JPH04180518A - Production of 50kgf/mm2 class refractory steel for building having excellent toughness of large heat input welded joint - Google Patents

Production of 50kgf/mm2 class refractory steel for building having excellent toughness of large heat input welded joint

Info

Publication number
JPH04180518A
JPH04180518A JP30999090A JP30999090A JPH04180518A JP H04180518 A JPH04180518 A JP H04180518A JP 30999090 A JP30999090 A JP 30999090A JP 30999090 A JP30999090 A JP 30999090A JP H04180518 A JPH04180518 A JP H04180518A
Authority
JP
Japan
Prior art keywords
steel
heat input
toughness
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30999090A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yano
和彦 矢野
Kiyoshi Iwai
清 岩井
Kaoru Shinozaki
薫 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30999090A priority Critical patent/JPH04180518A/en
Publication of JPH04180518A publication Critical patent/JPH04180518A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve high-temp. yield strength and to impart excellent toughness of a large heat input welded joint by heating a slab which consists of a Cr-Mo system as a basic compsn. and is limited in the value of PCM to a specific temp., and rolling this slab at a specified draft and end temp. CONSTITUTION:The compsn. of the refractory steel for buildings is composed of 0.05 to 0.15% C, 0.05 to 0.60% Si, 0.50 to 1.50% Mn, <=0.020% P, <=0.005% S, 0.10 to 0.40% Cr, 0.10 to 0.40% Mo, 0.005 to 0.060% Nb, 0.005 to 0.030% Ti, 0.0020 to 0.0070% N, and the balance Fe and unavoidable impurities. In addition, the value of the PCM specified by formula is specified to <=0.24%. This slab is heated to >=1050 deg.C and is rolled at >=50% draft at <=900 deg.C. The rolling is ended in a 850 to 780 deg.C range. The 50kgf/mm<2> class refractory steel having >=22kgf/mm<2> yield strength at 600 deg.C and the excellent toughness of the large heat input welded joint is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野9 本発明は、耐火鋼の製造方法に関し、詳しくは、600
℃の高温においても高い耐力を有する大入熱溶接継手靭
性の優れた建築用50kgf/mm2級耐火鋼の製造方
法に関するものである。
Detailed Description of the Invention (Industrial Application Field 9) The present invention relates to a method for manufacturing fire-resistant steel, and in detail,
The present invention relates to a method for producing a 50 kgf/mm class 2 fire-resistant steel for construction, which has high yield strength even at high temperatures of .degree. C. and has excellent toughness for large heat input welded joints.

(従来の技術) 建築構造物ては、火災時に鉄骨か高温にさらされると強
度か下かり、建築物としての耐力か低下するため、建築
基準法により鉄骨の耐火被覆施工か義務づけられている
(Prior Art) When a steel frame is exposed to high temperatures in the event of a fire, the strength of the steel frame decreases, reducing the strength of the building, so the Building Standards Act requires that the steel frame be covered with a fire-resistant coating.

従来のSj−Mn系の建築用50kgf/mrn’級鋼
では、350℃を超えると火災時に構造部材に要求され
る耐力である長期耐力(常温耐力の273)の22kg
f/mm’を下回るため、鉄骨の温度か350℃を超え
ない!うに、工事り、工期−との面から足珈となる耐火
被覆を怖している。
With conventional Sj-Mn-based 50 kgf/mrn' class steel for construction, when the temperature exceeds 350°C, the long-term yield strength (273 of normal temperature yield strength), which is the strength required for structural members in the event of a fire, is 22 kg.
f/mm', so the temperature of the steel frame does not exceed 350℃! However, they are worried about the fireproof coating, which will be a major hurdle in terms of the construction work and construction period.

しグし、最近追すロされ1こ「新耐火設計法ツては、高
温耐力の優れたr4←t(耐火鋼材)を使用すれば、耐
火被覆量の削減か認められるようになっている。
``The new fire-resistant design method allows the use of R4←T (fire-resistant steel), which has excellent high-temperature resistance, to reduce the amount of fire-resistant coating.'' .

