JP2005272949A - Rolled h-section steel with low yield ratio superior in fire resistance, and manufacturing method therefor - Google Patents

Rolled h-section steel with low yield ratio superior in fire resistance, and manufacturing method therefor Download PDF

Info

Publication number
JP2005272949A
JP2005272949A JP2004089133A JP2004089133A JP2005272949A JP 2005272949 A JP2005272949 A JP 2005272949A JP 2004089133 A JP2004089133 A JP 2004089133A JP 2004089133 A JP2004089133 A JP 2004089133A JP 2005272949 A JP2005272949 A JP 2005272949A
Authority
JP
Japan
Prior art keywords
less
rolled
section steel
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004089133A
Other languages
Japanese (ja)
Other versions
JP4631299B2 (en
Inventor
Tatsumi Kimura
達巳 木村
Toshiyuki Hoshino
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004089133A priority Critical patent/JP4631299B2/en
Publication of JP2005272949A publication Critical patent/JP2005272949A/en
Application granted granted Critical
Publication of JP4631299B2 publication Critical patent/JP4631299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolled H-section steel having a low yield ratio and superior fire resistance, and to provide a manufacturing method therefor. <P>SOLUTION: The rolled H-section steel has a composition comprising 0.10-1.0% Mo, preferably, 0.01-0.20% C, 0.6% or less Si, 0.05-1.6% Mn and 0.1% or less Al. The manufacturing method comprises reheating a base steel material having the above composition to 1,000 to 1,350°C; hot-rolling it at a finishing temperature not lower than the Ar<SB>3</SB>transformation temperature to obtain the H-section steel; subsequently cooling the outer or inner surface of a flange to a cooling-stopping temperature in the range of 100 to 650°C with an average cooling rate of 5 to 80°C/s; then stopping cooling; and recuperating it to 200 to 700°C. Thereby, the rolled H-section steel has a flange of which the inner or outer surface layer has a hard layer thereon and the rest surface layer has a soft layer thereon, of which the soft layer includes ferrite with an average particle diameter of 5 to 40 μm, and which has a structure containing a hard phase of 20 to 80% by a volume fraction by an average value in a flange thickness direction; has such a hot strength as to show a yield strength of 176 MPa or higher at 600°C while maintaining a low yield ratio of 80% or lower; and consequently shows superior fire resistance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建築構造物に多用されている熱間圧延製H形鋼およびその製造方法に係り、とくに、低降伏比化と耐火性の向上に関する。なお、本発明が対象とする圧延H形鋼は、
引張強さが400MPa級以上の圧延H形鋼で、内法一定であるJISサイズの圧延H形鋼のほかに、外法一定の圧延H形鋼やウェブ薄肉圧延H形鋼をも含むものとする。
The present invention relates to a hot-rolled H-section steel frequently used in building structures and a method for producing the same, and more particularly to a reduction in yield ratio and improvement in fire resistance. Note that the rolled H-section steel targeted by the present invention is
It is a rolled H-section steel with a tensile strength of 400 MPa or more, and includes a rolled H-section steel with a constant outer method and a rolled thin H-section steel with a constant outer method, as well as a rolled H-section steel with a constant outer method.

近年の巨大地震による建築構造物の重大被害の発生に鑑み、構造物の更なる安全性向上が要求されている。   In view of the occurrence of serious damage to building structures due to recent large earthquakes, further improvements in the safety of structures are required.

構造部材を塑性化して地震エネルギーを吸収させ、構造物の安全性を向上させるという観点からは、降伏比の低い鋼材が求められている。また、例えば建築構造物の梁材に適用する鋼材の降伏強度のばらつきが大きい場合には、柱材を必要以上に厚肉化(あるいは高強度化)する必要があり安全性や経済性の観点から不利になる。このため、構造物としての安全性や経済性を高めるという観点から、降伏強度のばらつき範囲を小さくした鋼材が要求されている。   From the viewpoint of plasticizing a structural member to absorb seismic energy and improving the safety of the structure, a steel material having a low yield ratio is required. In addition, for example, when the variation in the yield strength of steel applied to the beam of a building structure is large, it is necessary to thicken (or increase the strength of) the column material more than necessary, from the viewpoint of safety and economy. Is disadvantageous. For this reason, from the viewpoint of improving safety and economic efficiency as a structure, a steel material having a reduced yield strength variation range is required.

