JPH06264136A - Production of thick-walled refractory steel with low yield ratio for construction use, excellent in weldability - Google Patents

Production of thick-walled refractory steel with low yield ratio for construction use, excellent in weldability

Info

Publication number
JPH06264136A
JPH06264136A JP5191793A JP5191793A JPH06264136A JP H06264136 A JPH06264136 A JP H06264136A JP 5191793 A JP5191793 A JP 5191793A JP 5191793 A JP5191793 A JP 5191793A JP H06264136 A JPH06264136 A JP H06264136A
Authority
JP
Japan
Prior art keywords
temperature
steel
yield ratio
strength
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5191793A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yano
和彦 矢野
Kiyoshi Iwai
清 岩井
Yoshiyuki Nakatani
義幸 中谷
Shigeo Okano
重雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5191793A priority Critical patent/JPH06264136A/en
Publication of JPH06264136A publication Critical patent/JPH06264136A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To secure high strength at high temp. and to provide low yield ratio and superior weldability by specifying the rolling finishing temp. of a steel slab having specific chemical composition and the conditions of cooling, reheating, and tempering, respectively. CONSTITUTION:A slab of a steel, which has a composition consisting of 0.04-0.15% C, 0.05-0.60% Si, 0.50-1.50% Mn, 0.10-0.40% Mo, 0.005-0.060% Nb, 0.005-0.060% V, 0.005-0.030% Ti, and the balance Fe with inevitable impurities and in which the value of PCM represented by an equation us regulated to <=0.20%, is heated to >=1050 deg.C, and rolling is finished at 850 to 950 deg.C. Subsequently, the steel is subjected to accelerated cooling from a temp. not lower than Ar3 down to 400-550 deg.C at (3 to 20) deg.C/sec cooling rate. Then, the steel is reheated to a temp. between Ac1 and Ac3 and further tempered at 500-650 deg.C. If necessary, one or >=2 kinds among 0.05-0.40% Cu, 0.05-0.50% Ni, 0.10-0.40% Cr, and 0.0005-0.0050% Ca are further incorporated into the steel composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐火鋼の製造方法に関
し、詳しくは、 600℃の高温においても高い耐力を有
し、かつ溶接性の優れた建築用低降伏比厚肉耐火鋼の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a refractory steel, and more particularly to a low yield ratio thick wall refractory steel for construction which has a high yield strength even at a high temperature of 600 ° C. and is excellent in weldability. It is about the method.

【0002】[0002]

【従来の技術】建築構造物では、火災時に鉄骨が高温に
さらされると強度が下がり、建築物としての耐力が低下
するため、建築基準法により鉄骨の耐火被覆施工が義務
づけられている。
2. Description of the Related Art In a building structure, when a steel frame is exposed to a high temperature during a fire, its strength is lowered and the yield strength of the building is lowered.

【0003】従来のSi−Mn系の建築用鋼では、 350℃を
超えると火災時に構造部材に要求される長期耐力 (常温
耐力の2/3)の217N/mm2を下回るため、鉄骨の温度が 350
℃を超えないように工事費、工期などの面から足かせと
なる耐火被覆を施している。
With conventional Si-Mn-based building steels, when the temperature exceeds 350 ° C, the long-term proof strength (2/3 of the room-temperature proof strength) 217 N / mm 2 required for structural members at the time of fire falls, so the temperature of the steel frame Is 350
A fireproof coating is used to prevent the construction cost and construction period from exceeding ℃, which is a hindrance.

【0004】しかし、最近提起された『新耐火設計法』
では、高温耐力の優れた鋼材(耐火鋼材)を使用すれ
ば、耐火被覆の削減あるいは省略が認められるようにな
っている。この耐火鋼材は駐車場、インテリジェントビ
ルなど多彩の建築物に適用されつつあり、特に厚肉材の
需要が増加している。
However, the recently proposed "new fireproof design method"
However, if steel materials (fire resistant steel materials) having excellent high temperature proof strength are used, reduction or omission of the fire resistant coating has been recognized. This refractory steel is being applied to various buildings such as parking lots and intelligent buildings, and the demand for thick-walled materials is increasing.

【0005】現状、高温耐力の優れた鋼としては、ボイ
ラ・圧力容器用として広く使用されているCr−Mo鋼があ
る。本鋼は、 600℃の耐力は217N/mm2以上と優れている
が、C 量が高いために耐溶接割れ性が悪く、溶接施工に
難点がある。このために、600 ℃で高い耐力を有すると
ともに、優れた溶接性を有し、従来と同じ設計・施工が
できる耐火鋼が幾つか提案されている。
At present, as a steel excellent in high-temperature yield strength, there is Cr-Mo steel which is widely used for boilers and pressure vessels. This steel has an excellent yield strength at 600 ° C of 217 N / mm 2 or more, but its high C content causes poor weld cracking resistance and has difficulties in welding work. For this reason, there have been proposed some refractory steels which have a high yield strength at 600 ° C, excellent weldability, and can be designed and constructed in the same manner as conventional ones.

