JP2764007B2 - Low yield ratio refractory steel sheet for building with excellent weldability and method of manufacturing the same - Google Patents

Low yield ratio refractory steel sheet for building with excellent weldability and method of manufacturing the same

Info

Publication number
JP2764007B2
JP2764007B2 JP14794894A JP14794894A JP2764007B2 JP 2764007 B2 JP2764007 B2 JP 2764007B2 JP 14794894 A JP14794894 A JP 14794894A JP 14794894 A JP14794894 A JP 14794894A JP 2764007 B2 JP2764007 B2 JP 2764007B2
Authority
JP
Japan
Prior art keywords
temperature
less
yield ratio
steel sheet
low yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14794894A
Other languages
Japanese (ja)
Other versions
JPH0813083A (en
Inventor
眞人 清水
義幸 中谷
重雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14794894A priority Critical patent/JP2764007B2/en
Publication of JPH0813083A publication Critical patent/JPH0813083A/en
Application granted granted Critical
Publication of JP2764007B2 publication Critical patent/JP2764007B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は耐火鋼板およびその製造
方法に関し、特に、常温で低い降伏比と大きな一様伸び
を有すると同時に、十分な高温耐力と良好な溶接性を備
えた建築構造用耐火鋼板およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory steel sheet and a method for producing the same, and more particularly, to a building structure having a low yield ratio and a large uniform elongation at room temperature, as well as a sufficient high temperature resistance and good weldability. The present invention relates to a refractory steel sheet and a method for manufacturing the same.

【0002】[0002]

【従来の技術】一般的に、鉄骨建築物は火災時の高温に
よって鋼材強度が低下し、建築物として必要な耐力が維
持できないため、耐火被覆で鉄骨を保護することが建築
基準法で定められている。従来のSi−Mn系の建築構
造用鋼板では、火災時に鋼材温度が350℃以上になる
とその耐力が常温規格値の2/3以下に低下し、構造上
必要な耐力(長期許容応力度)を下回るため、耐火被覆
によって鋼材温度の上昇を抑制しているが工事費の増加
や工期の長期化という問題がある。
2. Description of the Related Art In general, steel buildings have a reduced strength due to a high temperature at the time of fire, and the required strength of the building cannot be maintained. ing. In conventional Si-Mn-based steel sheets for building structures, when the steel material temperature becomes 350 ° C or more at the time of fire, the proof strength decreases to / or less of the normal temperature specification value, and the proof strength (long-term allowable stress) required for the structure is reduced. Because of this, the rise in steel material temperature is suppressed by the refractory coating, but there is a problem that the construction cost increases and the construction period is lengthened.

【0003】[0003]

【発明が解決しようとする課題】しかし、1987年に
施行された「新耐火設計法」により、高温での耐力が優
れた鋼板(耐火鋼板)を使用すれば耐火被覆の削減また
は省略が可能になった。この耐火鋼板は立体駐車場、外
部鉄骨建築物、アトリウム等を中心に採用されている。
However, according to the "New Fire-Resistant Design Law" enacted in 1987, it is possible to reduce or omit the fire-resistant coating if a steel sheet (fire-resistant steel sheet) having a high proof stress at high temperatures is used. became. This fire-resistant steel plate is mainly used in multi-story parking lots, external steel buildings, atriums and the like.

【0004】現在、高温での耐力が優れた鋼材としては
ボイラー・圧力容器用Cr−Mo鋼がある。しかし、こ
の鋼材は、600℃での耐力は常温規格値の2/3以上
を有するが、C量が高いために溶接性(耐溶接割れ性)
および溶接継手靭性が悪く、溶接施行上難点がある。こ
のために600℃においても高い耐力を有し、かつ、溶
接性に優れ、従来鋼と同等の設計・施行ができる耐火鋼
板がいくつか提案されている(特公平4−50362号
公報)。
At present, there is a Cr-Mo steel for boilers and pressure vessels as a steel material having excellent proof stress at high temperatures. However, this steel material has a proof stress at 600 ° C. of / or more of the normal temperature standard value, but has a high C content, so that the weldability (weld cracking resistance) is high.
In addition, the toughness of the welded joint is poor, and there is a difficulty in welding. For this reason, several refractory steel sheets which have a high proof stress even at 600 ° C., have excellent weldability, and can be designed and implemented in the same manner as conventional steel have been proposed (Japanese Patent Publication No. 4-50362).

【0005】これらの鋼板には、建築用として耐震性能
を確保するために降伏比の低減が要求され、通常の要求
80%以下を満足するものも開発されている。しかし、
耐震性能への要求は一層厳格化し、場合によっては低降
伏比だけでなく一様伸びの増加も要求されることがあ
る。このような要求に対しては、これまで提案されてい
る耐火鋼板は十分な配慮がなされていなかった。一方、
例えば特開平3−173715号公報に開示される鋼
は、Cr,MoおよびNbを複合添加し、制御圧延法に
よって製造され、優れた高温耐力を有しているが、板厚
が25mmと薄く、厚肉材を対象としてはいない。また、
特開平3−6322号公報に開示される鋼は、多量のM
oを添加した鋼をAr3 変態点以下から加速冷却するこ
とにより、ミクロ組織をフェライトとベイナイトの混合
組織とし、常温での降伏比を低く抑えて600℃におけ
る強度を確保している。しかし、加速冷却ままでは鋼材
の残留応力が高いため、ガス切断による条切り時にキャ
ンバーや反りの形状不良が発生し易いという問題があ
る。
[0005] These steel sheets are required to have a reduced yield ratio in order to ensure seismic performance for construction purposes, and steel sheets satisfying the normal requirement of 80% or less have been developed. But,
Demands on seismic performance are becoming more stringent, and in some cases not only low yield ratios but also increases in uniform elongation are required. For such a request, the refractory steel plate proposed so far has not been given sufficient consideration. on the other hand,
For example, the steel disclosed in Japanese Unexamined Patent Publication No. 3-173715 is manufactured by a controlled rolling method with a composite addition of Cr, Mo and Nb, and has an excellent high temperature proof stress. Not intended for thick materials. Also,
The steel disclosed in Japanese Unexamined Patent Publication No. Hei.
The steel to which o is added is accelerated and cooled from the Ar 3 transformation point or lower, so that the microstructure is a mixed structure of ferrite and bainite, the yield ratio at room temperature is kept low, and the strength at 600 ° C. is secured. However, since the residual stress of the steel material is high under the condition of accelerated cooling, there is a problem that camber and warping shape defects are apt to occur at the time of cutting by gas cutting.

【0006】本発明は、前記従来技術における問題点を
解消し、鉄骨への耐火被覆を削減または省略しながらも
高温に対する十分な耐力を有し、かつ、常温での低い降
伏比、大きな一様伸び、さらには優れた溶接性を有する
建築構造用耐火鋼板ならびに、高層や大スパンの鉄骨建
築物に使用される厚肉鋼板についても溶接性に加えて条
切り特性にも優れて成る建築構造用耐火鋼板の製造方法
を提供することを目的としている。
The present invention solves the above-mentioned problems in the prior art, and has a sufficient yield strength at high temperatures while reducing or omitting the refractory coating on the steel frame, and has a low yield ratio at room temperature and a large uniformity. For building structures that have excellent elongation and excellent weldability, as well as thick steel plates used for high-rise and large-span steel structures, which are excellent not only in weldability but also in stripping properties. An object of the present invention is to provide a method for manufacturing a refractory steel sheet.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明者等は鋭意研究を重ねた結果、素材の化学成
分を限定し、ミクロ組織の構成要件を規定することによ
り、常温での低い降伏比と大きな一様伸び、さらには優
れた溶接性および条切り特性を有する建築構造用耐火鋼
板を製造できるという知見を得て本発明を完成するに至
った。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies and, as a result, have limited the chemical components of the raw material and defined the constituent requirements of the microstructure, thereby making it possible to obtain the microstructure at room temperature. The inventors have found that a refractory steel sheet for a building structure having a low yield ratio, a large uniform elongation, and excellent weldability and sectioning characteristics can be manufactured, thereby completing the present invention.

【0008】これまでの耐火鋼板では、一般にその高温
強度を確保するために、MoやNbなどの析出強化を活
用しているが、これらの元素を添加すると鋼の焼入性が
増加するため、ミクロ組織がベイナイト主体となり、降
伏比の低減や一様伸びの増加を十分に達成できないこと
が多い。これらの特性の改善については、建築用590
N/mm2 級鋼板などで知られているように、ミクロ組
織中に軟質のフェライト相を分散させることが有効であ
り、そのための具体的手段として例えば二相域熱処理法
などが知られている。
Conventional refractory steel sheets generally utilize precipitation strengthening of Mo, Nb, etc. in order to ensure their high-temperature strength. However, the addition of these elements increases the hardenability of the steel. The microstructure is mainly composed of bainite, and in many cases, a reduction in yield ratio and an increase in uniform elongation cannot be sufficiently achieved. For improvements in these properties, see 590
It is effective to disperse a soft ferrite phase in a microstructure as is known for N / mm2 grade steel sheets and the like, and a specific means for that purpose is, for example, a two-phase heat treatment method.