このような状況から、1998年に、降伏強度(YS)の範囲が120MPa以下とYSのばらつき範囲が狭く、さらに降伏比(YR)が80%以下とYRが低い、狭YS、低YRの建築構造用鋼材が、JIS規格として制定された。   Under such circumstances, in 1998, the yield strength (YS) range was 120MPa or less, the variation range of YS was narrow, and the yield ratio (YR) was 80% or less, YR was low, narrow YS, low YR architecture. Structural steel was established as a JIS standard.

一方、脆性的な破壊が生じるような場合には、上記したような鋼材の弾性能・塑性能を十分発揮することなく建築構造物が倒壊する恐れがある。このため、母材靭性はもちろん溶接部靭性にも優れた鋼材が要求されている。近年の柱−梁の構造物を想定した載荷試験研究から、梁端溶接部も含めて、靭性は70J以上必要であることが明らかになっている。   On the other hand, when brittle fracture occurs, the building structure may collapse without fully exhibiting the elastic performance and plastic performance of the steel material as described above. For this reason, the steel material excellent also in weld part toughness as well as base material toughness is requested | required. From recent loading test studies assuming column-beam structures, it has become clear that toughness is required to be 70 J or higher, including welds at beam ends.

圧延H形鋼は、主として溶接構造物の構造材料、とくに建築構造物の梁材として多用されている。そのため、圧延H形鋼においても、YSのばらつき範囲が狭いこと(狭YS)、YRが低いこと(低YR)、および溶接熱影響部(HAZ)も含めた靭性が優れていることが要求されている。   Rolled H-section steel is mainly used as a structural material for welded structures, particularly as a beam for building structures. Therefore, the rolled H-section steel is also required to have excellent toughness including a narrow variation range of YS (narrow YS), low YR (low YR), and weld heat affected zone (HAZ). ing.

一般的に、HAZについては、酸化物、窒化物あるいは硫化物(あるいはこれらの複合系)などの微細介在物を利用してHAZの結晶粒の微細化を図るとともに、低炭素当量化し、合金元素を選択して添加することにより靭性向上が図られている。   In general, HAZ uses fine inclusions such as oxides, nitrides and sulfides (or their composites) to refine HAZ crystal grains and lower the carbon equivalent, thereby reducing alloy elements. By selecting and adding, toughness is improved.

また、鋼材の強度については、従来から知られている、固溶強化型元素による固溶強化、析出強化型元素の添加による析出強化、硬質相の分散による分散強化などの手法による強化や、制御圧延や制御冷却あるいは焼入れ−焼戻し処理等による、結晶粒微細化、変態などの組織制御による強化、などの強化方法を適宜組合わせて、強度増加が図られてきた。   In addition, the strength of steel materials can be controlled by conventional methods such as solid solution strengthening by solid solution strengthening elements, precipitation strengthening by adding precipitation strengthening elements, dispersion strengthening by dispersing hard phases, and control. Strength has been increased by appropriately combining strengthening methods such as grain refinement and strengthening by microstructure control such as transformation by rolling, controlled cooling or quenching-tempering treatment.

しかし、多様な形状を圧延ままで製造するH形鋼では、熱応力差に起因したフランジ反り、ウエブ波、ねじれ等の変形に対する配慮も必要なため、このような従来技術を組合わせただけでは、上記した要求特性を満足する圧延H形鋼を製造することは容易ではない。   However, in H-section steel manufactured in various shapes as rolled, it is necessary to consider deformation such as flange warpage, web waves and torsion caused by thermal stress differences. It is not easy to produce a rolled H-section steel that satisfies the above required characteristics.

このような問題に対し、例えば、特許文献1には、形鋼の降伏点範囲を保証した耐震性能に優れた降伏点制御圧延形鋼が提案されている。特許文献1に記載された技術は、C、Si、Mn、P、S、N、Alを適正範囲に調整し、S、Ca、Mg、REMの関係式であるΔS量を−0.005〜0.010%範囲内になるようにCa、Mg、REMを添加した溶鋼を鋳造し、凝固温度から900℃間を徐冷して、Al系複酸化物、MnS、Al系複酸化物とMnSとの複合酸化物の総数を20個/mm以下分散させた鋳片とし、該鋳片を加熱し900℃以下で20%以上圧下する熱間圧延で圧延形鋼とするものである。これにより、80%以下の低降伏比と、狭YPで耐ラメラティア性を有する建築用形鋼となるとしている。 For such a problem, for example, Patent Document 1 proposes a yield point controlled rolled shape steel excellent in earthquake resistance that guarantees the yield point range of the shape steel. The technique described in Patent Document 1 adjusts C, Si, Mn, P, S, N, and Al to an appropriate range, and sets the ΔS amount that is a relational expression of S, Ca, Mg, and REM to −0.005 to 0.010%. Cast molten steel to which Ca, Mg, and REM are added so as to be within the range, and gradually cool between 900 ° C from the solidification temperature to composite oxidation of Al-based double oxide, MnS, Al-based double oxide and MnS A slab in which the total number of objects is dispersed at 20 pieces / mm 2 or less is formed, and the slab is heated to form a rolled section steel by hot rolling at 20 ° C. or less at 900 ° C. or less. As a result, it is said that it will be a structural steel having a low yield ratio of 80% or less and a narrow YP and lamellar resistance.