【0006】例えば、特願平1-312931号明細書で開示さ
れている鋼は、Cr、Mo、Nbを複合添加し、制御圧延法に
より製造され、優れた高温耐力を有しているが、板厚が
25mmと薄く、厚肉を対象としていない。また、特願平1-
139329号明細書で開示されている鋼は、多量のMoを添加
した鋼をAr3以下から加速冷却することによりミクロ組
織をフェライトとベイナイトの混合組織とし、常温の降
伏比を低く抑え、600℃の強度を確保している。しか
し、加速冷却のままではガス切断による条切りを行った
際、残留応力が高いために横曲がりや反りの形状不良を
生じやすいという欠点がある。
[0006] For example, the steel disclosed in Japanese Patent Application No. 1-312931 is manufactured by a controlled rolling method in which Cr, Mo and Nb are added in combination, and has excellent high temperature proof stress. Plate thickness
It is as thin as 25 mm and is not intended for thick wall. Also, Japanese Patent Application 1-
The steel disclosed in Japanese Patent No. 139329 is a mixed microstructure of ferrite and bainite obtained by accelerating cooling of steel containing a large amount of Mo from Ar 3 or less, and suppresses the yield ratio at room temperature to a low temperature of 600 ° C. The strength of is secured. However, when accelerated cooling is performed as it is, there is a drawback that when the strip is cut by gas cutting, the residual stress is high, and thus a defective shape such as lateral bending or warpage is likely to occur.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決するためになされたもので、化学成分を調整
し、圧延終了温度を限定し、圧延終了後加速冷却を行
い、さらにAc1〜Ac3の温度範囲に再加熱し、その後、
焼戻しすることによって、高温で高い強度を確保し、さ
らに常温の降伏比が低く、かつ優れた溶接性および条切
り特性を有する溶接性の優れた建築用低降伏比厚肉耐火
鋼の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. The chemical composition is adjusted, the rolling finish temperature is limited, and accelerated cooling is performed after the rolling finish. Reheat to a temperature range of 1 to Ac 3 , then
By tempering, high strength at high temperature, low yield ratio at room temperature, and excellent weldability with excellent weldability and striation characteristics. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明は、従来の建築用
鋼における上記の問題点に鑑み、本発明者らが鋭意研究
を行った結果、化学成分を限定し、圧延後の加速冷却−
Ac1〜Ac3温度範囲の再加熱−焼戻しにより、高温で高
い強度を確保し、さらに常温の降伏比が低く、かつ優れ
た溶接性および条切り特性を有する厚肉の建築用耐火鋼
を製造するというものである。すなわち、優れた溶接性
と条切り特性を兼ね備えるには、圧延後の加速冷却−焼
戻しが有効であるが、この方法ではミクロ組織がベイナ
イトとなり、しかも焼戻し時にMo、Nbが析出するために
降伏比が高くなる。そこで、加速冷却後、Ac1〜Ac3
温度範囲に再加熱し、その後、焼戻しを行うことによ
り、ミクロ組織をフェライトとベイナイトの混合組織と
し、降伏比を低下させ、溶接性および条切り特性の優れ
た建築用低降伏比厚肉耐火鋼の製造方法を可能にした。
DISCLOSURE OF THE INVENTION In view of the above-mentioned problems in conventional building steels, the present invention has conducted intensive research by the present inventors, and as a result, limits chemical components and accelerates cooling after rolling.
Reheating in the Ac 1 to Ac 3 temperature range-tempering ensures high strength at high temperatures, a low yield ratio at room temperature, and manufacturing of thick-walled construction fire-resistant steel with excellent weldability and slitting properties. Is to do. That is, in order to have both excellent weldability and stripping property, accelerated cooling after rolling-tempering is effective, but in this method, the microstructure becomes bainite, and Mo and Nb precipitate during tempering, so the yield ratio is high. Becomes higher. Therefore, after accelerated cooling, it is reheated to a temperature range of Ac 1 to Ac 3 , and then tempered to make the microstructure a mixed structure of ferrite and bainite, thereby lowering the yield ratio and improving the weldability and stripping property. It enabled the manufacturing method of excellent low yield ratio thick wall refractory steel for construction.

【0009】その第1発明は、C:0.04〜0.15%、 Si:0.
05〜0.60%、 Mn:0.50〜1.50%、Mo:0.10 〜0.40%、N
b:0.005〜0.060 %、 V:0.005〜0.060 %、Ti:0.005〜
0.030%を含有し、残部がFeおよび不可避不純物からな
り、かつ、下記(1) 式で規定される PCMの値が0.20%以
下である鋼片を1050℃以上の温度に加熱し、 850〜950
℃の温度範囲で圧延を終了した後、Ar3以上の温度から
3〜20℃/秒の冷却速度で 400〜550 ℃の温度まで加速
冷却した後、Ac1〜Ac3の温度範囲に再加熱し、さらに
500〜650 ℃の温度で焼戻しする溶接性の優れた建築用
低降伏比厚肉耐火鋼の製造方法である。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B(%)……(1)
The first invention is C: 0.04 to 0.15%, Si: 0.
05 to 0.60%, Mn: 0.50 to 1.50%, Mo: 0.10 to 0.40%, N
b: 0.005 to 0.060%, V: 0.005 to 0.060%, Ti: 0.005 to
A steel slab containing 0.030%, the balance of Fe and unavoidable impurities, and having a P CM value of 0.20% or less specified by the formula (1) below is heated to a temperature of 1050 ° C or higher, 950
After completion of the rolling at a temperature range ° C., from Ar 3 or more temperature
After accelerated cooling to a temperature of 400 to 550 ° C at a cooling rate of 3 to 20 ° C / sec, reheating to a temperature range of Ac 1 to Ac 3 and further
It is a method of manufacturing low yield ratio thick wall refractory steel for construction with excellent weldability, which is tempered at a temperature of 500 to 650 ° C. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (%) …… (1)