(発明が解決しようとする課N) 現状、高温耐力の優れた鋼としては、ボイラ・圧力容器
用として広く使用されているCr−Mo鋼板かある。本
鋼板は、600℃における耐力は22kgf/mm2以
上を有するか、溶接割れ感受性組成(PC,)か高いた
めに、耐溶接割れ性か悪く、予熱、後熱を行うなと溶接
施工に難ζがある。さらに、溶接施工効率を高めるため
に用いられるエレクトロスラブ溶接やサブマーンアーク
溶接のような大人熱溶接を施すと溶接熱影響部(HAZ
)の靭性か著しく低下するため、小人熱溶接か余儀なく
されている。
(Problem N to be solved by the invention) Currently, as a steel with excellent high-temperature yield strength, there is a Cr-Mo steel sheet that is widely used for boilers and pressure vessels. This steel plate has a yield strength of 22 kgf/mm2 or more at 600℃, and has a high weld crack susceptibility composition (PC), so it has poor weld crack resistance and is difficult to weld without preheating or postheating. There is. Furthermore, when performing adult heat welding such as electroslab welding and subman arc welding, which are used to increase welding efficiency, weld heat affected zone (HAZ)
), the toughness of the steel is significantly reduced, so we are forced to use dwarf heat welding.

このため、建築用鋼の耐火被覆施工の低減あるいは省略
を図るために、高い高温耐力を有するとともに優れた溶
接性、大人熱溶接継手靭性δよ乙−母材特性を存し、従
来と同し設計・施工っ・できる鋼か必要とされている。
Therefore, in order to reduce or omit the need for fire-resistant coating on architectural steel, we developed a new technology that has high high-temperature yield strength, excellent weldability, and high heat-welded joint toughness δ and base metal properties, making it the same as conventional steel. There is a need for steel that can be designed and constructed.

また、建築用鋼には、地震時の建築物の変形能の点から
、8006以下の降伏比の要求か強まっている。
In addition, from the viewpoint of the deformability of buildings during earthquakes, there is an increasing requirement for architectural steel to have a yield ratio of 8006 or less.

(課題を解決するための手段) 本発明は、従来の建築用鋼における上記の問題点に鑑み
、本発明者らか鋭意研究を行っ1こ結果、化学成分、特
にCr−Mo系を基本成分として、Nbの析出強化によ
って、溶接性を損なわずに、高温耐力を大幅に改善し、
さらに、TiNを活用することにより優れた大入熱溶接
継手靭性を確保てきるという知見を得て完成されたもの
で、その第1発明は、c:o、 05〜0.15%、S
 i : 0.05〜0.60%、l1ln :0゜5
0〜1.50%、P:0.020%以下、S:0.00
5%以下、Cr:0.10〜0.40%、Mo:0.1
0〜0.40%、Nb :0.005〜0.060%、
Ti :0.005〜0.030%、N:0.0020
〜0゜0070%を含有し、残部Feおよび不可避不純
物からなり、かつ、下記0式で規定されるPCMの値か
0゜2406以下である鋼片を1050℃以上の温度に
す0熱したのち、900℃以下の圧下率を5006以上
とし、850〜780℃の温度範囲で圧延を終了させ、
600’Cにおける耐力か22kgf/mm’以上であ
る大入熱溶接継手靭性の優れた建築用50kgf/mm
2級耐火鋼の製造方法である。
(Means for Solving the Problems) In view of the above-mentioned problems with conventional architectural steel, the present inventors have conducted intensive research1, and as a result, the chemical components, particularly the Cr-Mo system, have been improved. As a result, Nb precipitation strengthening significantly improves high-temperature yield strength without impairing weldability.
Furthermore, it was completed based on the knowledge that excellent high heat input welding joint toughness can be ensured by utilizing TiN, and the first invention is c:o, 05-0.15%, S
i: 0.05-0.60%, l1ln: 0°5
0 to 1.50%, P: 0.020% or less, S: 0.00
5% or less, Cr: 0.10-0.40%, Mo: 0.1
0-0.40%, Nb: 0.005-0.060%,
Ti: 0.005-0.030%, N: 0.0020
After heating a steel piece to a temperature of 1050°C or higher and having a PCM value of 0°2406 or less as defined by the following formula 0, containing ~0°0070%, the balance consisting of Fe and unavoidable impurities. , the rolling reduction ratio is 5006 or more at 900°C or less, and the rolling is finished in a temperature range of 850 to 780°C,
High heat input welded joint with a yield strength of 22 kgf/mm or more at 600'C. 50 kgf/mm for construction with excellent toughness.
This is a method for producing second grade fireproof steel.