また、特許文献2には、フランジ水冷と制御圧延を利用した、低炭素当量圧延形鋼の製造方法が提案されている。特許文献2に記載された技術は、低炭素当量組成の鋼片を1100〜1300℃に加熱し圧延を開始して、中間圧延工程のリバース圧延のパス間でフランジを表層部の温度で750℃以下まで水冷し、かつ複熱過程でフランジ表層部の温度が低温γ〜α/γ二相共存温度域で圧延する工程を1回以上繰返し、フランジの圧延平均温度が950℃以下で総圧下量で20%以上圧下し、圧延終了後フランジ厚みに応じた冷却速度で冷却し圧延形鋼を得るというものである。   Patent Document 2 proposes a method for producing a low carbon equivalent rolled shape steel using flange water cooling and controlled rolling. In the technique described in Patent Document 2, a steel piece having a low carbon equivalent composition is heated to 1100 to 1300 ° C. to start rolling, and the flange is 750 ° C. at the surface layer temperature between the reverse rolling passes in the intermediate rolling process. Repeat the process of water cooling to the following and rolling in the double-heated process at the flange surface layer temperature in the low temperature γ to α / γ two-phase coexistence temperature range one or more times, and the total rolling reduction when the average rolling temperature of the flange is 950 ° C or less The rolling is reduced by 20% or more and cooled at a cooling rate corresponding to the flange thickness after rolling to obtain a rolled steel.

また、特許文献3には、フランジ内外面およびウェブ上下面の冷却復熱と熱間圧延とを組合わせた、板厚が40mmを超えるH形鋼の製造方法が提案されている。特許文献3に記載された技術は、フランジ内外面およびウェブ上下面の表層部をMs点直上まで冷却し直に粗圧延する工程を2回以上繰返し、その後被圧延材の表層部をMs点直上まで冷却し復熱する工程を1回以上実施し、表層温度を750℃以上として仕上圧延を施し、仕上圧延後にさらにMs点直上まで冷却し復熱する工程を1回以上繰り返すというものである。これにより、制御圧延等の複雑な工程を必要とせずに、高強度、高靭性化が可能であるとしている。   Patent Document 3 proposes a method for producing an H-section steel having a plate thickness exceeding 40 mm, which is a combination of cooling recuperation of the inner and outer surfaces of the flange and the upper and lower surfaces of the web and hot rolling. The technique described in Patent Document 3 repeats the process of cooling and rough rolling the inner and outer surfaces of the flange and the upper and lower surfaces of the web to the position just above the Ms point twice or more, and then bringing the surface layer of the material to be rolled directly above the Ms point. The process of cooling and reheating to 1 or more times is performed, finish rolling is performed with the surface layer temperature set to 750 ° C. or more, and the process of cooling to the point just above the Ms point and reheating after the finish rolling is repeated once or more. Thus, high strength and high toughness can be achieved without requiring a complicated process such as controlled rolling.

しかしながら、特許文献1、特許文献2、特許文献3に記載された技術はいずれも、鋼材の板厚方向を均一な組織に制御するという考え方を基本としたものであり、その結果、複雑な鋳造工程を必要とし鋳片の生産能率が低下すること、また圧延中水冷によりフェライト変態が促進され高強度が得にくいこと、また必要以上に合金添加を伴い溶接熱影響部(HAZ)靭性を低下させること、圧延、冷却停止温度が低温化し、生産能率や延性を阻害すること、あるいは熱処理工程が必要になることによるリードタイムの増大などの問題が依然として残されたままとなっていた。   However, the techniques described in Patent Document 1, Patent Document 2, and Patent Document 3 are all based on the idea of controlling the thickness direction of the steel material to a uniform structure, and as a result, complex casting The production efficiency of slabs is reduced due to the need for processes, the ferrite transformation is promoted by water cooling during rolling and high strength is difficult to obtain, and the weld heat-affected zone (HAZ) toughness is reduced by adding alloys more than necessary. In addition, problems such as an increase in lead time due to a decrease in rolling and cooling stop temperatures, hindering production efficiency and ductility, or a need for a heat treatment process still remain.