【0010】第2発明は、化学成分として、さらに Cu:
0.05〜0.40%、 Ni:0.05〜0.50%、Cr:0.10〜0.40%、
Ca:0.0005〜0.0050%の内から選んだ1種または2種以
上を含有する請求項1記載の溶接性の優れた建築用低降
伏比厚肉耐火鋼の製造方法である。
The second invention further comprises Cu:
0.05-0.40%, Ni: 0.05-0.50%, Cr: 0.10-0.40%,
The method for producing a low yield ratio thick wall refractory steel for construction having excellent weldability according to claim 1, which contains one or more selected from Ca: 0.0005 to 0.0050%.

【0011】[0011]

【作用】以下に、本発明における加熱、圧延、加速冷却
および熱処理条件の限定理由について説明する。加熱温
度を1050℃以上に限定した理由は、常温強度および高温
強度の確保に必要なNbおよびMoを鋼中に固溶させるため
である。
The reasons for limiting the heating, rolling, accelerated cooling and heat treatment conditions in the present invention will be described below. The reason for limiting the heating temperature to 1050 ° C. or higher is to dissolve Nb and Mo, which are necessary for securing room temperature strength and high temperature strength, in steel.

【0012】さらに、圧延終了温度については、圧延終
了温度が 850℃未満の場合は、フェライトの細粒化によ
り降伏比が高くなり、80%以下の降伏比を得ることがで
きず、また、集合組織が発生し、これに起因して音響異
方性が高くなり、超音波斜角探傷において屈折角や探傷
感度が変化するために溶接部の健全性が検査できなくな
る。一方、圧延終了温度が 950℃を超えると、オーステ
ナイトが粗粒となるため靱性が劣化する。したがって、
圧延終了温度は 850〜950 ℃の温度範囲に限定する。
Further, regarding the rolling end temperature, when the rolling end temperature is lower than 850 ° C., the yield ratio becomes high due to the grain refinement of ferrite, and the yield ratio of 80% or less cannot be obtained. Tissues are generated, and due to this, acoustic anisotropy becomes high, and the soundness of the welded part cannot be inspected because the refraction angle and the flaw detection sensitivity change in ultrasonic angle beam flaw detection. On the other hand, when the rolling end temperature exceeds 950 ° C, the austenite becomes coarse grains and the toughness deteriorates. Therefore,
Rolling end temperature is limited to the temperature range of 850-950 ℃.

【0013】上記条件による制御圧延後に行う加速冷却
は、高温耐力を向上させるベイナイト量を増加させるに
は、冷却開始までの時間が短く、開始温度は高温ほど望
ましい。特に、冷却開始温度がAr3より低くなると、フ
ェライトが生成し、冷却による高温強度の上昇効果が小
さくなるため、冷却開始温度はAr3以上とする。また、
冷却速度は20℃/秒を超える強冷却を行うと、強度が規
格上限を超え、また、3℃/秒よりも遅い冷却速度では
強度上昇効果が得られない。したがって、冷却速度は 3
〜20℃/秒の範囲とする。さらに、冷却停止温度は 400
〜550 ℃の範囲に限定する。これは、冷却停止温度が 4
00℃未満では島状マルテンサイトが生成し、靱性が著し
く劣化するとともに、加速冷却後の矯正が難しくなるた
めであり、一方、 550℃を超えると強度上昇効果が小さ
くなるためである。
In the accelerated cooling performed after the controlled rolling under the above conditions, in order to increase the amount of bainite for improving the high temperature yield strength, the time until the start of cooling is short and the starting temperature is preferably high. In particular, when the cooling start temperature is lower than Ar 3 , ferrite is generated and the effect of increasing the high temperature strength by cooling becomes small, so the cooling start temperature is set to Ar 3 or higher. Also,
When the cooling rate is higher than 20 ° C / sec, the strength exceeds the standard upper limit, and at a cooling rate slower than 3 ° C / sec, the strength increasing effect cannot be obtained. Therefore, the cooling rate is 3
The range is up to 20 ℃ / sec. In addition, the cooling stop temperature is 400
Limit to ~ 550 ℃. It has a cooling stop temperature of 4
This is because if the temperature is lower than 00 ° C, island martensite is generated, the toughness is significantly deteriorated, and straightening after accelerated cooling becomes difficult, while if it exceeds 550 ° C, the strength increasing effect is reduced.

