coと純度 99. 995 %以上の T iを原料とし、 真 空誘導溶解炉を用いて Co— T i合金を真空溶解した。 溶解品は、 Co— 10 a t%T iと Co— 15 a t%T iの 2種である。  Co-Ti alloy was vacuum-melted using a vacuum induction melting furnace, using Co with a purity of 99.99% or more and Ti with a purity of 99.955% or more. The dissolved products are Co-10at% Ti and Co-15at% Ti.
表 1にこれらの合金組成を示す。 前記 Co— T i合金の溶解铸造後、 得られた インゴット (1 70 X 200 X 30 1;) を均熱化処理 (1 100° Cで 2時間保 持) し、 その後 12 tまで 1ヒート 1パスで熱間圧延した。  Table 1 shows the composition of these alloys. After melting and manufacturing of the Co—Ti alloy, the obtained ingot (170 × 200 × 301;) is soaked (held at 1100 ° C. for 2 hours). Hot rolled in a pass.
これらの熱間圧延板から試料を切り出し、 酸素量分析、 磁気特性測定及び顕微 鏡組織観察を行なった。 酸素量は LE CO社の酸素分析装置を用いて分析した。 磁気特性は B-Hメーターで 4 π Iコイルを用い、 最大磁界 1000Oeで測 定した。 組織観察は断面を研磨し、 さらにエッチングした後、 光学顕微鏡を用い て観察した。  Samples were cut out from these hot-rolled sheets and subjected to oxygen content analysis, magnetic property measurement and microscopic structure observation. The amount of oxygen was analyzed using an oxygen analyzer of LE CO. Magnetic properties were measured with a B-H meter using a 4πI coil at a maximum magnetic field of 1000 Oe. The microstructure was observed using an optical microscope after the cross section was polished and further etched.
酸素量分析結果を表 2に示す。 表 2に示す通り、 本実施例の 2種の C 0— T i 合金の酸素量は 75 p p mであり、 後述する比較例の焼結品に比べ酸素含有量が 低い結果が得られた。 また、 磁気特性の測定結果では面内方向の最大透磁率が 3 0未満、 板厚方向の最大透磁率が 5以上 100未満となり、 低透磁率の Co— T i合金が得られた。 さらに、 光学顕微鏡観察によれば、 クラックや成分偏析がな く緻密な組織を有していた。 Table 2 shows the results of the oxygen content analysis. As shown in Table 2, two types of C 0 — T i The oxygen content of the alloy was 75 ppm, and the result was that the oxygen content was lower than that of the sintered product of the comparative example described later. In the measurement results of the magnetic properties, the maximum magnetic permeability in the in-plane direction was less than 30 and the maximum magnetic permeability in the thickness direction was 5 or more and less than 100, and a low magnetic permeability Co—Ti alloy was obtained. Furthermore, according to the observation with an optical microscope, it had a dense structure without cracks or component segregation.
組 成 備 考 Composition Remarks
施 Co— 10 a t%T i 溶解品 Co—10 a t% T i dissolved product
 An example
Co 5 a t %T i 溶解品 比 Co 5 at% T i Melt ratio
較 Co- 10 a t%T 焼結品  Comparative Co-10at% T sintered product
 An example
Co— 15 a t%T i 焼結品 Co—15 at% Ti sintered product
表 2 Table 2
Figure imgf000009_0001
Figure imgf000009_0001
(比較例 1 ) (Comparative Example 1)
純度 99. 99%以上の Co粉と純度 99. 995 %以上の T i粉を原料とし 、 ホットプレス装置を用い真空中で 1150° Cで焼結させた。 焼結品は Co— 10 a t%T iと Co— l 5 a t%T iの 2種である。 実施例 1と同様に、 表 1 にこれらの合金組成を示す。  Co powder having a purity of 99.99% or more and Ti powder having a purity of 99.995% or more were used as raw materials and sintered at 1150 ° C. in vacuum using a hot press apparatus. There are two types of sintered products: Co-10at% Ti and Co-5at% Ti. As in Example 1, Table 1 shows the composition of these alloys.
これらの焼結品から試料を切り出し、 実施例 1と同じ測定装置等を用いて、 酸 素量分析、 磁気特性測定及び顕微鏡組織観察を行なった。  Samples were cut out from these sintered products, and subjected to oxygen content analysis, magnetic property measurement, and microscopic observation using the same measuring device as in Example 1.