第2発明は、V:0.005〜0.060%、Cu:0
.05〜0.5096 、   Ni :0.05〜0
.50%、  Ca:0.0005 〜0.0050%
、REV:0.001〜0.020%の内から選んだ1
種または2種以上を含有する請求項(11の大入熱溶接
継手靭性の優れた建築用50kgf/mm2級耐火鋼の
製造方法である。
The second invention is V: 0.005 to 0.060%, Cu: 0
.. 05-0.5096, Ni: 0.05-0
.. 50%, Ca: 0.0005 to 0.0050%
, REV: 1 selected from 0.001 to 0.020%
A method for manufacturing a 50 kgf/mm class 2 fire-resistant steel for construction with excellent high heat input weld joint toughness according to claim 11, which contains one or more of the following:

(作用) 以下に、本発明における化学成分の限定理由について説
明する。
(Function) Below, the reason for limiting the chemical components in the present invention will be explained.

Cは、強度上昇に寄与する元素であるか、0.05%未
満ては強度を確保することは困難であり、また、0.1
5”っを餡えて多量に添Qoするときは、溶接性および
靭性を劣化させるっし1こかって、その添FM量は0.
05〜0.15”t+の範囲とする。
C is an element that contributes to an increase in strength, or if it is less than 0.05%, it is difficult to ensure strength, and if it is less than 0.1%, it is difficult to ensure the strength.
If a large amount of Qo is added with 5", it will deteriorate weldability and toughness, so the amount of FM added will be 0.
05 to 0.15"t+.

Siは、脱酸のために必須の元素であるか、0.05%
未満ては脱酸効果か少な:、また、0.60!%を超え
て過多に添加すると溶接性を劣化させる。したかって、
その添加量は0.05〜0.60%の範囲とする曲は、
鋼の強度および靭性を確保するために必要な元素である
か、0.50%未満てはこのような効果は少なく、また
、1.50%を超えて多量に添加すると溶接性を劣化さ
せ、かつ、靭性も劣化させる。したかって、その添加量
は0.50〜1.50%の範囲とする。
Si is an essential element for deoxidation, or 0.05%
If it is less than 0.60, the deoxidizing effect is low. If added in excess of more than %, weldability deteriorates. I wanted to,
For songs where the amount of addition is in the range of 0.05 to 0.60%,
It is an element necessary to ensure the strength and toughness of steel, and if it is less than 0.50%, this effect will be small, and if it is added in a large amount exceeding 1.50%, it will deteriorate weldability. Moreover, the toughness is also deteriorated. Therefore, the amount added should be in the range of 0.50 to 1.50%.

Pは、0.020%を超えるとミクロ偏析により、大入
熱溶接継手靭性、母材靭性および耐溶接割れ性を劣化さ
せるので、0.020%以下とする。
If P exceeds 0.020%, micro-segregation will cause deterioration of high heat input weld joint toughness, base metal toughness, and weld cracking resistance, so it is set to 0.020% or less.

Sは、0.005%を超えると粗大なA系介在物を形成
しやすくなり、母材靭性を劣化させるので、0、005
%以下とする。
If S exceeds 0.005%, it tends to form coarse A-based inclusions and deteriorates the toughness of the base material.
% or less.

C「は、高温強度の向上に有効な元素であるか、0.H
IC′つ未満ては二のような効果は期待しかた:、0.
400o8超えて多量に添り口すると溶接性か劣化する
。このため、その添加量は0.10〜0.40%の範囲
とする。
C is an element effective in improving high-temperature strength, or is 0.H
If the IC' is less than 2, an effect like 2 is expected:, 0.
If a large amount of splint exceeds 400o8, weldability will deteriorate. Therefore, the amount added is in the range of 0.10 to 0.40%.

MOは、高温強度を確保するために不可欠な元素てあり
、600℃における耐力を著しく上昇させる。
MO is an essential element for ensuring high-temperature strength, and significantly increases yield strength at 600°C.

しかしなから、0.10%未満てはこのような効果は得
られず、また、0.40%を超えて添加すると溶接性を
損なう。したかって、その添加量は0.10〜0.40
%の範囲とする。
However, if it is added in an amount less than 0.10%, such an effect cannot be obtained, and if it is added in an amount exceeding 0.40%, weldability is impaired. Therefore, the amount added is 0.10 to 0.40
% range.