また、鉄骨建築構造物では、火災時の温度上昇に伴う構造部材の強度低下による構造物の崩壊を防止するために、構造部材には耐火被覆が施されている。しかし、この耐火被覆は、建築コストの高騰や、施工期間の長期化を招くため、耐火被覆の低減や無被覆化が要望されている。耐火被覆の低減や無被覆化のためには、使用する鋼材を高温強度の高い鋼材とする必要があり、高温強度の高い、すなわち、耐火性に優れた建築構造用鋼材が要望されている。
このような要望に対し、例えば、特許文献4には、MoおよびNb等を添加し、耐火性を向上させた鋼材が提案されている。
特許第2965813号公報 特許第2837056号公報 特許第3231444号公報 特公平4−50362号公報
Moreover, in a steel structure building structure, in order to prevent the structure member from collapsing due to a decrease in strength of the structural member due to a temperature rise during a fire, the structural member is provided with a fireproof coating. However, since this fireproof coating leads to a rise in construction costs and a prolonged construction period, there is a demand for reduction in fireproof coating and non-covering. In order to reduce the fireproof coating or to make it uncoated, it is necessary to use a steel material having high high-temperature strength, and there is a demand for a steel material for building structures having high high-temperature strength, that is, excellent fire resistance.
In response to such a demand, for example, Patent Document 4 proposes a steel material in which Mo and Nb are added to improve fire resistance.
Japanese Patent No. 2965813 Japanese Patent No. 2837056 Japanese Patent No. 3231444 Japanese Patent Publication No. 4-50362

耐火性の向上には、特許文献4に開示されるように、鋼中へMoを初めとし、さらにはNb、Vといった炭化物形成元素を添加し、火災時、高温に加熱された際に、炭化物等の微細析出物を析出させ、高温耐力を向上させることを基本とする方法が採用されている。また、これら炭化物等の微細析出物が転位上に析出しやすいことから、フェライトを主体とする組織よりも転位密度が高いベイナイトを主体とする組織あるいはマルテンサイトを主体とする組織にすることが、高温耐力向上に有効であるといわれている。   To improve the fire resistance, as disclosed in Patent Document 4, when carbide is added to the steel and further carbide forming elements such as Nb and V are added to the steel, the carbides are heated when heated to a high temperature in a fire. A method based on precipitating fine precipitates such as the above and improving high-temperature proof stress is employed. Further, since fine precipitates such as these carbides are likely to precipitate on dislocations, to make the structure mainly composed of bainite or martensite mainly having a dislocation density higher than the structure mainly composed of ferrite, It is said to be effective for improving high-temperature proof stress.

しかしながら、ベイナイトを主体とする組織、あるいはさらに一部マルテンサイトを含むベイナイト主体組織とすると、常温耐力および引張強さが上昇する。このため、このようなH形鋼を梁へ適用する場合には、構造物を支える柱材には、建築構造上、梁材に負けない高い常温耐力および引張強さの耐火鋼あるいは厚肉材が必要となり、経済的に不利となる。また、ベイナイトを主体とする組織または一部マルテンサイトを含むベイナイト主体組織では、降伏比が高くなり、さらに延性が低下し、梁材として耐震性が低下するという問題があった。   However, when a bainite-based structure including bainite as a main component, or a bainite-based structure including a part of martensite, normal temperature proof stress and tensile strength increase. For this reason, when such H-shaped steel is applied to a beam, the pillar material that supports the structure is a fire-resistant steel or thick-walled material having a high normal temperature proof stress and tensile strength that is comparable to the beam material in terms of the building structure. Is necessary, which is economically disadvantageous. Moreover, in a bainite-based structure containing bainite as a main component or partially containing martensite, there is a problem that the yield ratio is high, ductility is further decreased, and the earthquake resistance as a beam material is decreased.