【0009】そこで、本発明者等は、降伏比と一様伸び
に及ぼすミクロ組織の影響を調査した。その結果、これ
らの特性に対する要求を満足するためには、単にフェラ
イト相を分散させるだけでは十分ではなく、フェライト
以外の第2相とフェライト相の硬さの差をある値以上と
すること、さらに、この硬さの差が或る値以上になると
著しい靭性の劣化を生じるため硬さの差に上限を設定す
る必要があることを見いだした。
Therefore, the present inventors investigated the effect of the microstructure on the yield ratio and uniform elongation. As a result, in order to satisfy the requirements for these properties, it is not enough to simply disperse the ferrite phase, and the difference in hardness between the second phase other than ferrite and the ferrite phase is set to a certain value or more. It has been found that when the difference in hardness exceeds a certain value, remarkable deterioration of toughness occurs, so that it is necessary to set an upper limit for the difference in hardness.

【0010】前記知見に基づいてなされた本発明は、質
量比にて、C:0.04〜0.15%、Si:0.05
〜0.50%、Mn:0.50〜1.60%,P:0.
020%以下、S:0.005%以下、Mo:0.10
〜0.40%、V:0.005〜0.070%、Nb:
0.005〜0.050%、Ti:0.005〜0.0
30%、Al:0.01〜0.10%を含有し、下記
式で示すPCM(溶接割れ感受性組成)が0.21%以下
を満足し、残部Feおよび不可避的不純物からなる化学
組成を有し、フェライト以外の第2相の分率が20%以
上であり、第2相のビッカース硬さの5点以上の測定値
の平均とフェライト相のビッカース硬さの差が120〜
260の範囲であることを特徴とする溶接性の優れた建
築用低降伏比耐火鋼板を要旨としている。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20 +Mo/15+V/10+5B ………………………
According to the present invention based on the above-mentioned findings, the mass ratio of C: 0.04 to 0.15%, Si: 0.05
0.50%, Mn: 0.50 to 1.60%, P: 0.
020% or less, S: 0.005% or less, Mo: 0.10
0.40%, V: 0.005 to 0.070%, Nb:
0.005 to 0.050%, Ti: 0.005 to 0.0
30% Al: contains 0.01 to 0.10%, and satisfies P CM (weld crack susceptibility composition) is less than 0.21% represented by the following formula, the chemical composition and the balance Fe and unavoidable impurities The fraction of the second phase other than ferrite is 20% or more, and the difference between the average of the measured values of the Vickers hardness of the second phase at 5 points or more and the Vickers hardness of the ferrite phase is 120 to
The gist of the present invention is a low yield ratio refractory steel sheet for building, which is excellent in weldability and characterized in the range of 260. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B

【0011】また本発明は、質量比にて、C:0.04
〜0.15%、Si:0.05〜0.50%、Mn:
0.50〜1.60%,P:0.020%以下、S:
0.005%以下、Mo:0.10〜0.40%、V:
0.005〜0.070%、Nb:0.005〜0.0
50%、Ti:0.005〜0.030%、Al:0.
01〜0.10%を含有し、さらにCu:0.05〜
0.40%、Ni:0.05〜0.40%、Cr:0.
10〜0.50%、Ca:0.0005〜0.0050
%のうち1種または2種を含有し、下記式で示すPCM
(溶接割れ感受性組成)が0.21%以下を満足して、
残部Feおよび不可避的不純物からなる化学組成を有
し、フェライト以外の第2相の分率が20%以上であ
り、第2相のビッカース硬さの5点以上の測定値の平均
とフェライト相のビッカース硬さの差が120〜260
の範囲であることを特徴とする溶接性の優れた建築用低
降伏比耐火鋼板である。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20 +Mo/15+V/10+5B ………………………
In the present invention, C: 0.04 by mass ratio.
0.15%, Si: 0.05 to 0.50%, Mn:
0.50 to 1.60%, P: 0.020% or less, S:
0.005% or less, Mo: 0.10 to 0.40%, V:
0.005 to 0.070%, Nb: 0.005 to 0.0
50%, Ti: 0.005 to 0.030%, Al: 0.
0.1 to 0.10%, and further Cu: 0.05 to
0.40%, Ni: 0.05 to 0.40%, Cr: 0.
10-0.50%, Ca: 0.0005-0.0050
Contain one or two of%, P CM represented by the following formula
(Weld crack susceptibility composition) of 0.21% or less,
It has a chemical composition consisting of the balance of Fe and unavoidable impurities, the fraction of the second phase other than ferrite is 20% or more, and the average of the measured values of Vickers hardness of the second phase at 5 points or more and the ferrite phase Vickers hardness difference is 120-260
And a low yield ratio refractory steel sheet for architectural use having excellent weldability, characterized by being within the range described above. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B

【0012】一方、建築構造用耐火鋼板について優れた
条切り特性を持たせるには、板厚によらず制御圧延まま
であることが有効であるが、厚肉材の場合、強度を確保
するためにCeq(炭素当量)やPCM(溶接割れ感受性組
成)を高くせざるを得なく、溶接性が劣化する。これに
対し、Ceqを高めることなく、強度の上昇を図る手段と
して加速冷却法があるが、加速冷却ままでは鋼材の残留
応力が高いため、ガス切断での条切り特性が悪い。ま
た、加速冷却法での条切り特性の改善には、加速冷却+
焼戻し法が有効であるとされるが、この方法ではミクロ
組織がベイナイトとなり、しかも焼戻し時に高温強度を
向上させるために添加したMo,Nbが析出するために
常温での降伏比が高くなる。そこで、Ceqを高めること
なく強度上昇を図り、かつ、常温での低降伏比を確保す
る手段として、加速冷却後にAC1〜AC3変態点の温度域
で再加熱し空冷処理を行い、あるいはその後さらに焼戻
し処理を行うことにより、ミクロ組織をフェライトとベ
イナイトの混合組織とすることが有効であることを見い
だした。これにより厚肉材においても、溶接性はもとよ
り条切り特性にも優れた建築構造用低降伏比耐火鋼板の
製造が可能となったものである。
On the other hand, it is effective to control rolled steel sheets regardless of the sheet thickness in order to impart excellent stripping characteristics to fire-resistant steel sheets for building structures. the Ceq forced to increase the (carbon equivalent) and P CM (weld crack susceptibility composition), weldability is degraded. On the other hand, there is an accelerated cooling method as a means for increasing the strength without increasing Ceq. However, if accelerated cooling is performed, the residual stress of the steel material is high, so that the gas cutting performance is poor. In addition, to improve the cutting characteristics by the accelerated cooling method, accelerated cooling +
The tempering method is said to be effective. However, in this method, the microstructure becomes bainite, and Mo and Nb added for improving the high-temperature strength during tempering precipitate to increase the yield ratio at room temperature. Therefore, as a means of increasing the strength without increasing Ceq and securing a low yield ratio at room temperature, after accelerated cooling, reheating is performed in the temperature range of the A C1 to A C3 transformation point, and air cooling is performed. Furthermore, it has been found that it is effective to make the microstructure a mixed structure of ferrite and bainite by performing a tempering treatment. As a result, it becomes possible to produce a low yield ratio fire-resistant steel sheet for building structures which is excellent not only in weldability but also in stripping properties, even in thick materials.