Nbは、析出強化および変態強化による強度上昇および
細粒化による靭性の向上か図られる元素である。しかし
、0.005%未満てはこのような効果は得られず、ま
た、0.060%を超えて過多に添加するときは大入熱
溶接継手靭性か劣化する。したかって、その添加量は0
.005〜0.060%の範囲とする。
Nb is an element that increases strength through precipitation strengthening and transformation strengthening, and improves toughness through grain refinement. However, if it is less than 0.005%, such effects cannot be obtained, and if it is added in excess of 0.060%, the toughness of high heat input welded joints will deteriorate. Therefore, the amount added is 0
.. The range is 0.005% to 0.060%.

T1は、TiNによりHAZのオーステナイト粒の粗大
化を抑制するとともに、校内フェライトを生成すること
01ら、大入熱溶接継手靭性の劣化軽減に有効な元素で
ある。しかし、0.0050っ未満てはかかる効果を発
揮することかで舌ず、また、00300t+を超えて添
加すると溶接継手靭性を劣化させる。したり)って、そ
の添加量は0.005〜0.030%の範囲とする。
T1 is an element that is effective in suppressing the coarsening of austenite grains in the HAZ due to TiN, as well as generating internal ferrite, thereby reducing deterioration of the toughness of high heat input welded joints. However, if the amount is less than 0.0050, such an effect may not be exhibited, and if it is added in excess of 0.0300t+, the toughness of the welded joint will deteriorate. Therefore, the amount added is in the range of 0.005 to 0.030%.

Nは、上記T1と組み合わせることによって、大入熱溶
接継手靭性を改善する。しかし、0.0020%未満て
はこのような効果を発揮することかできず、また、0.
0070%を超えて多量に添加すると溶接継手靭性を劣
化させる。したかって、その添加量は0.0020〜0
.0070%の範囲とする。
N improves the toughness of high heat input welded joints by combining with T1. However, if it is less than 0.0020%, such an effect cannot be exhibited;
If added in a large amount exceeding 0.070%, the toughness of welded joints will deteriorate. Therefore, the amount added is 0.0020~0
.. The range is 0.0070%.

なお、本発明における第2発明ては、上記の元素の他に
必要に応じて、V 、 Cu、 Ni、CaおよびRE
Mの内から選んだ1種または2種以上を添加することか
できる。
In addition, in the second invention of the present invention, in addition to the above-mentioned elements, V, Cu, Ni, Ca, and RE may be added as necessary.
One or more selected from M can be added.

■は、析出強化による強度上昇に有効な元素であるか、
0.005%未満てはこのような効果は殆と期待てきず
、また、0.060%を超えて過多に添加するときは溶
接性が劣化する。したかって、その添な0看は0.00
5〜0.060%の範囲とする。
Is ■ an element effective in increasing strength through precipitation strengthening?
If it is less than 0.005%, such an effect cannot be expected, and if it is added in excess of 0.060%, weldability deteriorates. However, the corresponding 0 kan is 0.00
The range is 5 to 0.060%.

Cuは、固溶強化による強度上昇に有効な元素であるか
、0,05%未満てはこのような効果は少なく、また、
0.50%を超えて添110すると熱間加工性および溶
接性を損なう。このため、その添加量は0゜05〜0.
50%の範囲とする。
Is Cu an effective element for increasing strength by solid solution strengthening? If it is less than 0.05%, this effect is small, and
Addition of more than 0.50% of 110 impairs hot workability and weldability. Therefore, the amount added is 0.05 to 0.05.
The range is 50%.

Niは、靭性の向上に有効な元素であるか、0.05%
未満ではこのような効果は得られない。また、0.50
%を超えて添加してもこのような効果は飽和し、経済的
にも無駄である。したかって、その添加量は0.05〜
0.50%の範囲とする。
Ni is an effective element for improving toughness, or 0.05%
If the amount is less than that, such an effect cannot be obtained. Also, 0.50
Even if it is added in an amount exceeding 20%, such an effect will be saturated and it will be economically wasteful. Therefore, the amount added is 0.05 ~
The range is 0.50%.

Caは、微量で板厚方向の特性を改善する元素であるか
、o、 oo05%未満てはこのような効果は得られず
、一方、0.0050%を超えて添加するときは、この
ような効果は飽和するとともに、大型介在物か発生し超
音波欠陥を生じやすくなる。このため、その添加量は0
.0005〜0.0050%の範囲とする。
Ca is an element that improves properties in the thickness direction in trace amounts, or if it is less than 0.05%, such effects cannot be obtained, but on the other hand, when added in excess of 0.0050%, As the effect reaches saturation, large inclusions are generated and ultrasonic defects are more likely to occur. Therefore, the amount added is 0
.. The range is 0005% to 0.0050%.