本発明は、上記した従来技術の問題を解決し、引張強さが400MPa以上で、かつ降伏比が80%以下と低く、耐震性に優れるとともに、耐火性にも優れた低降伏比圧延H形鋼およびその製造方法を提供することを目的とする。なお、ここで言う「耐火性に優れた」とは、600℃における耐力YS600が設計基準強度F値(常温降伏強さに相当)の3/4以上である場合をいうものとする。したがって、F値が235MPaの場合には、YS600が176MPa以上である。 The present invention solves the above-mentioned problems of the prior art, has a tensile strength of 400 MPa or more and a yield ratio as low as 80% or less, is excellent in earthquake resistance, and has a low yield ratio rolled H type excellent in fire resistance. It aims at providing steel and its manufacturing method. Here, “excellent in fire resistance” refers to a case where the proof stress YS 600 at 600 ° C. is 3/4 or more of the design reference strength F value (corresponding to room temperature yield strength). Therefore, when the F value is 235 MPa, YS 600 is 176 MPa or more.

本発明者らは、上記した課題を達成するために、低降伏比を有し、常温耐力および引張強さを必要以上に上昇させることなく耐火性を向上させる方策について鋭意検討した。その結果、炭化物形成元素であるMoを必須含有する組成とし、フランジ内外面の一方の表層が体積率で50%以上のベイナイトおよび/または焼戻しマルテンサイトを含む硬質層からなり、他方の表層が体積率で50%以上のフェライトを含む軟質層からなる、フランジ板厚方向に変化した組織とすることにより、常温耐力の上昇を抑制でき80%以下の低降伏比を確保するとともに、所望の耐火性を確保することができることを見出した。   In order to achieve the above-mentioned problems, the present inventors diligently studied a method for improving fire resistance without increasing the room temperature proof stress and tensile strength more than necessary, having a low yield ratio. As a result, a composition containing Mo, which is a carbide forming element, is essential, and one surface layer of the inner and outer surfaces of the flange is a hard layer containing bainite and / or tempered martensite with a volume ratio of 50% or more, and the other surface layer has a volume. By making the structure made of a soft layer containing ferrite at a rate of 50% or more and changing in the thickness direction of the flange plate, an increase in normal temperature proof stress can be suppressed and a low yield ratio of 80% or less can be secured, and the desired fire resistance It was found that can be secured.

まず、本発明の基礎となった実験について説明する。   First, an experiment that is the basis of the present invention will be described.

表1に示す組成の鋼素材aを用いて、熱間圧延条件、および圧延後の冷却条件を変化させてベイナイト相、マルテンサイト相分率が種々変化した組織を有する鋼板を作製した。一部の鋼板については、圧延後の冷却を片面のみから行った。片面のみから冷却した鋼板では、冷却側の表層はベイナイト主体の組織、非冷却側の表層はフェライト主体の組織となり、板厚方向に変化した組織となっている。両面から冷却した場合には板厚方向にほぼ均一な組織を呈している。   Using the steel material a having the composition shown in Table 1, hot rolling conditions and cooling conditions after rolling were changed to produce steel sheets having structures in which the bainite phase and martensite phase fractions were variously changed. About some steel plates, cooling after rolling was performed only from one side. In a steel sheet cooled from only one side, the surface layer on the cooling side has a bainite-based structure, and the surface layer on the non-cooling side has a structure mainly composed of ferrite, and has a structure that changes in the thickness direction. When cooled from both sides, a substantially uniform structure is exhibited in the thickness direction.

Figure 2005272949
Figure 2005272949

つぎに、得られた鋼板について、室温および600℃における引張試験を実施して、室温耐力YSRTおよび600℃の耐力YS600を求めた。なお、片面のみから冷却した鋼板については、全厚で引張試験した。また、600℃における耐力YS600は600℃に加熱し15min保持した後に引張試験を実施し求めた。 Next, the obtained steel sheet was subjected to a tensile test at room temperature and 600 ° C. to obtain a room temperature yield strength YS RT and a yield strength YS 600 of 600 ° C. In addition, about the steel plate cooled only from one side, the tension test was carried out by full thickness. The yield strength YS 600 at 600 ° C. was obtained by heating to 600 ° C. and holding for 15 minutes, and then conducting a tensile test.

また、得られた鋼板について、組織を観察し、組織中のベイナイトおよびマルテンサイト量を、板厚方向各位置(表面、1/4t、1/2t、3/4t、裏面)で測定し、得られた各位置の量(体積率)を平均して該鋼板のベイナイトおよびマルテンサイト分率(体積%)、平均硬質相分率とした。   In addition, the structure of the obtained steel sheet was observed, and the amount of bainite and martensite in the structure was measured at each position in the plate thickness direction (front surface, 1 / 4t, 1 / 2t, 3 / 4t, back surface). The amount (volume ratio) of each position obtained was averaged to obtain the bainite and martensite fraction (volume%) and the average hard phase fraction of the steel sheet.