【0013】このような知見に基づいてなされた本発明
は、質量比にて、C:0.04〜0.15%、Si:
0.05〜0.50%、Mn:0.50〜1.60%,
P:0.020%以下、S:0.005%以下、Mo:
0.10〜0.40%、V:0.005〜0.070
%、Nb:0.005〜0.050%、Ti:0.00
5〜0.030%、Al:0.01〜0.10%を含有
し、下記式で示すPCM(溶接割れ感受性組成)が0.
21%以下を満足し、残部Feおよび不可避的不純物か
らなる化学組成を有する鋼片を、1050℃以上の温度
に加熱し、850〜950℃の温度範囲で圧延を終了し
た後、Ar3変態点以上の温度から3〜20℃/秒の冷却
速度で400〜550℃まで加速冷却した後、AC1〜A
C3変態点の温度域で再加熱して空冷することを特徴とす
る溶接性の優れた建築用低降伏比耐火鋼板の製造方法を
要旨とするものである。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20 +Mo/15+V/10+5B ………………………
The present invention has been made based on the above findings.
0.05 to 0.50%, Mn: 0.50 to 1.60%,
P: 0.020% or less, S: 0.005% or less, Mo:
0.10 to 0.40%, V: 0.005 to 0.070
%, Nb: 0.005 to 0.050%, Ti: 0.00
5~0.030%, Al: contains 0.01~0.10%, P CM (weld crack susceptibility composition) is 0 represented by the following formula.
A steel slab satisfying 21% or less and having a chemical composition comprising the balance of Fe and unavoidable impurities is heated to a temperature of 1050 ° C. or more, and after rolling is completed in a temperature range of 850 to 950 ° C., the Ar 3 transformation point after accelerated cooling to 400 to 550 ° C. at a cooling rate of 3 to 20 ° C. / sec from a temperature above, a C1 to a
The gist of the present invention is a method for producing a low yield ratio refractory steel sheet for building with excellent weldability, characterized by reheating in the temperature range of the C3 transformation point and air cooling. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B

【0014】また本発明は、上記の溶接性の優れた建築
用低降伏比耐火鋼板の製造方法において、AC1〜AC3
態点の温度域で再加熱して空冷した後、さらにAC1変態
点未満の温度で焼戻し処理をすることを特徴とする溶接
性の優れた建築用低降伏比耐火鋼板の製造方法である。
The present invention also provides a method for producing a low yield ratio refractory steel sheet for building having excellent weldability as described above, wherein the steel sheet is reheated in a temperature range of A C1 to A C3 transformation point, air-cooled, and further cooled to A C1 transformation state. A method for producing a low yield ratio refractory steel sheet for building having excellent weldability, characterized by performing a tempering treatment at a temperature below the point.

【0015】また本発明は、質量比にて、C:0.04
〜0.15%、Si:0.05〜0.50%、Mn:
0.50〜1.60%,P:0.020%以下、S:
0.005%以下、Mo:0.10〜0.40%、V:
0.005〜0.070%、Nb:0.005〜0.0
50%、Ti:0.005〜0.030%、Al:0.
01〜0.10%を含有し、さらにCu:0.05〜
0.40%、Ni:0.05〜0.40%、Cr:0.
10〜0.50%、Ca:0.0005〜0.0050
%のうち1種または2種を含有し、下記式で示すPCM
(溶接割れ感受性組成)が0.21%以下を満足し、残
部Feおよび不可避的不純物からなる化学組成を有する
鋼片を、1050℃以上の温度に加熱し、850〜95
0℃の温度範囲で圧延を終了した後、Ar3変態点以上の
温度から3〜20℃/秒の冷却速度で400〜550℃
まで加速冷却した後、AC1〜AC3変態点の温度域で再加
熱して空冷することを特徴とする溶接性の優れた建築用
低降伏比耐火鋼板の製造方法を要旨とする。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20 +Mo/15+V/10+5B ………………………
Further, the present invention provides a method of the present invention wherein C: 0.04
0.15%, Si: 0.05 to 0.50%, Mn:
0.50 to 1.60%, P: 0.020% or less, S:
0.005% or less, Mo: 0.10 to 0.40%, V:
0.005 to 0.070%, Nb: 0.005 to 0.0
50%, Ti: 0.005 to 0.030%, Al: 0.
0.1 to 0.10%, and further Cu: 0.05 to
0.40%, Ni: 0.05 to 0.40%, Cr: 0.
10-0.50%, Ca: 0.0005-0.0050
Contain one or two of%, P CM represented by the following formula
A steel slab satisfying (weld crack susceptibility composition) of 0.21% or less and having a chemical composition consisting of the balance of Fe and unavoidable impurities was heated to a temperature of 1050 ° C. or more,
After the completion of rolling in a temperature range of 0 ° C., at a cooling rate of 3 to 20 ° C. / sec from A r3 transformation point temperature above 400 to 550 ° C.
A method for producing a low yield ratio refractory steel sheet for building with excellent weldability, characterized in that the steel sheet is re-heated in the temperature range of A C1 to A C3 transformation point and then air-cooled after accelerated cooling to a temperature of A C1 to A C3 . P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B

【0016】また本発明は、上記の溶接性の優れた建築
用低降伏比耐火鋼板の製造方法において、AC1〜AC3
態点の温度域で再加熱して空冷した後、さらにAC1変態
点未満の温度で焼戻し処理をすることを特徴とする溶接
性の優れた建築用低降伏比耐火鋼板の製造方法である。
The present invention also provides a method for producing a low yield ratio refractory steel sheet for buildings having excellent weldability as described above, wherein the steel sheet is reheated in a temperature range of A C1 to A C3 transformation point, air-cooled, and further cooled to A C1 transformation state. A method for producing a low yield ratio refractory steel sheet for building having excellent weldability, characterized by performing a tempering treatment at a temperature below the point.

【0017】[0017]

【作用】本発明の構成と作用を説明する。本発明におけ
る化学成分の限定理由について説明する。Cは、強度上
昇に寄与する元素であるが、0.04%未満では強度を
確保することは困難であり、一方、0.15%を超えて
添加すると溶接性および靭性を劣化させる。したがっ
て、C含有量は0.04〜0.15%の範囲とする。S
iは、脱酸のために必須の元素であるが、0.05%未
満ではその効果が少なく、一方0.50%を超えて添加
すると溶接性を劣化させる。したがってSi含有量は
0.05〜0.50%の範囲とする。
The structure and operation of the present invention will be described. The reasons for limiting the chemical components in the present invention will be described. C is an element that contributes to an increase in strength, but if it is less than 0.04%, it is difficult to secure the strength. On the other hand, if it exceeds 0.15%, the weldability and toughness are deteriorated. Therefore, the C content is in the range of 0.04 to 0.15%. S
i is an essential element for deoxidation, but if it is less than 0.05%, its effect is small, while if it exceeds 0.50%, weldability is deteriorated. Therefore, the Si content is in the range of 0.05 to 0.50%.

【0018】Mnは、強度および靭性を確保するために
必要な元素であるが、0.50%未満ではこれらの効果
は少なく、一方、1.60%を超えて添加すると溶接性
および靭性を劣化させる。したがって、Mn含有量は
0.50〜1.60%の範囲とする。Pは、0.020
%を超えると溶接性および靭性を劣化させる。したがっ
て、P含有量は0.020%以下とする。Sは、0.0
05%を超えると粗大なA系介在物が増加し、靭性を劣
化させる。したがって、S含有量は0.005%以下と
する。
Mn is an element necessary for securing strength and toughness. If less than 0.50%, these effects are small, while if added over 1.60%, weldability and toughness deteriorate. Let it. Therefore, the Mn content is in the range of 0.50 to 1.60%. P is 0.020
%, The weldability and toughness deteriorate. Therefore, the P content is set to 0.020% or less. S is 0.0
If it exceeds 05%, coarse A-based inclusions increase and the toughness is deteriorated. Therefore, the S content is set to 0.005% or less.

【0019】Moは、高温強度を確保するために不可欠
な元素であり、600℃における耐力を大幅に上昇させ
る。しかしながら、0.10%未満ではこのような効果
は得られず、一方、0.40%を超えて添加すると溶接
性を劣化させる。したがって、Mo含有量は0.10〜
0.40%の範囲とする。Vは、析出効果による高温強
度の上昇に有効な元素であるが、0.005%未満では
この効果は少なく、一方0.070%を超えて添加する
と溶接性が劣化する。したがってV含有量は0.005
〜0.070%の範囲とする。
Mo is an element indispensable for securing high-temperature strength, and greatly increases the proof stress at 600 ° C. However, if the content is less than 0.10%, such an effect cannot be obtained. On the other hand, if the content exceeds 0.40%, the weldability is deteriorated. Therefore, the Mo content is 0.10 to
The range is 0.40%. V is an element effective for increasing the high-temperature strength due to the precipitation effect. However, if it is less than 0.005%, this effect is small, and if it exceeds 0.070%, the weldability deteriorates. Therefore, the V content is 0.005
-0.070%.

【0020】Nbは、析出効果による高温強度の上昇お
よび細粒化による靭性の向上がはかれる元素であるが、
0.005%未満の添加ではこれらの効果が少なく、一
方0.050%を超えて添加すると溶接継手靭性を劣化
させる。したがって、Nb含有量は0.005〜0.0
50%の範囲とする。
Nb is an element capable of increasing the high-temperature strength due to the precipitation effect and improving the toughness due to grain refinement.
Addition of less than 0.005% reduces these effects, while addition of more than 0.050% deteriorates the weld joint toughness. Therefore, the Nb content is 0.005 to 0.0
The range is 50%.