【0014】その後、Ac1〜Ac3の温度範囲に再加熱
し、フェライトを一部生成させ、ミクロ組織をフェライ
トとベイナイトの混合組織にして降伏比を低下させた
後、残留応力を除去して条切り特性を向上させるために
500〜650 ℃の温度範囲で焼戻しを行う。焼戻し温度は
500℃未満では残留応力の除去が不十分であり、一方、
650℃を超えると常温強度が大幅に低下する。したがっ
て、焼戻し温度は 500〜650 ℃の範囲に限定する。
After that, it is reheated to a temperature range of Ac 1 to Ac 3 to partially generate ferrite, and the microstructure is made into a mixed structure of ferrite and bainite to lower the yield ratio, and then the residual stress is removed. To improve stripping characteristics
Tempering is performed in the temperature range of 500 to 650 ℃. Tempering temperature
Removal of residual stress is insufficient at less than 500 ° C, while
If the temperature exceeds 650 ° C, the room temperature strength will drop significantly. Therefore, the tempering temperature is limited to the range of 500-650 ° C.

【0015】つぎに、本発明における化学成分の限定理
由について説明する。C は、強度上昇に寄与する元素で
あるが、0.04%未満では強度を確保することは困難であ
り、また、0.15%を超えて多量に添加すると、溶接性お
よび靱性を劣化させる。したがって、その添加量は0.04
〜0.15%の範囲とする。
Next, the reasons for limiting the chemical components in the present invention will be explained. C is an element that contributes to the increase in strength, but if it is less than 0.04%, it is difficult to secure the strength, and if it is added in excess of 0.15%, the weldability and toughness deteriorate. Therefore, the amount added is 0.04
The range is to 0.15%.

【0016】Siは、脱酸のために必須の元素であるが、
0.05%未満ではその効果が少なく、また、0.60%を超え
て過多に添加すると溶接性を劣化させる。このため、そ
の添加量は0.05〜0.60%の範囲とする。
Si is an essential element for deoxidation,
If it is less than 0.05%, its effect is small, and if it is added in excess of 0.60%, the weldability is deteriorated. Therefore, the addition amount is set to the range of 0.05 to 0.60%.

【0017】Mnは、鋼の強度および靱性を確保するため
に必要な元素であるが、0.50%未満ではこのような効果
は少なく、また、1.50%を超えて多量に添加すると溶接
性を劣化させる。したがって、その添加量は0.50〜1.50
%の範囲とする。
Mn is an element necessary for ensuring the strength and toughness of steel, but if it is less than 0.50%, such an effect is small, and if it is added in excess of 1.50%, the weldability deteriorates. . Therefore, the amount added is 0.50 to 1.50.
The range is%.

【0018】Moは、高温強度を確保するために不可欠な
元素であり、 600℃における耐力を大幅に上昇させる。
しかしながら、0.10%未満ではこのような効果は得られ
ず、また、0.40%を超えて添加すると大入熱溶接継手靱
性を劣化させる。したがって、その添加量は0.10〜0.40
%の範囲とする。
Mo is an indispensable element for ensuring high temperature strength, and significantly increases the yield strength at 600 ° C.
However, if less than 0.10%, such an effect cannot be obtained, and if more than 0.40% is added, the high heat input welded joint toughness deteriorates. Therefore, the addition amount is 0.10 to 0.40.
The range is%.

【0019】Nbは、析出硬化および変態強化による高温
強度の上昇および細粒化による靱性の向上が図られる元
素である。しかし、0.005 %未満ではこのような効果は
得られず、また、0.060 %を超えて過多に添加すると大
入熱溶接継手靱性が劣化する。したがって、その添加量
は 0.005〜0.060 %の範囲とする。
Nb is an element capable of increasing the high temperature strength by precipitation hardening and transformation strengthening and improving the toughness by fine graining. However, if it is less than 0.005%, such an effect cannot be obtained, and if it is added in excess of 0.060%, the large heat input welded joint toughness deteriorates. Therefore, the amount added should be in the range of 0.005 to 0.060%.

【0020】V は、析出硬化により高温強度を上昇させ
るが、0.005 %未満ではこのような効果は殆ど期待でき
ず、また、0.060 %を超えて過多に添加すると溶接性が
劣化する。したがって、その添加量は 0.005〜0.060 %
の範囲とする。
V increases the high-temperature strength by precipitation hardening, but if it is less than 0.005%, such an effect can hardly be expected, and if it exceeds 0.060% in excess, the weldability deteriorates. Therefore, the amount added is 0.005-0.060%.
The range is.

【0021】Tiは、オーステナイト粒の粗大化を抑制す
るとともに、フェライトの核生成サイトとなり、細粒化
に有効な元素でる。しかし、 0.005%未満ではかかる効
果を発揮することができず、また、 0.030%を超えて添
加すると母材靱性を劣化させる。したがって、その添加
量は 0.005〜0.030 %の範囲とする。
Ti is an element which suppresses coarsening of austenite grains and also serves as a nucleation site for ferrite, which is effective for grain refinement. However, if less than 0.005%, such effect cannot be exhibited, and if more than 0.030% is added, the toughness of the base material deteriorates. Therefore, the amount added is in the range of 0.005 to 0.030%.

【0022】なお、本発明における第2発明では、上記
の元素の他に必要に応じて、Cu、Ni、CrおよびCaの内の
1種または2種以上を添加することができる。
In the second invention of the present invention, one or more of Cu, Ni, Cr and Ca can be added in addition to the above elements, if necessary.