また、一部の鋼板を用いて、600℃に加熱し所定時間(30min)保持したのち、急冷し、抽出残渣法で析出Mo量を測定し、600℃加熱時の析出Mo量とした。   In addition, some steel plates were heated to 600 ° C. and held for a predetermined time (30 min), and then rapidly cooled, and the amount of precipitated Mo was measured by the extraction residue method to obtain the amount of precipitated Mo when heated at 600 ° C.

得られた結果を、析出Mo量と平均硬質相分率との関係で図1に、耐力YSと平均硬質相分率との関係で図2に示す。   The obtained results are shown in FIG. 1 in terms of the relationship between the amount of precipitated Mo and the average hard phase fraction, and in FIG. 2 in terms of the relationship between the yield strength YS and the average hard phase fraction.

図1と図2から、ベイナイトおよびマルテンサイト分率(平均硬質相分率)の増加に伴い、600℃加熱時の析出Mo量が増加し、その結果、600℃における耐力(YS600 )が上昇するが、室温耐力(YSRT)も上昇することがわかる。しかし、圧延後の冷却を片面のみから行った場合(☆印)では、室温耐力(YSRT)の上昇が両面から冷却した場合にくらべて抑制され、一方、600℃における耐力(YS600 )の低下はほとんどない。 1 and 2, as the bainite and martensite fraction (average hard phase fraction) increases, the amount of precipitated Mo during heating at 600 ° C increases, resulting in an increase in yield strength (YS 600 ) at 600 ° C. However, it can be seen that the room temperature yield strength (YS RT ) also increases. However, when cooling after rolling is performed from only one side (marked with ☆), the increase in room temperature proof stress (YS RT ) is suppressed compared to cooling from both sides, while the proof stress at 600 ° C (YS 600 ) is reduced. There is almost no decline.

すなわち、フランジ内外面の一方の表層をベイナイトおよび/またはマルテンサイトを主体とする硬質層とし、他方の表層をフェライトを主体とする軟質層とすることにより、非冷却側の軟質層の存在により室温耐力の上昇を抑制しながら、冷却側の硬質層で転位密度の高いベイナイトあるいはマルテンサイト中への炭化物の析出促進を図ることができ、高温耐力が上昇し耐火性を向上させることが可能であることを見出した。   That is, one surface layer on the inner and outer surfaces of the flange is a hard layer mainly composed of bainite and / or martensite, and the other surface layer is a soft layer mainly composed of ferrite. While suppressing an increase in yield strength, it is possible to promote precipitation of carbides in bainite or martensite having a high dislocation density in the hard layer on the cooling side, and it is possible to increase the high temperature yield strength and improve fire resistance. I found out.