【0021】Tiは窒化物を形成し、加熱時のオーステ
ナイト粒の粗大化の抑制およびフェライトの生成促進に
より靭性の向上に有効な元素であるが、0.005%未
満の添加ではこれらの効果が少なく、一方0.030%
を超えて添加すると母材靭性を劣化させる。したがっ
て、Ti含有量は0.005〜0.030%の範囲とす
る。Alは脱酸に必要であるとともに結晶粒の微細化に
寄与する元素であるが0.01%未満ではこれらの効果
は少なく、一方0.10%を超えて添加すると酸化物系
介在物が多くなり靭性を劣化させる。したがって、Al
含有量は0.01〜0.10%の範囲とする。
Ti is an element that forms nitrides and is effective for suppressing the coarsening of austenite grains during heating and improving the toughness by accelerating the formation of ferrite. Less, whereas 0.030%
If added in excess of, the base metal toughness will be degraded. Therefore, the Ti content is in the range of 0.005 to 0.030%. Al is an element that is necessary for deoxidation and contributes to the refinement of crystal grains. However, if less than 0.01%, these effects are small. It deteriorates toughness. Therefore, Al
The content is in the range of 0.01 to 0.10%.

【0022】本発明は、前記元素の他にCu、Ni、C
rおよびCaのうちの1種または2種以上を含有するこ
とができる。Cuは、析出効果による強度上昇に有効な
元素であるが0.05%未満ではこのような効果は少な
く、一方0.40%を超えて添加すると熱間加工性およ
び溶接性を損なう。したがってCu含有量は0.05〜
0.40%の範囲とする。Niは、強度と靭性の向上に
有効な元素であるが0.05%未満ではこのような効果
は少なく、一方0.40%を超えて添加しても効果は飽
和して経済的にも無駄である。したがって、Ni含有量
は0.05〜0.40%の範囲とする。
According to the present invention, Cu, Ni, C
One or more of r and Ca may be contained. Cu is an element effective for increasing the strength due to the precipitation effect, but if the content is less than 0.05%, such an effect is small, while if it exceeds 0.40%, hot workability and weldability are impaired. Therefore, the Cu content is 0.05 to
The range is 0.40%. Ni is an element effective for improving the strength and toughness, but such an effect is small at less than 0.05%, while the effect is saturated even if added over 0.40%, and economically wasteful. It is. Therefore, the Ni content is in the range of 0.05 to 0.40%.

【0023】Crは、高温強度の上昇に有効な元素であ
るが0.10%未満ではこの効果は少なく、一方0.5
0%を超えて添加すると溶接性および溶接継手靭性が劣
化する。したがってCr含有量は0.10〜0.50%
の範囲とする。Caは、微量で板厚方向の特性を改善す
る元素であるが、0.0005%未満ではこの効果は少
なく、一方0.0050%を超えて添加すると、鋼中の
非金属介在物を増大させて内部欠陥の原因となる。した
がって、Ca含有量は0.0005〜0.0050%の
範囲とする。さらに本発明では、溶接時の低温割れ防止
のために行なわれる予熱を省略する目的で、溶接割れ感
受性組成(PCM)を0.21%以下に限定する。
Cr is an element effective for increasing the high-temperature strength, but if it is less than 0.10%, this effect is small.
If added in excess of 0%, weldability and weld joint toughness deteriorate. Therefore, the Cr content is 0.10 to 0.50%
Range. Ca is an element that slightly improves the properties in the thickness direction. However, if less than 0.0005%, this effect is small, while if it exceeds 0.0050%, nonmetallic inclusions in the steel increase. Causes internal defects. Therefore, the Ca content is in the range of 0.0005 to 0.0050%. Further in the present invention, a low temperature cracking omitted purpose preheating performed in order to prevent the welding, limiting weld cracking susceptibility composition of (P CM) below 0.21%.

【0024】次に、本発明における組織構成の限定理由
について説明する。前述したように、鋼の強度を確保し
たまま降伏比を低減するためには、硬質相中に軟質のフ
ェライト相を分散させることが有効である。しかし、フ
ェライト相の分散率が高すぎると所定の強度を確保でき
ない。したがって、フェライト以外の第2相の分率を2
0%以上と規定する。
Next, the reason for limiting the organizational structure in the present invention will be described. As described above, in order to reduce the yield ratio while maintaining the strength of the steel, it is effective to disperse the soft ferrite phase in the hard phase. However, if the dispersion ratio of the ferrite phase is too high, the predetermined strength cannot be secured. Therefore, the fraction of the second phase other than ferrite is set to 2
It is defined as 0% or more.

【0025】続いて第2相とフェライト相のビッカース
硬さの差の限定理由について説明する。本発明者等は8
0%以下の降伏比と20%以上の一様伸びを同時に確保
することを目標として、これらの特性に及ぼすミクロ組
織の影響を詳細に調査した。すなわち、種々の熱処理方
法を適用することによって、ミクロ組織の異なる鋼板を
作製し、引張試験、シャルピー衝撃試験、第2相とフェ
ライト相の硬さ測定を行なった。使用した鋼板の化学成
分と熱処理条件を下記〔表1〕に示す。
Next, the reason for limiting the difference in Vickers hardness between the second phase and the ferrite phase will be described. The present inventors have
In order to simultaneously secure a yield ratio of 0% or less and a uniform elongation of 20% or more, the influence of the microstructure on these properties was investigated in detail. That is, by applying various heat treatment methods, steel sheets having different microstructures were produced, and a tensile test, a Charpy impact test, and a hardness measurement of the second phase and the ferrite phase were performed. The chemical composition of the steel sheet used and the heat treatment conditions are shown in Table 1 below.

【0026】[0026]

【表1】 注1;鋼材化学成分(質量%). C:0.10,Si:0.20,Mn:1.05,P:0.007, S:0.001,Mo:0.37,V:0.046, Nb:0.020,Ti:0.012,Al:0.030, PCM:0.18 注2;弱冷却時の冷却速度: 2℃/s,冷却停止温度:580℃, 注3;強冷却時の冷却速度:10℃/s,冷却停止温度:450℃, 注4;板厚:55mm, [Table 1] Note 1: Steel chemical composition (% by mass). C: 0.10, Si: 0.20, Mn: 1.05, P: 0.007, S: 0.001, Mo: 0.37, V: 0.046, Nb: 0.020, Ti: 0.012, Al: 0.030, P CM : 0.18 Note 2: cooling rate at the time of a weak cooling: 2 ° C. / s, the cooling stop temperature: 580 ° C., Note 3, strongly cooled at a cooling rate: 10 ° C. / S, cooling stop temperature: 450 ° C, Note 4;

【0027】なお、第2相の硬さは5点以上の測定値の
平均を用いた。また、微小領域の硬さを測定するため、
ビッカース硬さ測定時の荷重は5gとした。また一様伸
びは、応力−歪曲線における最大荷重時の95%に荷重
が低下した点での歪として求めた。これらの処理によっ
て得られた鋼板の第2相とフェライト相のビッカース硬
さの差と、降伏比、一様伸びとの関係を図1に示す。ま
た、ビッカース硬さの差とvTrs(衝撃特性)との関
係を図2に示す。
The hardness of the second phase was an average of the measured values at five or more points. Also, in order to measure the hardness of a micro area,
The load at the time of measuring Vickers hardness was 5 g. The uniform elongation was determined as the strain at the point where the load decreased to 95% of the maximum load in the stress-strain curve. FIG. 1 shows the relationship between the difference in Vickers hardness between the second phase and the ferrite phase of the steel sheet obtained by these treatments, the yield ratio, and the uniform elongation. FIG. 2 shows the relationship between the difference in Vickers hardness and vTrs (impact characteristics).

【0028】図1から明らかなように、鋼板の第2相と
フェライト相のビッカース硬さの差が120以上である
場合のみ、80%以下の低い降伏比と20%以上の大き
な一様伸びを同時に確保できることがわかる。一方、図
2から判るように第2相とフェライト相のビッカース硬
さの差が260を超える場合あるいは70未満の場合に
はvTrsは−20℃以上となり、著しい靭性の劣化が
生じることがわかる。以上の降伏比、一様伸び、靭性の
目標を同時に満足する範囲として、第2相とフェライト
相のビッカース硬さの差を120〜260の範囲に限定
する。
As is apparent from FIG. 1, only when the difference between the Vickers hardness of the second phase and the ferrite phase of the steel sheet is 120 or more, a low yield ratio of 80% or less and a large uniform elongation of 20% or more are obtained. It can be seen that they can be secured at the same time. On the other hand, as can be seen from FIG. 2, when the difference between the Vickers hardnesses of the second phase and the ferrite phase exceeds 260 or is less than 70, vTrs becomes −20 ° C. or more, and it is found that remarkable deterioration in toughness occurs. The difference between the Vickers hardness of the second phase and the Vickers hardness of the ferrite phase is limited to the range of 120 to 260 as a range that simultaneously satisfies the above-described targets of yield ratio, uniform elongation, and toughness.