酸素量分析結果を実施例 1と同じ表 2に示す。 表 2に示す通り、 比較例 1の 2 種の Co— T i焼結品の酸素量はそれぞれ 36 Oppmと 37 Oppmであり、 実施例 1の溶解圧延品に比べ酸素含有量が増大し、 悪い結果となった。  The results of the oxygen content analysis are shown in Table 2 same as in Example 1. As shown in Table 2, the oxygen content of the two Co-Ti sintered products of Comparative Example 1 was 36 Oppm and 37 Oppm, respectively, and the oxygen content increased compared to the melt-rolled product of Example 1 and was poor. The result was.
光学顕微鏡観察によれば、 焼結品特有の粗な組織をなり溶解品に比べ緻密な組 織は得られていない。 また、 磁気特性の測定結果においても透磁率が高く、 実施 例に比べ劣る。 次に、 スパッタリングによるパーティクルの発生量と薄膜中の成分組成の変動 を調べるために、 上記実施例 1の 2種の Co— 10a t%Tiと Co— 15a t %T i合金の圧延板と比較例 1の 2種の Co— 10a t%Tiと Co— 15a t %T iの焼結板から φ 3〃 の夕一ゲットを作成した。 According to the observation with an optical microscope, a coarse structure peculiar to the sintered product is obtained, and a dense tissue is not obtained as compared with the melted product. Also, in the measurement results of the magnetic properties, the magnetic permeability is high, which is inferior to the examples. Next, in order to investigate the amount of particles generated by sputtering and the variation in the composition of the components in the thin film, a comparison was made with the two types of rolled sheets of Co-10at% Ti and Co-15at% Ti alloys in Example 1 above. From the sintered plates of two types of Co-10at% Ti and Co-15at% Ti of Example 1, an evening get of φ3 mm was prepared.
(比較例 2)  (Comparative Example 2)
また、 一体型の圧延板ターゲットと焼結板ターゲットとの対比のために、 モザ ィクタ一ゲットを作成した。 このモザイクターゲットの Coと T iは実施例 1と 同純度のものをそれぞれ個別に、 実施例 1の条件で溶解圧延したものである。 そして、 このようにして得た圧延板を実施例 1と同一のスパッタエ口一ジョン 面の面積比となるように、 Coターゲットの上に T iチップ (3 mm角) を置い て、 同一サイズ (Φ3〃) のモザイクターゲットとした。  In addition, a mosaic target was prepared to compare the integrated rolled plate target with the sintered plate target. The Co and Ti of this mosaic target were obtained by melting and rolling under the same conditions as in Example 1 individually with the same purity as in Example 1. Then, a Ti chip (3 mm square) was placed on a Co target so that the rolled sheet obtained in this manner had the same area ratio of the sputtered surface as in Example 1, and the same size ( Φ3〃) mosaic target.
上記に準備したターゲットをスパッタリング装置を用いてシリコンウェハー上 に薄膜を形成し、 >0. 3 zmのパーティクルの発生状況及び薄膜中の組成の変 動を調べた。 パーティクルの発生状況はパーティクルカウンターを用い、 薄膜中 の成分組成は E PMAを用い定量分析した。  Using the target prepared above, a thin film was formed on a silicon wafer by using a sputtering apparatus, and the generation state of particles of> 0.3 zm and fluctuation of the composition in the thin film were examined. The particle generation was analyzed quantitatively using a particle counter, and the composition of the components in the thin film was analyzed using EPMA.
なお、 スパッタリング条件は、 基板間距離: 60mm、 ガス圧 (Ar) : 0. 5Pa、 電圧: 500Vである。  The sputtering conditions were as follows: distance between substrates: 60 mm, gas pressure (Ar): 0.5 Pa, and voltage: 500 V.
パーティクルの測定結果を表 3に示す。 表 3から明らかなように、 実施例 1の 溶解圧延により作成したターゲッ卜のパーティクルの発生量は 0個 Zcm2 及び 0. 02個/ cm2 となり、 極めて少ない。 Table 3 shows the particle measurement results. As is clear from Table 3, the amount of particles generated in the target prepared by the melt rolling in Example 1 was 0 Zcm 2 and 0.02 particles / cm 2 , which were extremely small.
これに対し、 比較例 1の焼結体タ一ゲットはパ一ティクルの発生量が一桁以上 多く、 悪い結果を示した。  On the other hand, the sintered compact target of Comparative Example 1 showed a bad result because the amount of generated particles was more than one digit.