本発明は、上記した知見に基づいて、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎの通りである。
(1)熱間圧延により製造された圧延H形鋼であって、mass%でMo:0.10〜1.0%を含有する組成を有し、かつ該圧延H形鋼のフランジ内外面の一方の表層が体積率で50%以上のベイナイトおよび/または焼戻しマルテンサイトを含む硬質層からなり、他方の表層が体積率で50%以上のフェライトを含む軟質層からなり、前記軟質層側のフェライトの平均粒径が5〜40μmで、かつフランジ板厚方向の平均値で、前記ベイナイトおよび/または焼戻しマルテンサイトを体積率で20〜80%含む組織を有し、600℃での耐力が176MPa以上であることを特徴とする耐火性に優れた低降伏比圧延H形鋼。
(2)(1)において、前記組成が、mass%で、C:0.01〜0.20%、Si:0.6%以下、Mn:0.05〜1.6%、P:0.030%以下、S:0.030%以下、Al:0.1%以下、Mo:0.10〜1.0%を含み、残部がFeおよび不可避的不純物からなる組成であることを特徴とする低降伏比圧延H形鋼。
(3)(2)において、前記組成に加えてさらに、mass%で、Cu:1%以下、Ni:3%以下のうちから選ばれた1種または2種を含有することを特徴とする低降伏比圧延H形鋼。
(4)(2)または(3)において、前記組成に加えてさらに、mass%で、Cr:3%以下、V:0.3%以下、Nb:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有することを特徴とする低降伏比圧延H形鋼。
(5)(2)ないし(4)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ti:0.1%以下、Ca:0.1%以下、Mg:0.1%以下、Zr:0.1%以下、Hf:0.1%以下、REM:0.1%以下のうちから選ばれた1種または2種以上を含有することを特徴とする低降伏比圧延H形鋼。
(6)mass%で、C:0.01〜0.20%、Si:0.6%以下、Mn:0.05〜1.6%、P:0.030%以下、S:0.030%以下、Al:0.1%以下、Mo:0.10〜1.0%を含む組成の鋼素材を、1000〜1350℃に再加熱したのち、熱間圧延終了温度を次(1)式
Ar(℃)=910−273C+25Si−74Mn−56Ni−16Cr−9Mo−5Cu−1620Nb ……(1)
(ここで、C、Si、Mn、Ni、Cr、Mo、Cu、Nb:各元素の含有量(mass%))
で定義されるAr変態点(℃)以上とする孔型圧延およびユニバーサル圧延により所定形状のH形鋼にする熱間圧延工程を行い、ついで、フランジ外面またはフランジ内面を5〜80℃/sの平均冷却速度で、冷却面の表面温度で100〜650℃の範囲の冷却停止温度まで冷却したのち冷却を停止し、該表面温度で200〜700℃の温度まで復熱させる冷却復熱処理を施すことを特徴とする耐火性に優れた低降伏比圧延H形鋼の製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) A rolled H-section steel produced by hot rolling, having a composition containing Mo: 0.10 to 1.0% in mass%, and one surface layer of the flange inner and outer surfaces of the rolled H-section steel It consists of a hard layer containing bainite and / or tempered martensite with a volume ratio of 50% or more, and the other surface layer consists of a soft layer containing ferrite with a volume ratio of 50% or more. The average particle diameter of ferrite on the soft layer side Having a structure containing 20 to 80% by volume of the bainite and / or tempered martensite with an average value in the flange plate thickness direction of 5 to 40 μm, and a proof stress at 600 ° C. of 176 MPa or more. Low yield ratio rolled H-section steel with excellent fire resistance.
(2) In (1), the composition is mass%, C: 0.01 to 0.20%, Si: 0.6% or less, Mn: 0.05 to 1.6%, P: 0.030% or less, S: 0.030% or less, Al: A low yield ratio rolled H-section steel comprising 0.1% or less, Mo: 0.10 to 1.0%, and the balance being composed of Fe and inevitable impurities.
(3) In (2), in addition to the above-mentioned composition, it is further characterized by containing, in mass%, one or two selected from Cu: 1% or less and Ni: 3% or less Yield ratio rolled H-section steel.
(4) In (2) or (3), in addition to the above composition, it is further selected from mass%, Cr: 3% or less, V: 0.3% or less, Nb: 0.1% or less, B: 0.01% or less A low yield ratio rolled H-section steel, characterized by containing one or more of them.
(5) In any one of (2) to (4), in addition to the above composition, in mass%, Ti: 0.1% or less, Ca: 0.1% or less, Mg: 0.1% or less, Zr: 0.1% or less, A low yield ratio rolled H-section steel containing one or more selected from Hf: 0.1% or less and REM: 0.1% or less.
(6) In mass%, C: 0.01 to 0.20%, Si: 0.6% or less, Mn: 0.05 to 1.6%, P: 0.030% or less, S: 0.030% or less, Al: 0.1% or less, Mo: 0.10 to 1.0 After reheating the steel material having a composition containing 1% to 1000 to 1350 ° C., the hot rolling finish temperature is expressed by the following formula (1): Ar 3 (° C.) = 910−273C + 25Si−74Mn−56Ni−16Cr−9Mo−5Cu− 1620Nb (1)
(Here, C, Si, Mn, Ni, Cr, Mo, Cu, Nb: content of each element (mass%))
A hot rolling process is carried out to form a H-shaped steel having a predetermined shape by squeeze rolling and universal rolling at an Ar 3 transformation point (° C.) or higher defined by the following, and then the outer surface of the flange or the inner surface of the flange is 5-80 ° C./s. After cooling to the cooling stop temperature in the range of 100 to 650 ° C. at the surface temperature of the cooling surface at the average cooling rate, cooling is stopped, and cooling reheat treatment is performed to reheat to 200 to 700 ° C. at the surface temperature. A method for producing a low yield ratio rolled H-section steel excellent in fire resistance.