【0029】なお、第2相とフェライト相のビッカース
硬さの差が120以上である場合のみ、80%以下の低
い降伏比と20%以上の大きな一様伸びを同時に確保で
きる理由は次のように考えられる。すなわち、軟質相が
存在する場合、引張強さは各相の強度と分率に応じた混
合則に従って低下するのに対し、降伏点については変形
の初期で軟質相へ歪が集中し、硬質相に先行して軟質相
が降伏するため、降伏点の方が引張強さよりも低下量が
大きくなる。この傾向は、第2相とフェライト相の硬さ
の差が大きいほど顕著となり、「降伏点/引張強さ」で
定義される降伏比は低下するものと考えられる。また、
降伏点の低下にともない、最大荷重までの加工硬化量が
増すため、一様伸びが増加するものと考えられる。
The reason why a low yield ratio of 80% or less and a large uniform elongation of 20% or more can be simultaneously secured only when the difference between the Vickers hardness of the second phase and the ferrite phase is 120 or more is as follows. Can be considered. In other words, when a soft phase is present, the tensile strength decreases according to the mixing rule according to the strength and fraction of each phase, while the yield point is such that strain concentrates on the soft phase at the beginning of deformation and the hard phase Since the soft phase yields prior to the tensile strength, the yield decreases more at the yield point than at the tensile strength. This tendency becomes more remarkable as the difference in hardness between the second phase and the ferrite phase increases, and it is considered that the yield ratio defined by “yield point / tensile strength” decreases. Also,
It is considered that the uniform elongation increases because the amount of work hardening up to the maximum load increases as the yield point decreases.

【0030】一方、第2相とフェライト相のビッカース
硬さの差が260を超えると、著しい靭性の劣化が生じ
る原因は次のように考えられる。すなわち、第2相はマ
ルテンサイトやベイナイト等の低温変態生成物である
が、硬さの差が大きい場合にはこれらは脆くなるため靭
性が劣化するものと考えられる。なお、第2相とフェラ
イト相のビッカース硬さの差が70未満となる場合にも
靭性の劣化が生じる原因は、ミクロ組織が、靭性の不良
なアッパーベイナイト主体となるためと考えられる。
On the other hand, if the difference in Vickers hardness between the second phase and the ferrite phase exceeds 260, the cause of the remarkable deterioration in toughness is considered as follows. That is, the second phase is a low-temperature transformation product such as martensite or bainite, but if the difference in hardness is large, these are considered to be brittle and deteriorate in toughness. The reason why the toughness is deteriorated even when the difference between the Vickers hardness of the second phase and the ferrite phase is less than 70 is considered that the microstructure is mainly composed of upper bainite having poor toughness.

【0031】次に本発明の製造条件の限定理由について
説明する。圧延に先立って鋼片を加熱する温度は、高温
耐力の確保に必要なNbを固溶させるため、下限を10
50℃とする。また、圧延終了温度が850℃未満で
は、組織の微細化により、耐震性の面から建築構造用鋼
材に要求される80%以下の降伏比を確保することがで
きず、さらに、集合組織に起因して音響異方性が高くな
り、超音波斜角探傷において屈折角や探傷感度が変化す
るために、溶接欠陥部の検出作業が困難となる。一方、
圧延終了温度が950℃を超えると、オーステナイト粒
が粗大になるため母材靭性が劣化する。したがって、圧
延終了温度は850〜950℃の範囲とする。
Next, the reasons for limiting the manufacturing conditions of the present invention will be described. Prior to rolling, the temperature at which the slab is heated is set to a lower limit of 10 in order to form a solid solution of Nb necessary for securing high temperature proof stress.
50 ° C. If the rolling end temperature is lower than 850 ° C., the yield ratio of 80% or less required for building structural steel cannot be secured from the viewpoint of seismic resistance due to the refinement of the structure. As a result, the acoustic anisotropy increases, and the angle of refraction and the flaw detection sensitivity change in ultrasonic angle beam flaw detection, making it difficult to detect a weld defect. on the other hand,
If the rolling end temperature exceeds 950 ° C., the austenite grains become coarse and the base material toughness deteriorates. Therefore, the rolling end temperature is in the range of 850 to 950 ° C.

【0032】前述の条件で熱間圧延を終了した後、鋼板
の加速冷却を行なうが、冷却開始温度がAr3変態点未満
ではフェライトの生成により高温強度の上昇が小さくな
る。したがって、冷却開始温度はAr3変態点以上とす
る。また、冷却速度が20℃/秒を超えると、強度が規
格上限値を超え、一方、3℃/秒未満では強度の上昇が
小さくなる。したがって、冷却速度は3〜20℃/秒の
範囲とする。さらに、冷却停止温度は400〜550℃
の範囲とする。これは、400℃未満では母材靭性が劣
化するとともに加速冷却後の熱間矯正が困難となるため
であり、一方、550℃を超えると強度の上昇が小さく
なるためである。
After the completion of the hot rolling under the above-described conditions, the steel sheet is subjected to accelerated cooling. When the cooling start temperature is lower than the Ar3 transformation point, the rise in high-temperature strength is reduced due to the formation of ferrite. Therefore, the cooling start temperature is set to the Ar3 transformation point or higher. Further, when the cooling rate exceeds 20 ° C./sec, the strength exceeds the upper limit of the specification, while when the cooling rate is less than 3 ° C./sec, the increase in strength is small. Therefore, the cooling rate is in the range of 3 to 20 ° C./sec. Further, the cooling stop temperature is 400 to 550 ° C.
Range. This is because if the temperature is less than 400 ° C., the base material toughness is deteriorated and it is difficult to perform hot straightening after accelerated cooling. On the other hand, if the temperature exceeds 550 ° C., the increase in strength is small.

【0033】前記熱処理の後、鋼材のミクロ組織をフェ
ライトとベイナイトの混合組織にするためにAC1〜AC3
変態点の二相域温度で再加熱し空冷を行なう。ここで再
加熱温度を二相域温度に限定したのは、AC1変態点未満
では常温での降伏比が高くなり、一方、AC3変態点を超
えると強度が低下するためである。さらに、前段階での
熱処理により生じた鋼材中の残留応力の低減および靭性
の向上を図る必要がある場合には、焼戻し処理を実施す
る。この時の焼戻し温度はAC1変態点未満とするが、望
ましくは500〜650℃の範囲とする。
After the heat treatment, A C1 to A C3 are added to make the microstructure of the steel material a mixed structure of ferrite and bainite.
Re-heat at the temperature of the two-phase region at the transformation point and perform air cooling. The reason why the reheating temperature is limited to the two-phase region temperature is that the yield ratio at room temperature is high below the A C1 transformation point, while the strength is reduced above the A C3 transformation point. Further, when it is necessary to reduce the residual stress in the steel material generated by the heat treatment in the previous stage and improve the toughness, a tempering treatment is performed. The tempering temperature at this time is lower than the A C1 transformation point, but is preferably in the range of 500 to 650 ° C.

【0034】[0034]

【実施例】以下に本発明の実施例を説明するが、これに
より本発明はなんら制限されるものではない。 実施例1 供試鋼板は、下記表2に示す化学成分と硬さの差を有す
る板厚55〜80mmのJIS SM490級鋼板(規
格値;降伏点又は0.2%耐力:295N/mm2
上。引張強さ:490〜610N/mm2 。)である。
これらの鋼板から試験片を採取し、常温での引張試験、
シャルピー衝撃試験、600℃における高温引張試験、
最高硬さ試験を行なった。その結果を下記表3に示す。
なお、最高硬さ試験はJIS Z 3101に準じて行
なった。また、一様伸びは、応力−歪曲線における最大
荷重時の95%に荷重が低下した点での歪として求め
た。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited thereto. Example 1 A test steel sheet is a JIS SM490 grade steel sheet having a thickness of 55 to 80 mm and having a difference between hardness and chemical composition shown in Table 2 below (standard value; yield point or 0.2% proof stress: 295 N / mm 2 or more) Tensile strength: 490 to 610 N / mm 2 ).
Specimens were sampled from these steel plates and subjected to tensile tests at room temperature,
Charpy impact test, high temperature tensile test at 600 ° C,
The highest hardness test was performed. The results are shown in Table 3 below.
The maximum hardness test was performed according to JIS Z 3101. The uniform elongation was obtained as a strain at a point where the load was reduced to 95% of the maximum load in the stress-strain curve.