REVは、Caと同様に、微量て板厚方向の特性を改善
する元素であるか、o、oot%未満てはこのような効
果は得られず、一方、0.020%を超えて添加すると
きは、このような効果は飽和するとともに、大型介在物
か発生し超音波欠陥を生じやす;なる。このため、その
添加量は0.001〜0.020%の範囲とする。
Like Ca, REV is an element that improves the properties in the thickness direction in a trace amount, or if it is less than 0.00%, such an effect cannot be obtained, but on the other hand, if it is added in an amount exceeding 0.020%. At some point, this effect reaches saturation, and large inclusions are likely to occur, causing ultrasonic defects. Therefore, the amount added is in the range of 0.001 to 0.020%.

なお、第1発明および第2発明ともに、溶接時の低温割
れを防止するために、溶接割れ感受性組成(PC,)を
0.24%以下に限定する。
In addition, in both the first invention and the second invention, the weld crack susceptibility composition (PC,) is limited to 0.24% or less in order to prevent cold cracking during welding.

つぎに、本発明における加熱、圧延条件の限定理由につ
いて説明する。
Next, the reasons for limiting the heating and rolling conditions in the present invention will be explained.

加熱温度を1050℃以上に限定した理由は、常温強度
および高温強度の確保に必要なNbを鋼中に固溶させる
ためである。また、900℃以下の圧下率は母材靭性の
確保に有効な細粒オーステナイトを得るために50%以
上か必要である。さらに、圧延終了温度については、圧
延終了温度か780℃未満の場合は、フェライトの細粒
化ならびに二相域圧延によるフェライトの加工硬化によ
り、降伏比が高くなり、80%以下の降伏比を得ること
かできない。
The reason why the heating temperature is limited to 1050° C. or higher is to dissolve Nb, which is necessary for ensuring room-temperature strength and high-temperature strength, into the steel. Further, the rolling reduction ratio of 900° C. or less is required to be 50% or more in order to obtain fine-grained austenite that is effective in ensuring the toughness of the base material. Furthermore, regarding the rolling end temperature, if the rolling end temperature is less than 780°C, the yield ratio increases due to grain refinement of the ferrite and work hardening of the ferrite due to two-phase region rolling, resulting in a yield ratio of 80% or less. I can't do anything.

また、圧延終了温度が850℃を超えると、オーステナ
イトか粗粒となるため母材靭性が劣化する。したかって
、圧延終了温度は850〜780℃の温度範囲に限定す
る。
Further, when the rolling end temperature exceeds 850°C, the toughness of the base material deteriorates because austenite becomes coarse grains. Therefore, the rolling end temperature is limited to a temperature range of 850 to 780°C.

(実施例り 以下に、実施例を挙げて本発明について説明する。(Example) The present invention will be described below with reference to Examples.

供試鋼板は第1表に示す化学成分を含有する鋼片を第2
表に示す圧延条件にしたかって、板厚25mmに仕上げ
たちのである。これらの鋼板から試験片を採取し、常温
引張試験、シャルビ衝撃試験、最高かたさ試験、600
℃の高温引張試験および再現熱サイクル試験を行った。
The test steel plate was a steel slab containing the chemical components shown in Table 1.
Using the rolling conditions shown in the table, the plate was finished to a thickness of 25 mm. Test pieces were taken from these steel plates and subjected to a room temperature tensile test, a Charvi impact test, a maximum hardness test, and a 600
A high temperature tensile test at ℃ and a simulated thermal cycle test were conducted.

その結果を第2表に示す。なお、最高かたさ試験はJI
S Z 3101に準して行い、再現熱サイクル条件は
1350℃x5秒加熱で、800から500℃までの冷
却時間、は板厚30mmで、入熱量400kJ/Cmに
相当する220秒を用いている第1表に本発明11A−
Eおよび比較鋼F〜0の板厚、化学成分、PCMを、第
2表に圧延条件、引張特性、衝撃特性、溶接性、高温特
性および大入熱溶接継手靭性をそれぞれ示す。
The results are shown in Table 2. The highest hardness test is JI
It was carried out according to S Z 3101, and the reproduction thermal cycle conditions were heating at 1350°C for 5 seconds, and the cooling time from 800 to 500°C was 220 seconds, which corresponded to a plate thickness of 30 mm and a heat input of 400 kJ/Cm. Table 1 shows the present invention 11A-
Table 2 shows the plate thickness, chemical composition, and PCM of E and comparative steel F~0, and the rolling conditions, tensile properties, impact properties, weldability, high temperature properties, and high heat input weld joint toughness, respectively.