【0023】Cuは、固溶強化による強度上昇に有効な元
素であるが、0.05%未満ではこのような効果は少なく、
また、0.50%を超えて添加すると熱間加工性および溶接
性を損なう。このため、その添加量は0.05〜0.50%の範
囲とする。
Cu is an element effective for increasing strength by solid solution strengthening, but if it is less than 0.05%, such an effect is small,
If added in excess of 0.50%, hot workability and weldability are impaired. Therefore, the addition amount is set to the range of 0.05 to 0.50%.

【0024】Niは、靱性の向上に有効な元素であるが、
0.05%未満ではこのような効果は得られない。また、0.
50%を超えて添加してもこのような効果は飽和し、経済
的にも無駄である。したがって、その添加量は0.05〜0.
50%の範囲とする。
Ni is an element effective for improving toughness,
If it is less than 0.05%, such an effect cannot be obtained. Also, 0.
Even if added in excess of 50%, such an effect is saturated and it is economically wasteful. Therefore, the amount added is 0.05-0.
The range is 50%.

【0025】Crは、高温強度の向上に有効な元素である
が、0.10%未満ではこのような効果は期待しがたく、0.
60%を超えて多量に添加すると溶接性が劣化する。この
ため、その添加量は0.10〜0.60%の範囲とする。
Cr is an element effective in improving the high temperature strength, but if it is less than 0.10%, such an effect cannot be expected, and
If added in excess of 60%, the weldability will deteriorate. Therefore, the addition amount is set to 0.10 to 0.60%.

【0026】Caは、微量で板厚方向の特性を改善する元
素であるが、0.0005%未満ではこのような効果はなく、
一方、0.0050%を超えて添加すると、このような効果は
飽和するとともに、大型介在物が生成するため超音波欠
陥を生じやすくなる。このため、その添加量は0.0005〜
0.0050%の範囲とする。
[0026] Ca is an element that improves the properties in the plate thickness direction with a trace amount, but if it is less than 0.0005%, there is no such effect,
On the other hand, when added in excess of 0.0050%, such effects are saturated and large inclusions are generated, so that ultrasonic defects are likely to occur. Therefore, the amount added is 0.0005-
The range is 0.0050%.

【0027】さらに、本発明では溶接時の低温割れ防止
のために行われる予熱を省略する目的で式(1) で示す P
CM (溶接割れ感受性指数) を0.20%以下に限定する。
Further, in the present invention, P shown in the formula (1) is used for the purpose of omitting preheating which is carried out to prevent cold cracking during welding.
CM (welding crack susceptibility index) is limited to 0.20% or less.

【0028】以上の条件を用いることにより、高温で高
い耐力を確保し、さらに常温の降伏比が低く、かつ、優
れた溶接性および条切り特性を有する厚肉の建築用耐火
鋼の製造方法を提供することができる。すなわち、適切
な成分設計と制御圧延およびその後の加速冷却−Ac1
Ac3の温度範囲の再加熱−焼戻しを組み合わせて適用
し、鋼の組織をフェライトとベイナイト組織に制御する
ことにより本発明の目的とする溶接性の優れた建築用低
降伏比厚肉耐火鋼を製造することができる。
By using the above conditions, a high yield strength is ensured at a high temperature, a yield ratio at room temperature is low, and a method for producing a thick-walled construction refractory steel having excellent weldability and slitting properties is provided. Can be provided. That is, appropriate component design and controlled rolling and subsequent accelerated cooling-Ac 1 ~
By applying a combination of reheating and tempering in the Ac 3 temperature range and controlling the steel structure to be a ferrite and bainite structure, the low yield ratio thick wall refractory steel for construction with excellent weldability, which is the object of the present invention, is obtained. It can be manufactured.

【0029】[0029]

【実施例】以下に、実施例を挙げて本発明について説明
する。 実施例1 供試鋼板は表1に示す化学成分を有する鋼片を表2に示
す加熱・圧延・加速冷却・熱処理条件にしたがって、板
厚70mmに仕上げたものである。これらの鋼板から試験片
を採取し、常温引張試験、シャルピ衝撃試験、 600℃の
高温引張試験および最高かたさ試験を行った。その結果
を表2表に併記する。なお、最高かたさ試験はJIS Z 31
01に準じて行った。
EXAMPLES The present invention will be described below with reference to examples. Example 1 The test steel sheet is a steel piece having the chemical composition shown in Table 1 and finished to a thickness of 70 mm according to the heating, rolling, accelerated cooling, and heat treatment conditions shown in Table 2. Test pieces were taken from these steel sheets and subjected to a room temperature tensile test, a Charpy impact test, a high temperature tensile test at 600 ° C and a maximum hardness test. The results are also shown in Table 2. The highest hardness test is JIS Z 31.
It went according to 01.

【0030】表1に本発明法A〜Hおよび比較例I〜N
の化学成分を、表2に加熱・圧延・加速冷却・熱処理条
件さらに引張特性、衝撃特性、高温特性および溶接性を
それぞれ示す。
Table 1 shows the methods A to H of the present invention and comparative examples I to N.
Table 2 shows the chemical components of the above, heating, rolling, accelerated cooling, heat treatment conditions, tensile properties, impact properties, high temperature properties and weldability.