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】表3から明らかなように、本発明鋼A〜G
はいずれも600℃における耐力が常温規格値の2/3
(197N/mm2 )以上の優れた高温耐力を有し、常
温での引張特性は490N/mm2 級の規格値(降伏点
または0.2%耐力;295N/mm2 以上、引張強
さ;490〜610N/mm2 )を満足し、さらに80
%以下の降伏比と20%以上の一様伸びを有している。
また、シャルピー衝撃試験における母材の破面遷移温度
(vTrs)も−30℃以下と良好であり、最高硬さも
300未満であり、優れた溶接性を有している。
As is clear from Table 3, the steels A to G of the present invention
Each have a proof stress at 600 ° C. of 2/3 of the normal temperature specification value.
(197 N / mm 2 ) or more and high temperature proof stress, and the tensile properties at room temperature are 490 N / mm 2 class specification value (yield point or 0.2% proof stress; 295 N / mm 2 or more, tensile strength; 490-610 N / mm 2 ), and 80
% And a uniform elongation of 20% or more.
In addition, the fracture surface transition temperature (vTrs) of the base material in the Charpy impact test is as good as −30 ° C. or less, the maximum hardness is less than 300, and it has excellent weldability.

【0038】一方、比較鋼HはC量およびPCMが本発明
の範囲から高めに外れているため、溶接性が悪い。比較
鋼IはMoが本発明の範囲から高めに外れているため、
溶接性が悪い。比較鋼JはTiが添加されていないため
に母材靭性が悪い。また、比較鋼K、Lでは、前者はM
oが、後者はNbがそれぞれ添加されていないため、6
00℃における耐力が低い。さらに、比較鋼MもVが添
加されていないため、600℃における耐力が低い。
On the other hand, Comparative Steel H because the C content and P CM is out to enhance the scope of the present invention, is poor weldability. In Comparative Steel I, Mo is higher than the scope of the present invention,
Poor weldability. The comparative steel J has poor base metal toughness because no Ti is added. In comparison steels K and L, the former is M
o, but the latter was not added with Nb.
Low proof stress at 00 ° C. Furthermore, since the comparative steel M also does not contain V, the yield strength at 600 ° C. is low.

【0039】また、比較鋼A1、A2およびD1、D
2、D3はそれぞれ本発明鋼A、Dと同一化学成分で熱
処理法を変えることにより製造したものである。比較鋼
A1、D1は、第2相とフェライト相のビッカース硬さ
の差が260を超えるため、靭性が不良であり、比較鋼
A2、D2はビッカース硬さの差が120未満であるた
め降伏比が高く、一様伸びが小さい。また、比較鋼D3
は降伏比や一様伸びは良好であるが、第2相の分率が低
いため、490N/mm2 級の引張強さを有していな
い。
The comparative steels A1, A2 and D1, D
Nos. 2 and D3 were produced by changing the heat treatment method using the same chemical components as the steels A and D of the present invention, respectively. Comparative steels A1 and D1 have poor toughness because the difference in Vickers hardness between the second phase and ferrite phase exceeds 260, and comparative steels A2 and D2 have a yield ratio because the difference in Vickers hardness is less than 120. And uniform elongation is small. In addition, comparative steel D3
Has a good yield ratio and uniform elongation, but does not have a tensile strength of 490 N / mm 2 because of a low fraction of the second phase.

【0040】実施例2 本発明方法の実施に際し、供試鋼板は下記表4に示す化
学成分を有する鋼片を下記表5に示す加熱・圧延及び熱
処理条件に従って板厚60mmに仕上げたものである。こ
れらの鋼板から試験片を採取し、常温での引張試験、シ
ャルピー衝撃試験、600℃における高温引張試験、最
高硬さ試験を行なった。その結果を下記表6に示す。な
お、最高硬さ試験はJIS Z 3101に準じて行な
った。表4には、本発明鋼A〜Fおよび比較鋼G〜Lの
化学成分が、表5には、加熱・圧延及び熱処理条件が、
表6には、常温での引張特性、衝撃特性、高温特性およ
び溶接性がそれぞれ示される。
Example 2 In carrying out the method of the present invention, a test steel sheet was prepared by finishing a slab having the chemical components shown in Table 4 below to a thickness of 60 mm according to the heating, rolling and heat treatment conditions shown in Table 5 below. . Test pieces were taken from these steel sheets and subjected to a tensile test at normal temperature, a Charpy impact test, a high-temperature tensile test at 600 ° C., and a maximum hardness test. The results are shown in Table 6 below. The maximum hardness test was performed according to JIS Z 3101. Table 4 shows the chemical compositions of the invention steels A to F and comparative steels G to L. Table 5 shows the heating, rolling and heat treatment conditions.
Table 6 shows tensile properties at normal temperature, impact properties, high temperature properties, and weldability.

【0041】表6から明らかなように、本発明鋼A〜F
はいずれも600℃における耐力が常温規格値の2/3
(197N/mm2 )以上の優れた高温耐力を有し、常
温での引張特性は490N/mm2 級の規格値および耐
震性の面から建築構造用鋼材に要求される80%以下の
降伏比を十分満足している。また、シャルピー衝撃試験
における母材のvTrsも−25℃以下と良好であり、
最高硬さもHV289未満であり、優れた溶接性を有し
ている。
As is clear from Table 6, the steels A to F of the present invention were used.
Each have a proof stress at 600 ° C. of 2/3 of the normal temperature specification value.
(197 N / mm 2 ) or more, high temperature proof stress, and a tensile property at room temperature of 490 N / mm 2 class, and a yield ratio of 80% or less required for building structural steel from the viewpoint of earthquake resistance. Are satisfied enough. Also, the vTrs of the base material in the Charpy impact test is as good as −25 ° C. or less,
The maximum hardness is also less than HV289, and has excellent weldability.

【0042】一方、比較鋼GはC量およびPCMが本発明
の範囲から高めに外れているため、母材靭性および溶接
性が悪い。比較鋼HはMoが本発明の範囲から高めに外
れているため、溶接性が悪い。比較鋼IはTiが添加さ
れていないために母材靭性が悪い。また、比較鋼J、K
では、前者はMoが、後者はNbがそれぞれ添加されて
いないため、600℃における耐力が低い。さらに、比
較鋼LもVが添加されていないため、600℃における
耐力が低い。
On the other hand, Comparative Steel G Since the amount of C and P CM is out to enhance the scope of the present invention, is poor base metal toughness and weldability. The comparative steel H has poor weldability because Mo is slightly out of the range of the present invention. The comparative steel I has poor base metal toughness because no Ti is added. In addition, comparative steel J, K
In the former, Mo is not added to the former, and Nb is not added to the latter, so that the yield strength at 600 ° C. is low. Furthermore, since the comparative steel L also does not contain V, the yield strength at 600 ° C. is low.

【0043】[0043]

【表4】 [Table 4]

【0044】[0044]

【表5】 [Table 5]

【0045】[0045]

【表6】 [Table 6]

【0046】また、比較鋼A1〜A11は、本発明鋼A
の鋼片を本発明の製造条件範囲外で製造したものであ
る。比較鋼A1は、加速冷却のままでAC1〜AC3変態点
の二相域温度で再加熱処理を行なっていないため、常温
強度が高く、かつ、降伏比が85%と高い。比較鋼A2
は、加熱温度が本発明の範囲から低めに外れているため
Nbが十分に固溶せず、600℃における耐力が低い。
The comparative steels A1 to A11 correspond to the steel A of the present invention.
Was manufactured outside the manufacturing conditions of the present invention. The comparative steel A1 has a high room temperature strength and a high yield ratio of 85% since the reheat treatment is not performed at the two-phase region temperature of the A C1 to A C3 transformation point while maintaining the accelerated cooling. Comparative steel A2
Since the heating temperature is slightly lower than the range of the present invention, Nb does not form a solid solution, and the proof stress at 600 ° C. is low.

【0047】比較鋼A3は、圧延終了温度が本発明の範
囲から低めに外れているため、組織が微細化し、常温で
の降伏比が80%を超えている。さらに比較鋼A4は、
圧延終了温度が本発明の範囲から高めに外れているた
め、オーステナイトが粗粒となり母材靭性が悪い。比較
鋼A5は冷却開始温度がAr3変態点未満であるため、6
00℃における耐力が低い。
Since the rolling end temperature of the comparative steel A3 is slightly lower than the range of the present invention, the structure becomes finer, and the yield ratio at room temperature exceeds 80%. Furthermore, comparative steel A4 is
Since the rolling end temperature is out of the range of the present invention, austenite becomes coarse and the base material toughness is poor. Comparative steel A5 has a cooling start temperature lower than the Ar3 transformation point, and
Low proof stress at 00 ° C.