比較例 2の溶解圧延品から作製したモザイクタ一ゲットのパ一ティクルの発生 量は比較例 1の焼結体タ一ゲットに比べて良好であるが、 実施例 1の一体型の溶 解圧延ターゲットに比べやや悪い結果となった。 表 3 The amount of particles generated by the mosaic target manufactured from the melt-rolled product of Comparative Example 2 was better than that of the sintered compact target of Comparative Example 1, but the integrated melt-rolled target of Example 1 was used. The result was slightly worse than. Table 3
Figure imgf000011_0001
次に、 シリコンウェハ一上に形成した薄膜の組成 (T i ) の変動量の測定結果 を表 4に示す。 また、 シリコンウェハー上に形成した薄膜の測定箇所を図 1に示 す。 この図 1の測定箇所に対応させて、 表 4にその分析値が示されている。 表 4から明らかなように、 実施例 1の一体型の溶解圧延ターゲットと比較例 1 の焼結体ターゲットについては組成 (T i ) の変動量は少ない。 しかし、 モザィ クターゲットはこの組成の変動がウェハー上で激しく、 不良である。
Figure imgf000011_0001
Next, Table 4 shows the measurement results of the variation in the composition (T i) of the thin film formed on the silicon wafer. Figure 1 shows the measurement points of the thin film formed on the silicon wafer. Table 4 shows the analysis values corresponding to the measurement points in Fig. 1. As is clear from Table 4, the amount of variation in the composition (T i) is small for the integrated melting and rolling target of Example 1 and the sintered target of Comparative Example 1. However, mossy targets have poor compositional fluctuations on the wafer and are poor.
モザイクターゲットはパ一ティクルの発生量が少なく製造工程も簡単なので、 利点があるように見えるが、 このように組成の変動がある以上不適である。 以上からみて、 パーティクルの発生量が少なく、 ウェハー上に形成した薄膜組 成の変動量も少ない溶解圧延により作成した一体型のターゲット (実施例 1 ) が 最も良好なターゲットであるという結果が得られた。 Since the mosaic target has a small amount of particles generated and the manufacturing process is simple, Although it appears to have advantages, it is unsuitable because of such compositional variations. In view of the above, it was found that an integrated target (Example 1) produced by melting and rolling, which generates a small amount of particles and has a small variation in the composition of the thin film formed on the wafer, is the best target. Was.
表 4 Table 4
Figure imgf000012_0001
Figure imgf000012_0001
0 発明の効果 0 The invention's effect
本発明の Co— T i合金スパッタリングターゲットは、 Ti含有量を 0. 5〜 20a t%とし、 溶解铸造により同合金のインゴットとし、 さらにこのインゴッ トを熱間加工し、 結晶粒径を 50 m以下、 酸素含有量 1 OOppm以下に減少 させたものである。  The Co—Ti alloy sputtering target of the present invention has a Ti content of 0.5 to 20 at%, an ingot of the same alloy by melting and ingot, and the ingot is hot-worked to have a crystal grain size of 50 m. Below, the oxygen content was reduced to less than 100 ppm.
このようにして製造した Co— T i合金タ一ゲットは T i濃度のバラツキを士 0. 2wt%以内とすることができ、 低透磁率、 低抵抗、 さらにパーティクルの 少ないスパッタリング薄膜をウェハ一上に形成することができる。  The Co—Ti alloy target manufactured in this manner can have a Ti concentration variation within 0.2 wt%, and has a low magnetic permeability, low resistance, and a sputtered thin film with few particles on the wafer. Can be formed.
また、 透磁率の制御が容易であり、 焼結体ターゲットに見られるような成膜時 に A rガス圧を高くしなければ放電しないという問題もない。  Further, it is easy to control the magnetic permeability, and there is no problem that discharge does not occur unless the Ar gas pressure is increased during film formation as seen in a sintered body target.
これによつて、 放電が安定し、 成膜速度の変動も少なく、 Co— Ti合金薄膜 の成膜条件の範囲も広くとることができ、 再現性がよく安定した成膜が可能であ るという、 従来のモザイクターゲット又は焼結体ターゲトに比べ優れた特性を有 し、 コスト的にも低廉にできるという著しい効果を有する。  As a result, the discharge is stable, the fluctuation of the deposition rate is small, the range of the deposition conditions for the Co-Ti alloy thin film can be widened, and stable deposition with good reproducibility is possible. However, it has excellent characteristics as compared with the conventional mosaic target or sintered target, and has a remarkable effect that the cost can be reduced.