【0031】表2から明らかなように、本発明法A〜H
は、 600℃における耐力は217N/mm2以上と優れた高温耐
力を有し、かつ、最高かたさもHV300 未満であり、溶接
硬化性が低い。また、降伏比は建築用鋼材に要求されて
いる80%以下を十分に満足し、シャルピ衝撃試験におけ
る破面遷移温度も-40 ℃以下と良好である。
As is apparent from Table 2, the present invention methods A to H
Has a high temperature proof stress of 217 N / mm 2 or more at 600 ° C, a maximum hardness of less than HV300, and low weld hardenability. In addition, the yield ratio fully satisfies the requirement of 80% or less required for building steel, and the fracture surface transition temperature in the Charpy impact test is also good at -40 ° C or less.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】一方、比較例Iは、C および PCMが本発明
の限定範囲から高めに外れているため、母材靱性および
溶接性が悪い。比較例Jは、Moが本発明の限定範囲から
高めに外れているため、母材靱性および溶接性が悪い。
比較例Kは、Tiが添加されていないために母材靱性が悪
い。また、比較例L、Mは、前者はMoが、後者はNbがそ
れぞれ添加されていないために、 600℃における耐力が
低い。また、比較例Nは、V が添加されていないため
に、 600℃における耐力が低い。
On the other hand, Comparative Example I, since the C and P CM is out to increase the limiting scope of the present invention, is poor base metal toughness and weldability. In Comparative Example J, Mo is out of the limited range of the present invention, so that the base material toughness and weldability are poor.
In Comparative Example K, the base material toughness is poor because Ti is not added. Further, in Comparative Examples L and M, since the former is not added with Mo and the latter is not added with Nb, the yield strength at 600 ° C. is low. Further, Comparative Example N has a low yield strength at 600 ° C. because V is not added.

【0035】実施例2 供試鋼板は表3に示す加熱・圧延・加速冷却・熱処理条
件にしたがって、板厚70mmに仕上げたものである。これ
らの鋼板から試験片を採取し、常温引張試験、シャルピ
衝撃試験、 600℃の高温引張試験を行った。その結果を
表3表に併記する。なお、化学成分は表1の本発明法A
と同じである。
Example 2 The test steel sheet was finished to a thickness of 70 mm according to the heating, rolling, accelerated cooling and heat treatment conditions shown in Table 3. Test pieces were taken from these steel sheets and subjected to a room temperature tensile test, a Charpy impact test, and a high temperature tensile test at 600 ° C. The results are also shown in Table 3 below. The chemical components are the method A of the present invention in Table 1.
Is the same as.

【0036】本発明法A1〜A5は、加熱温度が1050〜1250
℃、圧延終了温度が 860〜930 ℃、冷却開始温度がAr3
以上、冷却停止温度が 420〜520 ℃、冷却速度が 5〜10
℃/秒、Ac1〜Ac3での再加熱温度が 780〜820 ℃、焼
戻し温度が 600〜630 ℃であり、常温強度、降伏比、破
面遷移温度および高温耐力はいずれも良好である。
In the method A1 to A5 of the present invention, the heating temperature is 1050-1250.
℃, rolling end temperature is 860-930 ℃, cooling start temperature is Ar 3
Above, the cooling stop temperature is 420 ~ 520 ℃, the cooling rate is 5 ~ 10
C./sec, reheating temperature at Ac 1 to Ac 3 is 780 to 820 ° C., tempering temperature is 600 to 630 ° C., and room temperature strength, yield ratio, fracture surface transition temperature and high temperature proof stress are all good.

【0037】[0037]

【表3】 [Table 3]

【0038】一方、比較例A6は、加熱温度が1000℃であ
るため、Nbが十分に固溶していないため、常温強度およ
び高温耐力が低い。比較例A7は、Ac1〜Ac3の再加熱を
行っていないために高温耐力は高いものの、常温の降伏
比が80%以上と高く建築用として適さない。比較例A8
は、圧延終了温度が 830℃と低いため、フェライトが細
粒となり常温の降伏比が80%を超えている。また、比較
例A9は、圧延終了温度が960℃と高いため、オーステナ
イトが粗粒となり破面遷移温度が高い。比較例A10 は、
冷却開始温度がAr3以下のためベイナイトの生成が少な
く、常温強度および高温耐力が低い。比較例A11 は、冷
却停止温度が 570℃と高いために強度上昇効果が小さ
く、常温強度および高温耐力が低い。さらに、比較例A1
2 は、冷却速度が 2℃/秒と小さいため、常温強度およ
び高温耐力が低い。また、比較例A13は、冷却停止温度
が 320℃と低いため島状マルテンサイトの生成により、
破面遷移温度が高い。
On the other hand, in Comparative Example A6, since the heating temperature is 1000 ° C. and Nb is not sufficiently dissolved in solid solution, the room temperature strength and the high temperature proof stress are low. Comparative Example A7 has a high high-temperature yield strength because it is not reheated from Ac 1 to Ac 3 , but has a yield ratio at room temperature of 80% or more and is not suitable for construction. Comparative Example A8
Since the rolling end temperature is low at 830 ° C, the ferrite becomes fine grains and the yield ratio at room temperature exceeds 80%. Further, in Comparative Example A9, the rolling end temperature was as high as 960 ° C., so that the austenite became coarse particles and the fracture surface transition temperature was high. Comparative Example A10 is
Since the cooling start temperature is Ar 3 or less, bainite is less generated, and room temperature strength and high temperature proof stress are low. In Comparative Example A11, the cooling stop temperature was as high as 570 ° C., so the strength increasing effect was small, and the room temperature strength and high temperature proof stress were low. Furthermore, Comparative Example A1
No. 2 has a low cooling rate of 2 ° C / sec, so its room temperature strength and high temperature yield strength are low. Further, in Comparative Example A13, since the cooling stop temperature is as low as 320 ° C., island-shaped martensite is generated,
High fracture transition temperature.