第2表から明らかなように、本発明鋼、八〜Eは、60
0℃における耐力は:22kgf mm’以上て優れた
高温耐力を示し、かつ、最高かたさもHV350未満て
良好な溶接性を示し、さらに、再現熱サイクル試験によ
る大入熱溶接継手靭性も良好である。なお、常温の引張
特性は、50kgf/mm2級の値を勿論満足し、降伏
比は建築用鋼材に要求されている80%以下を十分に満
足している。また、シャルビ衝撃試験における破面遷移
温度も一35℃以下である一方、比較鋼Fは、600℃
における耐力か26kgf/mm2と高いか、Ti無添
加のため大入熱溶接継手靭性か低く、また、PCMか本
発明の限定範囲から高めに外れているため、最高かたさ
かHV350以上であり、溶接性が悪(、さらに破面遷
移温度も高い。比較鋼Gは、PCMか0.24%以下で
あるが、Fと同様に、Ti1Mj添加のため大入熱溶接
継手靭性が低い。
As is clear from Table 2, the invention steels 8 to E are 60
The proof stress at 0°C is: 22 kgf mm' or more, showing excellent high temperature proof strength, and the maximum hardness is less than HV350, showing good weldability. Furthermore, the high heat input weld joint toughness is also good in a reproduced thermal cycle test. . Note that the tensile properties at room temperature naturally satisfy the value of 50 kgf/mm2 class, and the yield ratio fully satisfies the 80% or less required for architectural steel materials. In addition, the fracture surface transition temperature in the Charvi impact test was below -35°C, while comparative steel F had a temperature of 600°C.
The yield strength is high at 26 kgf/mm2, the toughness of the high heat input welded joint is low because no Ti is added, and the maximum hardness is HV350 or higher because the PCM is outside the limited range of the present invention. Comparative steel G has a PCM content of 0.24% or less, but like F, the high heat input welding joint toughness is low due to the addition of Ti1Mj.

また、破面遷移温度も高い。比較鋼Hは、T1を添加し
ているか、Nか本発明の限定範囲から高めに外れている
ため、大入熱溶接継手靭性か悪い。一方、比較鋼IとJ
は大入熱溶接継手靭性は良好であるか、FAT者は高温
強度のi保に有効なMOか、後者はCrか添加されてい
ないため、600℃における耐力は22kg l、・’
mm2を満足しない。さらに、従来の建築用50kgf
、’mm2級鋼板である比較鋼にも、PCMか0.24
9ti以下であるか、Cr、 MoおよびNbを添加し
ていないため、600℃における耐力か低く、また、T
1無添加のため大入熱溶接継手靭性も悪い。
Additionally, the fracture surface transition temperature is high. Comparative Steel H has poor high heat input welded joint toughness because it has T1 added or N is highly outside the limited range of the present invention. On the other hand, comparative steels I and J
The toughness of the high heat input welded joint is good, and the FAT type is MO, which is effective in maintaining high temperature strength.The latter has no added Cr, so the yield strength at 600℃ is 22 kg l,・'
mm2 is not satisfied. In addition, the conventional 50 kgf for construction
, 'mm2 grade steel plate, PCM or 0.24
9ti or less, or Cr, Mo, and Nb are not added, the yield strength at 600°C is low, and the T
1 The toughness of high heat input welded joints is also poor due to no additives.

つぎに、比較鋼りは加熱温度か1000℃と低いため、
常温強度および高温強度か規格値を満足せず、また、比
較鋼Mは900℃以下の圧下率か40%と少ないため、
母材靭性か悪い。さらに、比較鋼Nは圧延終了温度か7
60℃と低いため、降伏比が80%を超え、一方、比較
鋼Oは圧延終了温度が880℃と高いため、母材靭性が
わるい。
Next, since the comparative steel has a low heating temperature of 1000℃,
The room-temperature strength and high-temperature strength did not meet the standard values, and comparative steel M had a low rolling reduction of 40% below 900°C.
Base material has poor toughness. Furthermore, comparative steel N has a rolling finish temperature of 7
Since the temperature is as low as 60°C, the yield ratio exceeds 80%. On the other hand, comparative steel O has a high rolling end temperature of 880°C, so the base material toughness is poor.