Claims

請 求 の 範 囲 The scope of the claims
1. 丁1を0. 5〜20 a t%含有し真空溶解により作製されたことを特徴とす る Co— T i合金スパッタリングタ一ゲット。 1. A Co—Ti alloy sputtering target containing 0.5 to 20 at% of Ding 1 and produced by vacuum melting.
2. 酸素含有量が 1 OOppm以下であることを特徴とする請求の範囲第 1項に 記載のスパッタリングターゲット。  2. The sputtering target according to claim 1, wherein the oxygen content is 100 ppm or less.
3. 結晶粒径が 50 zm以下であることを特徴とする請求の範囲第 1項又は第 2 項に記載のスパッタリングターゲット。  3. The sputtering target according to claim 1, wherein a crystal grain size is 50 zm or less.
4. ターゲットにおける面内方向の最大透磁率が 30未満、 板厚方向の最大透磁 率が 5以上 100未満であることを特徴とする請求の範囲第 1項〜第 3項に記載 のスパッタリング夕ーゲット。  4. The sputtering method according to claim 1, wherein the maximum magnetic permeability in the in-plane direction of the target is less than 30 and the maximum magnetic permeability in the thickness direction is 5 or more and less than 100. Get.
5. T i 0. 5〜20 a t %を含有する Co— T i合金を真空溶解及び铸造によ り Co— T i合金インゴットを形成した後、 該インゴットを熱間加工によりタ一 ゲットとしたことを特徴とする Co— T i合金スパッタリング夕一ゲッ卜の製造 方法。  5. After forming a Co-Ti alloy ingot containing Ti 0.5 to 20 at% by vacuum melting and forming, the ingot is made a target by hot working. A method for producing a Co-Ti alloy sputtering gate.
2 Two
PCT/JP1999/003479 1998-11-20 1999-06-29 Co-Ti ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF WO2000031316A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99970555A EP1091015A4 (en) 1998-11-20 1999-06-29 Co-Ti ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF
KR1020007007879A KR20010034218A (en) 1998-11-20 1999-06-29 Co-Ti ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33033398 1998-11-20
JP10/330333 1998-11-20

Publications (1)

Publication Number Publication Date
WO2000031316A1 true WO2000031316A1 (en) 2000-06-02

Family

ID=18231461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003479 WO2000031316A1 (en) 1998-11-20 1999-06-29 Co-Ti ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF

Country Status (4)

Country Link
EP (1) EP1091015A4 (en)
KR (1) KR20010034218A (en)
TW (1) TW475946B (en)
WO (1) WO2000031316A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086184A1 (en) * 2001-04-16 2002-10-31 Nikko Materials Company, Limited Manganese alloy sputtering target and method for producing the same
JP2007291522A (en) * 2001-04-16 2007-11-08 Nikko Kinzoku Kk Manganese alloy sputtering target
CN103572228A (en) * 2012-07-31 2014-02-12 鑫科材料科技股份有限公司 Method for manufacturing high vapor pressure chalcogen alloy block