【0039】なお、上記実施例は厚鋼板の製造方法に関
するものであるが、本発明は他の鋼製品、例えば条鋼、
形鋼の製造にも適応し得ることは言うまでもない。
Although the above embodiment relates to a method for manufacturing a thick steel plate, the present invention is applicable to other steel products, such as bar steel,
It goes without saying that it can also be applied to the production of shaped steel.

【0040】[0040]

【発明の効果】以上説明したように、本発明は、化学成
分を調整し、 PCMを0.20%以下に規制した鋼片をを1050
℃以上の温度に加熱し、 850〜950 ℃の温度範囲で圧延
を終了した後、Ar3以上の温度から 3〜20℃/秒の冷却
速度で 400〜550 ℃の温度まで加速冷却した後、Ac1
Ac3の温度範囲に再加熱し、さらに 500〜650 ℃の温度
で焼戻しする溶接性の優れた建築用低降伏比厚肉耐火鋼
の製造方法であって、本発明によれば、高温で高い強度
を確保し、かつ、常温の降伏比が低く、さらに優れた溶
接性および条切り特性を有する溶接性の優れた建築用低
降伏比厚肉耐火鋼を得ることができる。したがって、本
発明法による建築用耐火鋼は、従来必要とされていた耐
火被覆を大幅に低減あるいは省略することができ、さら
に、耐震性の点から構造物の安全性を高め、かつ、施工
能率を向上させることができる。
As described above, according to the present invention, the slab of which the chemical composition is adjusted and the P CM is regulated to 0.20% or less is 1050
After heating to a temperature of ℃ or more and finishing the rolling in a temperature range of 850 to 950 ℃, after accelerated cooling from a temperature of Ar 3 or more to a temperature of 400 to 550 ℃ at a cooling rate of 3 to 20 ℃ / sec, Ac 1 ~
A method for producing a low yield ratio thick wall refractory steel for construction having excellent weldability, which comprises reheating to a temperature range of Ac 3 and further tempering at a temperature of 500 to 650 ° C. According to the present invention, it is high at high temperature. It is possible to obtain a thick wall refractory steel with a low yield ratio for construction that secures strength, has a low yield ratio at room temperature, and has excellent weldability and striation characteristics and excellent weldability. Therefore, the fire-resistant steel for construction according to the method of the present invention can greatly reduce or omit the fire-resistant coating that has been conventionally required, and further enhance the safety of the structure from the viewpoint of earthquake resistance, and the construction efficiency. Can be improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡野 重雄 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeo Okano 1 Kanazawa-machi, Kakogawa-shi, Hyogo Prefecture Kadogawa Works Kakogawa Steel Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.04〜0.15%、 Si:0.05〜0.60%、 M
n:0.50〜1.50%、Mo:0.10 〜0.40%、Nb:0.005〜0.060
%、 V:0.005〜0.060 %、Ti:0.005〜0.030%を含有
し、残部がFeおよび不可避不純物からなり、かつ、下記
(1) 式で規定される PCMの値が0.20%以下である鋼片を
1050℃以上の温度に加熱し、 850〜950℃の温度範囲で
圧延を終了した後、Ar3以上の温度から 3〜20℃/秒の
冷却速度で 400〜550 ℃の温度まで加速冷却した後、A
c1〜Ac3の温度範囲に再加熱し、さらに 500〜650 ℃の
温度で焼戻しすることを特徴とする溶接性の優れた建築
用低降伏比厚肉耐火鋼の製造方法。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B(%)……(1)
1. C: 0.04 to 0.15%, Si: 0.05 to 0.60%, M
n: 0.50 to 1.50%, Mo: 0.10 to 0.40%, Nb: 0.005 to 0.060
%, V: 0.005 to 0.060%, Ti: 0.005 to 0.030%, the balance consisting of Fe and unavoidable impurities, and
A slab with a P CM value of 0.20% or less specified by equation (1)
After heating to a temperature of 1050 ° C or higher and finishing rolling in the temperature range of 850 to 950 ° C, after accelerated cooling from a temperature of Ar 3 or higher to a temperature of 400 to 550 ° C at a cooling rate of 3 to 20 ° C / sec. , A
A method for producing a low yield ratio thick wall refractory steel for construction with excellent weldability, which comprises reheating to a temperature range of c 1 to Ac 3 and further tempering at a temperature of 500 to 650 ° C. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (%) …… (1)
【請求項2】 化学成分として、さらに Cu:0.05〜0.40
%、 Ni:0.05〜0.50%、 Cr:0.10〜0.40%、 Ca:0.0005
〜0.0050%の内から選んだ1種または2種以上を含有す
る請求項1記載の溶接性の優れた建築用低降伏比厚肉耐
火鋼の製造方法。
2. As a chemical component, Cu: 0.05 to 0.40 is further added.
%, Ni: 0.05 to 0.50%, Cr: 0.10 to 0.40%, Ca: 0.0005
The method for producing a low yield ratio thick wall refractory steel for construction having excellent weldability according to claim 1, containing one or more selected from the range of 0.0050% to 0.0050%.
JP5191793A 1993-03-12 1993-03-12 Production of thick-walled refractory steel with low yield ratio for construction use, excellent in weldability Withdrawn JPH06264136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5191793A JPH06264136A (en) 1993-03-12 1993-03-12 Production of thick-walled refractory steel with low yield ratio for construction use, excellent in weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5191793A JPH06264136A (en) 1993-03-12 1993-03-12 Production of thick-walled refractory steel with low yield ratio for construction use, excellent in weldability