【0048】比較鋼A6、A7は、冷却停止温度が本発
明の範囲から外れており、A6は375℃と低めである
ため母材靭性が悪く、一方、A7は575℃と高めであ
るため常温および600℃における強度が低い。また、
比較鋼A8、A9は冷却速度が本発明の範囲から外れて
おり、A8は2℃/秒と低めであるため常温および60
0℃における強度が低く、一方、A9は22℃/秒と高
めであるため、常温強度が規格上限値を超えている。さ
らに、比較鋼A10、A11は、再加熱温度が本発明の
範囲から外れており、A10は680℃とAC1変態点未
満であるため常温での降伏比が82%と高く、一方、A
11は890℃とAC3変態点を超えているため、常温お
よび600℃における強度が低い。
The comparative steels A6 and A7 have a cooling stop temperature out of the range of the present invention. A6 has a low temperature of 375 ° C. and thus has poor base metal toughness, while A7 has a high temperature of 575 ° C. and has a normal temperature. And strength at 600 ° C. is low. Also,
The comparative steels A8 and A9 had a cooling rate outside the range of the present invention, and A8 was as low as 2 ° C./sec.
Since the strength at 0 ° C. is low, and A9 is as high as 22 ° C./sec, the room temperature strength exceeds the upper limit of the standard. Further, the comparative steels A10 and A11 have reheating temperatures outside the range of the present invention, and since A10 is 680 ° C. and lower than the A C1 transformation point, the yield ratio at room temperature is as high as 82%, while
11 is 890 ° C., which exceeds the A C3 transformation point, and therefore has low strength at room temperature and 600 ° C.

【0049】[0049]

【発明の効果】本発明は以上説明したように構成されて
いるから、高層建築や大スパンの鉄骨建築物に使用され
る厚肉鋼材においても、600℃の高温においても高い
強度を有し、かつ、常温での降伏比が低く、溶接性に優
れた鋼材の提供が可能となり、しかも、耐火被覆の削減
または省略が可能となって、耐震性の面で構造物の安全
性が確保でき、従来の溶接構造用鋼材と同等の施工性を
有しており、産業上極めて有用である。
Since the present invention is constructed as described above, it has high strength even at a high temperature of 600 ° C. even in a thick steel material used for a high-rise building or a large span steel frame building. In addition, it is possible to provide a steel material with a low yield ratio at room temperature and excellent weldability, and it is possible to reduce or omit the fireproof coating, and to secure the safety of the structure in terms of earthquake resistance, It has the same workability as conventional steel materials for welded structures, and is extremely useful in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明鋼板の第2相と、フェライト相のビッ
カース硬さの差と、降伏比、一様伸びとの関係説明図で
ある。
FIG. 1 is an explanatory diagram showing the relationship between a difference in Vickers hardness between a second phase and a ferrite phase of a steel sheet of the present invention, a yield ratio, and uniform elongation.

【図2】 本発明鋼板のビッカース硬さの差とvTrs
との関係説明図である。
FIG. 2 shows the difference between Vickers hardness of the steel sheet of the present invention and vTrs.
FIG.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−173532(JP,A) 特開 平3−173715(JP,A) 特開 平3−6322(JP,A) 特開 平2−263916(JP,A) 特開 平2−254134(JP,A) 特開 平2−254133(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 - 38/60 C21D 8/02──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-7-173532 (JP, A) JP-A-3-173715 (JP, A) JP-A-3-6322 (JP, A) JP-A-2- 263916 (JP, A) JP-A-2-254134 (JP, A) JP-A-2-254133 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 38/00-38 / 60 C21D 8/02

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量比にて、C:0.04〜0.15
%、Si:0.05〜0.50%、Mn:0.50〜
1.60%,P:0.020%以下、S:0.005%
以下、Mo:0.10〜0.40%、V:0.005〜
0.070%、Nb:0.005〜0.050%、T
i:0.005〜0.030%、Al:0.01〜0.
10%を含有し、下記式で示すPCM(溶接割れ感受性
組成)が0.21%以下を満足して、残部Feおよび不
可避的不純物からなる化学組成を有し、フェライト以外
の第2相の分率が20%以上であり、第2相のビッカー
ス硬さの5点以上の測定値の平均とフェライト相のビッ
カース硬さの差が120〜260の範囲であることを特
徴とする溶接性の優れた建築用低降伏比耐火鋼板。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20 +Mo/15+V/10+5B ………………………
1. A mass ratio of C: 0.04 to 0.15.
%, Si: 0.05 to 0.50%, Mn: 0.50 to 0.5%
1.60%, P: 0.020% or less, S: 0.005%
Hereinafter, Mo: 0.10 to 0.40%, V: 0.005 to
0.070%, Nb: 0.005 to 0.050%, T
i: 0.005 to 0.030%, Al: 0.01 to 0.
Containing 10% satisfy the P CM (weld crack susceptibility composition) is less than 0.21% represented by the following formula, it has the chemical composition and the balance Fe and unavoidable impurities, other than the ferrite phase 2 The weldability, wherein the difference between the average of the measured values of the Vickers hardness of the second phase at five or more points and the Vickers hardness of the ferrite phase is 120 to 260. Excellent low yield ratio refractory steel sheet for construction. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B
【請求項2】 質量比にて、C:0.04〜0.15
%、Si:0.05〜0.50%、Mn:0.50〜
1.60%,P:0.020%以下、S:0.005%
以下、Mo:0.10〜0.40%、V:0.005〜
0.070%、Nb:0.005〜0.050%、T
i:0.005〜0.030%、Al:0.01〜0.
10%を含有し、さらにCu:0.05〜0.40%、
Ni:0.05〜0.40%、Cr:0.10〜0.5
0%、Ca:0.0005〜0.0050%のうち1種
または2種を含有し、下記式で示すPCM(溶接割れ感
受性組成)が0.21%以下を満足して、残部Feおよ
び不可避的不純物からなる化学組成を有し、フェライト
以外の第2相の分率が20%以上であり、第2相のビッ
カース硬さの5点以上の測定値の平均とフェライト相の
ビッカース硬さの差が120〜260の範囲であること
を特徴とする溶接性の優れた建築用低降伏比耐火鋼板。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20 +Mo/15+V/10+5B ………………………
2. C: 0.04 to 0.15 by mass ratio
%, Si: 0.05 to 0.50%, Mn: 0.50 to 0.5%
1.60%, P: 0.020% or less, S: 0.005%
Hereinafter, Mo: 0.10 to 0.40%, V: 0.005 to
0.070%, Nb: 0.005 to 0.050%, T
i: 0.005 to 0.030%, Al: 0.01 to 0.
10%, Cu: 0.05 to 0.40%,
Ni: 0.05 to 0.40%, Cr: 0.10 to 0.5
0% Ca: contain one or two of from 0.0005 to 0.0050%, and satisfies P CM (weld crack susceptibility composition) is less than 0.21% represented by the following formula, the remainder Fe and It has a chemical composition of unavoidable impurities, the fraction of the second phase other than ferrite is 20% or more, the average of the measured values of Vickers hardness of the second phase at 5 points or more, and the Vickers hardness of the ferrite phase. Is low in the range of 120 to 260. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B
【請求項3】 質量比にて、C:0.04〜0.15
%、Si:0.05〜0.50%、Mn:0.50〜
1.60%,P:0.020%以下、S:0.005%
以下、Mo:0.10〜0.40%、V:0.005〜
0.070%、Nb:0.005〜0.050%、T
i:0.005〜0.030%、Al:0.01〜0.
10%を含有し、下記式で示すPCM(溶接割れ感受性
組成)が0.21%以下を満足し、残部Feおよび不可
避的不純物からなる化学組成を有する鋼片を、1050
℃以上の温度に加熱し、850〜950℃の温度範囲で
圧延を終了した後、Ar3変態点以上の温度から3〜20
℃/秒の冷却速度で400〜550℃まで加速冷却した
後、AC1〜AC3変態点の温度域で再加熱して空冷するこ
とを特徴とする溶接性の優れた建築用低降伏比耐火鋼板
の製造方法。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20 +Mo/15+V/10+5B ………………………
3. A mass ratio of C: 0.04 to 0.15.
%, Si: 0.05 to 0.50%, Mn: 0.50 to 0.5%
1.60%, P: 0.020% or less, S: 0.005%
Hereinafter, Mo: 0.10 to 0.40%, V: 0.005 to
0.070%, Nb: 0.005 to 0.050%, T
i: 0.005 to 0.030%, Al: 0.01 to 0.
Containing 10% satisfied P CM (weld crack susceptibility composition) is less than 0.21% represented by the following formula, a steel slab having a chemical composition and the balance Fe and unavoidable impurities, 1050
° C. was heated to a temperature equal to or higher than, after completion of the rolling at a temperature range of 850 to 950 ° C., 3 to 20 from the A r3 transformation point or above the temperature
A low yield ratio refractory for architectural use with excellent weldability, characterized in that after accelerated cooling to 400 to 550 ° C. at a cooling rate of 400 ° C./sec, it is reheated in the temperature range of A C1 to A C3 transformation point and air cooled. Steel plate manufacturing method. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B
【請求項4】 前記請求項3記載の溶接性の優れた建築
用低降伏比耐火鋼板の製造方法において、AC1〜AC3
態点の温度域で再加熱して空冷した後、さらにAC1変態
点未満の温度で焼戻し処理をすることを特徴とする溶接
性の優れた建築用低降伏比耐火鋼板の製造方法。
4. The method for producing a low yield ratio refractory steel sheet for building according to claim 3, which has excellent weldability, reheats in a temperature range of A C1 to A C3 transformation point, air-cools, and further cools A C1. A method for producing a low yield ratio refractory steel sheet for building having excellent weldability, characterized by performing a tempering treatment at a temperature lower than a transformation point.
【請求項5】 質量比にて、C:0.04〜0.15
%、Si:0.05〜0.50%、Mn:0.50〜
1.60%,P:0.020%以下、S:0.005%
以下、Mo:0.10〜0.40%、V:0.005〜
0.070%、Nb:0.005〜0.050%、T
i:0.005〜0.030%、Al:0.01〜0.
10%を含有し、さらにCu:0.05〜0.40%、
Ni:0.05〜0.40%、Cr:0.10〜0.5
0%、Ca:0.0005〜0.0050%のうち1種
または2種を含有し、下記式で示すPCM(溶接割れ感
受性組成)が0.21%以下を満足し、残部Feおよび
不可避的不純物からなる化学組成を有する鋼片を、10
50℃以上の温度に加熱し、850〜950℃の温度範
囲で圧延を終了した後、Ar3変態点以上の温度から3〜
20℃/秒の冷却速度で400〜550℃まで加速冷却
した後、AC1〜AC3変態点の温度域で再加熱して空冷す
ることを特徴とする溶接性の優れた建築用低降伏比耐火
鋼板の製造方法。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20 +Mo/15+V/10+5B ………………………
5. A mass ratio of C: 0.04 to 0.15.
%, Si: 0.05 to 0.50%, Mn: 0.50 to 0.5%
1.60%, P: 0.020% or less, S: 0.005%
Hereinafter, Mo: 0.10 to 0.40%, V: 0.005 to
0.070%, Nb: 0.005 to 0.050%, T
i: 0.005 to 0.030%, Al: 0.01 to 0.
10%, Cu: 0.05 to 0.40%,
Ni: 0.05 to 0.40%, Cr: 0.10 to 0.5
0%, Ca: One or two of 0.0005 to 0.0050% are contained, and the P CM (weld crack susceptibility composition) represented by the following formula satisfies 0.21% or less, with the balance being Fe and inevitable. Steel slab having a chemical composition of
Was heated to 50 ° C. above the temperature, after completion of the rolling at a temperature range of 850 to 950 ° C.,. 3 to the A r3 transformation point or above the temperature
A low yield ratio for architectural use with excellent weldability, characterized in that it is accelerated and cooled to 400 to 550 ° C. at a cooling rate of 20 ° C./sec, then reheated in the temperature range of A C1 to A C3 transformation point and air cooled. Manufacturing method of refractory steel sheet. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B
【請求項6】 前記請求項5記載の溶接性の優れた建築
用低降伏比耐火鋼板の製造方法において、AC1〜AC3
態点の温度域で再加熱して空冷した後、さらにAC1変態
点未満の温度で焼戻し処理をすることを特徴とする溶接
性の優れた建築用低降伏比耐火鋼板の製造方法。
6. The method for producing a low yield ratio refractory steel sheet for building according to claim 5, which has excellent weldability, reheats in a temperature range of A C1 to A C3 transformation point, air-cools, and further cools A C1. A method for producing a low yield ratio refractory steel sheet for building having excellent weldability, characterized by performing a tempering treatment at a temperature lower than a transformation point.
JP14794894A 1994-06-29 1994-06-29 Low yield ratio refractory steel sheet for building with excellent weldability and method of manufacturing the same Expired - Lifetime JP2764007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14794894A JP2764007B2 (en) 1994-06-29 1994-06-29 Low yield ratio refractory steel sheet for building with excellent weldability and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14794894A JP2764007B2 (en) 1994-06-29 1994-06-29 Low yield ratio refractory steel sheet for building with excellent weldability and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0813083A JPH0813083A (en) 1996-01-16
JP2764007B2 true JP2764007B2 (en) 1998-06-11