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102485378B (en) * 2010-12-06 2013-11-13 有研亿金新材料股份有限公司 Preparation method of ruthenium metal sputtering target material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252565A (en) * 1994-03-14 1995-10-03 Mitsubishi Steel Mfg Co Ltd Cobalt-based alloy for magnetic recording medium and its production
JPH09272970A (en) * 1996-04-05 1997-10-21 Japan Energy Corp High purity cobalt sputtering target and its manufacture
JPH10195643A (en) * 1996-12-26 1998-07-28 Toshiba Corp Sputtering target, sputtering device, semiconductor device and its production
JPH10306368A (en) * 1997-04-30 1998-11-17 Hitachi Metals Ltd Co series cast target and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252565A (en) * 1994-03-14 1995-10-03 Mitsubishi Steel Mfg Co Ltd Cobalt-based alloy for magnetic recording medium and its production
JPH09272970A (en) * 1996-04-05 1997-10-21 Japan Energy Corp High purity cobalt sputtering target and its manufacture
JPH10195643A (en) * 1996-12-26 1998-07-28 Toshiba Corp Sputtering target, sputtering device, semiconductor device and its production
JPH10306368A (en) * 1997-04-30 1998-11-17 Hitachi Metals Ltd Co series cast target and its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1091015A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086184A1 (en) * 2001-04-16 2002-10-31 Nikko Materials Company, Limited Manganese alloy sputtering target and method for producing the same
US7229510B2 (en) 2001-04-16 2007-06-12 Nippon Mining & Metals, Co., Ltd. Manganese alloy sputtering target and method for producing the same
JP2007291522A (en) * 2001-04-16 2007-11-08 Nikko Kinzoku Kk Manganese alloy sputtering target
JP4685059B2 (en) * 2001-04-16 2011-05-18 Jx日鉱日石金属株式会社 Manganese alloy sputtering target
CN103572228A (en) * 2012-07-31 2014-02-12 鑫科材料科技股份有限公司 Method for manufacturing high vapor pressure chalcogen alloy block

Also Published As

Publication number Publication date
KR20010034218A (en) 2001-04-25
EP1091015A4 (en) 2001-05-02
TW475946B (en) 2002-02-11
EP1091015A1 (en) 2001-04-11

Similar Documents

Publication Publication Date Title
US20210079512A1 (en) Molybdenum containing targets
JP6276327B2 (en) Targets containing molybdenum
JP5389802B2 (en) Refractory metal plate with improved tissue uniformity
WO2009107763A1 (en) Metallic sputtering target material
US7718117B2 (en) Tungsten sputtering target and method of manufacturing the target
JP5203908B2 (en) Ni-Mo alloy sputtering target plate
TW200302289A (en) Target of high-purity nickel or nickel alloy and its producing method
JP2011523978A (en) Molybdenum-niobium alloy, sputtering target containing such alloy, method for producing such target, thin film produced therefrom, and use thereof
US20130233706A1 (en) Al-based alloy sputtering target and production method of same
JP7320639B2 (en) Method for forming Au film
JP2005528525A (en) High purity ferromagnetic sputter target
JP2003049264A (en) Tungsten sputtering target and manufacturing method
JP2001523767A (en) Method for manufacturing Ni-Si magnetron sputtering target and target manufactured by the method
WO2000031316A1 (en) Co-Ti ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF
JP2001295035A (en) Sputtering target and its manufacturing method
JP2001073125A (en) Co-Ta ALLOY SPUTTERING TARGET AND ITS PRODUCTION
JP2003171760A (en) Tungsten sputtering target
JP5038553B2 (en) Manufacturing method of sputtering target
JP2000045065A (en) Sputtering target
JP6791313B1 (en) Nickel alloy sputtering target
TW200940447A (en) Sintered silicon wafer
JP4886106B2 (en) Sputtering target and manufacturing method thereof, and tungsten silicide film, wiring, electrode, and electronic component using the same
JP2021075748A (en) Sputtering target
JP2000160330A (en) Cobalt-nickel alloy sputtering target and its production

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1999970555

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09529823

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1020007007879

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 584123

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1999970555

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007007879

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999970555

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020007007879

Country of ref document: KR