第1図にT1添加の本発明鋼AとTi無添加の比較鋼G
の再現熱サイクル試験後の顕微鏡組織図を示す。同図に
示すように、大入熱溶接継手靭性の良好な本発明鋼Aは
、比較鋼Gに比へて、オーステナイト粒か細か;、かつ
、粒内フエライトフ\生成している。
Figure 1 shows inventive steel A with T1 addition and comparative steel G without Ti addition.
The microscopic structure diagram after the simulated thermal cycle test is shown. As shown in the figure, the steel A of the present invention, which has good high heat input weld joint toughness, has finer austenite grains and intragranular ferrite grains than comparative steel G.

なお、上記実施例は厚鋼板の製造方法に関するものであ
るか、本発明は他の鋼製品、例えは条鋼、形鋼の製造に
も適応し得ることは言うまでもない。
It goes without saying that the above-mentioned embodiments relate to a method for producing thick steel plates, but the present invention can also be applied to the production of other steel products, such as long steel products and shaped steel products.

(発明の効果) 以上説明したように、本光明に係わる大入熱溶接継手靭
性の優れた建築用50kgf/’mm2級耐火鋼の製造
方法は、化学成分、特にCr −Mo系を基本成分とし
て、Nbの析出強化によって、溶接性を損なわずに、高
温耐力を大幅に改善し、さらに、TiNを活用すること
により優れた大入熱溶接継手靭性を確保しているため、
600℃における高い耐力と良好な溶接性を兼ね備え、
かつ、降伏比の低い鋼を製造することが可能であり、従
来必要とされていた耐火被覆を大幅に低減あるいは省略
することか可能てあり、さらに、溶接施工および耐震面
の点からも、構造物の安全性を高めることができるとい
う優れた効果を有するものである。
(Effects of the Invention) As explained above, the method for manufacturing 50 kgf/'mm grade 2 fire-resistant steel for construction with excellent high heat input weld joint toughness according to the present invention uses chemical components, particularly Cr-Mo system as a basic component. , Nb precipitation strengthening significantly improves high-temperature yield strength without impairing weldability, and the use of TiN ensures excellent high heat input weld joint toughness.
Combines high yield strength and good weldability at 600℃,
In addition, it is possible to manufacture steel with a low yield ratio, and it is possible to significantly reduce or omit the fire-resistant coating that was previously required. This has the excellent effect of increasing the safety of objects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTi添LIOの本光明鋼AとT1無添’10の
比較w4Gの再現熱サイクル試験後の金属顕微鏡組織図
を示す。 特許出願人 株式会社 神戸製鋼折 代 理 人 弁理士  金丸 章−
FIG. 1 shows a metallurgical microstructure diagram of a comparison w4G of Ti-added LIO, Honkome Steel A and T1-free '10, after a simulated thermal cycle test. Patent applicant: Kobe Steel Oriyoshi Co., Ltd. Patent attorney: Akira Kanemaru

Claims (1)