Publications (1)

Publication Number Publication Date
JPH06264136A true JPH06264136A (en) 1994-09-20

Family

ID=12900231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5191793A Withdrawn JPH06264136A (en) 1993-03-12 1993-03-12 Production of thick-walled refractory steel with low yield ratio for construction use, excellent in weldability

Country Status (1)

Country Link
JP (1) JPH06264136A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544722B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 Method for Manufacturing No-Heat Treated Steel with High Weldability, High Toughness and High Strength
KR100643360B1 (en) * 2005-06-23 2006-11-10 주식회사 포스코 Method for producing high-strength thick steel plate having excellent weldability and low temperature toughness
KR100723201B1 (en) * 2005-12-16 2007-05-29 주식회사 포스코 High strength and toughness steel having superior toughness in multi-pass welded region and method for manufacturing the same
CN108149139A (en) * 2017-12-28 2018-06-12 安徽应流集团霍山铸造有限公司 A kind of preparation method of New-type cast steel material microalloying

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544722B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 Method for Manufacturing No-Heat Treated Steel with High Weldability, High Toughness and High Strength
KR100643360B1 (en) * 2005-06-23 2006-11-10 주식회사 포스코 Method for producing high-strength thick steel plate having excellent weldability and low temperature toughness
KR100723201B1 (en) * 2005-12-16 2007-05-29 주식회사 포스코 High strength and toughness steel having superior toughness in multi-pass welded region and method for manufacturing the same
CN108149139A (en) * 2017-12-28 2018-06-12 安徽应流集团霍山铸造有限公司 A kind of preparation method of New-type cast steel material microalloying

Similar Documents

Publication Publication Date Title
JPH10195591A (en) High strength hot rolled steel sheet for thermal hardening excellent in stretch-flanging property and its production
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JPH06316723A (en) Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability
JP3399983B2 (en) Method for producing high-strength steel sheet with excellent weldability and low yield ratio of 570 N / mm2 or more
JPH06264136A (en) Production of thick-walled refractory steel with low yield ratio for construction use, excellent in weldability
JP2764007B2 (en) Low yield ratio refractory steel sheet for building with excellent weldability and method of manufacturing the same
JPS5952687B2 (en) Manufacturing method of tempered high-strength steel plate with excellent low-temperature toughness
JP3879639B2 (en) High toughness and high yield point steel with excellent weldability and method for producing the same
JPH05117745A (en) Production of 490n/mm2 class weather resistant refractory steel products for building structural purpose
JP2828755B2 (en) Manufacturing method of low yield ratio 80 ▲ kgff / ▲ mm ▼▼ 2 上 class steel sheet with excellent weldability
JPH07305113A (en) Production of low yield ratio thick fire resistant steel for building excellent in weldability
JP3313440B2 (en) High corrosion resistance high strength clad steel and method for producing the same
JPH05112823A (en) Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JPH07150245A (en) Production of thick-walled steel tube having high toughness and low yield ratio
JP2003160833A (en) Non-heat-treated thick steel plate with high toughness and high tension, and manufacturing method therefor
JPH07173532A (en) Production of low yield ratio type fire resistant architectural steel excellent in weldability
JPH07207336A (en) Production of refractory steel products for building structural purpose
JPH08209294A (en) Low yield ratio-type steel plate having above 590n/square mm tensile strength excellent in weld crack resistance and its production
JPH08283836A (en) Production of steel excellent in weldability and acoustic anisotropy
JPH09202936A (en) Low yield ratio/high tension strength steel plate excellent in toughness heat-affected zone toughness in large heat input weld zone and its production
JP4044862B2 (en) Composite structure type high strength steel plate excellent in earthquake resistance and weldability and method for producing the same
JPH08176731A (en) High tensile steel and production thereof
JPH04350120A (en) Production of high strength refractory steel plate for construction use
JPH0657371A (en) Low yield ratio fire resistant building steel excellent in weldability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530