Family

ID=15441696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14794894A Expired - Lifetime JP2764007B2 (en) 1994-06-29 1994-06-29 Low yield ratio refractory steel sheet for building with excellent weldability and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2764007B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431850B1 (en) * 1999-12-28 2004-05-20 주식회사 포스코 High strength steel having low yield ratio and method for manufacturing it
JP5407144B2 (en) * 2007-03-09 2014-02-05 Jfeスチール株式会社 Steel material with excellent fatigue crack growth control
JP6177733B2 (en) * 2014-01-28 2017-08-09 株式会社神戸製鋼所 Low yield ratio high-strength steel sheet with large work-hardening ability and excellent uniform elongation and weldability, and its manufacturing method
JP7077802B2 (en) * 2018-06-12 2022-05-31 日本製鉄株式会社 Low yield ratio refractory steel sheet
CN112921242B (en) * 2021-01-25 2022-03-04 广西柳钢华创科技研发有限公司 Q460 grade building steel with low yield ratio and high toughness under air cooling
CN112921241B (en) * 2021-01-25 2022-03-04 广西柳钢华创科技研发有限公司 Production method of Q460 grade building steel with low yield ratio and high toughness under air cooling

Also Published As

Publication number Publication date
JPH0813083A (en) 1996-01-16

Similar Documents

Publication Publication Date Title
JP2008261046A (en) High-tensile steel excellent in weldability and plastic deformability, and cold-formed steel pipe formed therefrom
JP4329583B2 (en) Low yield ratio H-section steel excellent in earthquake resistance and manufacturing method thereof
JP5045073B2 (en) Non-tempered high-tensile steel plate with low yield ratio and method for producing the same
JP5045074B2 (en) High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof
JP2006274388A (en) HIGH TENSILE STRENGTH STEEL SHEET SATISFYING YIELD STRENGTH OF >=650 MPa AND HAVING LOW ACOUSTIC ANISOTROPY, AND METHOD FOR PRODUCING THE SAME
JP3247908B2 (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP2764007B2 (en) Low yield ratio refractory steel sheet for building with excellent weldability and method of manufacturing the same
JP4848960B2 (en) Thin-walled low-yield-ratio high-tensile steel plate and method for producing the same
JP2009256780A (en) 780 MPa CLASS LOW YIELD RATIO CIRCULAR STEEL PIPE FOR BUILDING STRUCTURE HAVING EXCELLENT EARTHQUAKE RESISTANCE, AND METHOD FOR PRODUCING THE SAME
JP3812488B2 (en) High-strength steel with excellent workability and material uniformity and method for producing the same
JP2011208213A (en) Low-yield ratio high-tensile strength thick steel plate having excellent weld crack resistance and weld heat-affected zone toughness
JPS5952687B2 (en) Manufacturing method of tempered high-strength steel plate with excellent low-temperature toughness
JP3371744B2 (en) Low yield ratio steel material and method of manufacturing the same
JP2001247930A (en) Rolled shape steel excellent in earthquake resistance and fire resistance and its producing method
JP2828755B2 (en) Manufacturing method of low yield ratio 80 ▲ kgff / ▲ mm ▼▼ 2 上 class steel sheet with excellent weldability
JPH05117745A (en) Production of 490n/mm2 class weather resistant refractory steel products for building structural purpose
JPH05112823A (en) Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint
JP2001294984A (en) Fire resistant rolled steel and its producing method
JP3877028B2 (en) Manufacturing method of thick steel plate with excellent strength, toughness and weldability
JPH06264136A (en) Production of thick-walled refractory steel with low yield ratio for construction use, excellent in weldability
JPH08283836A (en) Production of steel excellent in weldability and acoustic anisotropy
JP2001214244A (en) Rolled wide flange shape excellent in earthquake resistance and producing method therefor
JPH08209294A (en) Low yield ratio-type steel plate having above 590n/square mm tensile strength excellent in weld crack resistance and its production
JPH07207336A (en) Production of refractory steel products for building structural purpose
JPH08333626A (en) Production of thick steel plate excellent in weldability, acoustic anisotropy, and large heat input welded joint characteristic

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 16

EXPY Cancellation because of completion of term