【特許請求の範囲】[Claims] (1)C:0.05〜0.15%、Si:0.05〜0
.60%、Mn:0.50〜1.50%、P:0.02
0%以下、S:0.005%以下、Cr:0.10〜0
.40%、Mo:0.10〜0.40%、Nb:0.0
05〜0.060%、Ti:0.005〜0.030%
、N:0.0020〜0.0070%を含有し、残部F
eおよび不可避不純物からなり、かつ、下記〔1〕式で
規定されるP_C_Mの値が0.24%以下である鋼片
を1050℃以上の温度に加熱したのち、900℃以下
の圧下率を50%以上とし、850〜780℃の温度範
囲で圧延を終了させ、600℃における耐力が22kg
f/mm^2以上であることを特徴とする大入熱溶接継
手靭性の優れた建築用50kgf/mm^2級耐火鋼の
製造方法。 SiMn+Cu+CrN1MoV P_C_M=C+(Si)/(30)+(Mn+Cu+
Cr)/(20)+(Ni)/(15)+V/(10)
+5B(%)・・・・〔1〕(2)V:0.005〜0
.060%、Cu:0.05〜0.50%、Ni:0.
05〜0.50%、Ca:0.0005〜0.0050
%、REM:0.001〜0.020%の内から選んだ
1種または2種以上を含有することを特徴とする請求項
〔1〕の大入熱溶接継手靭性の優れた建築用50kgf
/mm^2級耐火鋼の製造方法。
(1) C: 0.05-0.15%, Si: 0.05-0
.. 60%, Mn: 0.50-1.50%, P: 0.02
0% or less, S: 0.005% or less, Cr: 0.10-0
.. 40%, Mo: 0.10-0.40%, Nb: 0.0
05-0.060%, Ti: 0.005-0.030%
, N: 0.0020 to 0.0070%, the balance being F
A steel billet consisting of e and unavoidable impurities and having a P_C_M value of 0.24% or less as defined by the following formula [1] is heated to a temperature of 1050°C or higher, and then the rolling reduction rate of 900°C or lower is 50%. % or more, rolling is completed in the temperature range of 850 to 780°C, and the yield strength at 600°C is 22 kg.
A method for producing a 50 kgf/mm^2 fire-resistant steel for construction use having excellent high heat input weld joint toughness characterized by f/mm^2 or more. SiMn+Cu+CrN1MoV P_C_M=C+(Si)/(30)+(Mn+Cu+
Cr)/(20)+(Ni)/(15)+V/(10)
+5B(%)...[1](2)V:0.005~0
.. 060%, Cu: 0.05-0.50%, Ni: 0.060%, Cu: 0.05-0.50%, Ni: 0.
05-0.50%, Ca: 0.0005-0.0050
%, REM: 50kgf for architectural use with excellent toughness for high heat input welded joints according to claim [1], characterized in that it contains one or more selected from 0.001 to 0.020%.
/mm^ Method for producing second class fireproof steel.
JP30999090A 1990-11-14 1990-11-14 Production of 50kgf/mm2 class refractory steel for building having excellent toughness of large heat input welded joint Pending JPH04180518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30999090A JPH04180518A (en) 1990-11-14 1990-11-14 Production of 50kgf/mm2 class refractory steel for building having excellent toughness of large heat input welded joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30999090A JPH04180518A (en) 1990-11-14 1990-11-14 Production of 50kgf/mm2 class refractory steel for building having excellent toughness of large heat input welded joint

Publications (1)

Publication Number Publication Date
JPH04180518A true JPH04180518A (en) 1992-06-26

Family

ID=17999812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30999090A Pending JPH04180518A (en) 1990-11-14 1990-11-14 Production of 50kgf/mm2 class refractory steel for building having excellent toughness of large heat input welded joint

Country Status (1)

Country Link
JP (1) JPH04180518A (en)

Similar Documents

Publication Publication Date Title
JPS629646B2 (en)
US20080295920A1 (en) High Tension Steel Plate with Small Acoustic Anisotropy and with Excellent Weldability and Method of Production of Same
JPS59211528A (en) Production of non-tempered steel having low yield ratio
JP5999005B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPH06316723A (en) Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability
JP4038166B2 (en) Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof
JPH04193907A (en) Production of 50kgf/mm2 class refractory steel plate for construction use
JP2764007B2 (en) Low yield ratio refractory steel sheet for building with excellent weldability and method of manufacturing the same
JP3319222B2 (en) Manufacturing method of high chromium ferritic steel with excellent creep characteristics of welded joint
JPH05117745A (en) Production of 490n/mm2 class weather resistant refractory steel products for building structural purpose
JP2020204091A (en) High strength steel sheet for high heat input welding
JPH04180518A (en) Production of 50kgf/mm2 class refractory steel for building having excellent toughness of large heat input welded joint
JP5223295B2 (en) Refractory H-shaped steel with excellent reheat embrittlement resistance and method for producing the same
JPH05112823A (en) Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint
JP2002283095A (en) Steel wire for large heat input submerged arc welding and method of manufacturing submerged arc welded joint as well as submerged arc welded joint
JPH04350120A (en) Production of high strength refractory steel plate for construction use
JP2005272949A (en) Rolled h-section steel with low yield ratio superior in fire resistance, and manufacturing method therefor
JPH1068018A (en) Production of fire resistant steel sheet for structural purpose excellent in welding heat affected zone toughness
JPH06264136A (en) Production of thick-walled refractory steel with low yield ratio for construction use, excellent in weldability
JPH05117744A (en) Production of 490n/mm2 class refractory steel products for building
JP3499278B2 (en) Refractory cast steel
JPH07173532A (en) Production of low yield ratio type fire resistant architectural steel excellent in weldability
JP2020204092A (en) High strength steel sheet for high heat input welding
JPH03173715A (en) Production of 50kgf/mm2 class refractory steel for construction use excellent in weldability