本発明によれば、室温耐力の上昇を抑制して低降伏比で耐震性に優れ、かつ高温耐力を向上させて耐火性にも優れた低降伏比圧延H形鋼を容易に製造することができ、産業上格段の効果を奏する。また、本発明によれば、構造物の信頼性が格段に向上するとともに、必要以上に柱材の強度や板厚を高くすることも不要となり経済的に有利になるという効果もある。   According to the present invention, it is possible to easily produce a low yield ratio rolled H-section steel that suppresses an increase in room temperature yield strength and is excellent in earthquake resistance at a low yield ratio, and that is improved in high temperature yield strength and excellent in fire resistance. Yes, and it has a remarkable industrial effect. In addition, according to the present invention, the reliability of the structure is remarkably improved, and it is unnecessary to increase the strength and thickness of the column material more than necessary, which is advantageous in terms of economy.

まず本発明圧延H形鋼の組織限定理由について説明する。   First, the reason for limiting the structure of the rolled H-section steel of the present invention will be described.

本発明の圧延H形鋼は、フランジ内外面の一方の表層が硬質層から、他方の表層が軟質層からなる組織を有する。なお、ここでいう「硬質層」とは、硬質相であるベイナイトおよび/または焼戻しマルテンサイトを、硬質層全体に対する体積率で50%以上含む層をいうものとする。なお、硬質層には、ベイナイトおよび/または焼戻しマルテンサイト以外に硬質層全体に対する体積率で50%以下のフェライト相、パーライト相を含んでも何ら問題はない。また、「軟質層」とは、軟質相であるフェライトを軟質層全体に対する体積率で50%以上含む層をいうものとする。なお、軟質層には、フェライト相以外に、パーライト相、ベイナイト相、焼戻しマルテンサイト相を軟質層全体に対する体積率で50%以下含んでも何ら問題ない。
フランジの一方の表層を硬質層とし、他方の表層を軟質層とすることにより、図2に示したように、室温耐力の上昇を抑制し低降伏比を維持しながら、容易に高い高温耐力を確保できる。
The rolled H-section steel of the present invention has a structure in which one surface layer of the inner and outer surfaces of the flange is a hard layer and the other surface layer is a soft layer. Here, the “hard layer” refers to a layer containing bainite and / or tempered martensite which are hard phases in a volume ratio of 50% or more with respect to the entire hard layer. In addition to the bainite and / or tempered martensite, there is no problem even if the hard layer contains a ferrite phase and a pearlite phase having a volume ratio of 50% or less with respect to the entire hard layer. The “soft layer” refers to a layer containing 50% or more by volume of the soft phase ferrite with respect to the entire soft layer. In addition to the ferrite phase, the soft layer may contain a pearlite phase, a bainite phase, and a tempered martensite phase in a volume ratio of 50% or less with respect to the entire soft layer.
By forming one surface layer of the flange as a hard layer and the other surface layer as a soft layer, as shown in FIG. 2, it is possible to easily increase the high-temperature resistance while suppressing an increase in room-temperature resistance and maintaining a low yield ratio. It can be secured.

そして、本発明の圧延H形鋼は、フランジが、フランジ板厚方向の平均値で、硬質相であるベイナイトおよび/または焼戻しマルテンサイトを体積率で20〜80%含む組織を有する。フランジ板厚方向のベイナイトおよび/または焼戻しマルテンサイトの平均分率(平均硬質相分率)が、体積率で20%未満では、十分な高温耐力を確保することが困難となる。一方、平均硬質相分率が体積率で80%を超えると、常温耐力および引張強さが増加し延性、靭性が低下する。また、降伏比80%以下の低降伏比を確保できなくなる。このため、平均硬質相分率を体積率で20〜80%に限定した。なお、平均硬質相分率は、板厚方向各位置(表面、板厚1/4t、1/2t、3/4tおよび裏面)で、各5視野以上組織を撮像し、点算出法で硬質相の分率を導出し各位置において平均し、さらに板厚方向で平均した値を使用するものとする。   In the rolled H-section steel of the present invention, the flange has an average value in the thickness direction of the flange plate and has a structure containing 20-80% by volume of bainite and / or tempered martensite which are hard phases. If the average fraction (average hard phase fraction) of bainite and / or tempered martensite in the thickness direction of the flange plate is less than 20% by volume, it is difficult to ensure sufficient high-temperature proof stress. On the other hand, when the average hard phase fraction exceeds 80% by volume, the normal temperature proof stress and the tensile strength increase, and the ductility and toughness decrease. In addition, a low yield ratio of 80% or less cannot be secured. For this reason, the average hard phase fraction was limited to 20 to 80% by volume. The average hard phase fraction is determined by imaging the structure of 5 fields or more at each position in the plate thickness direction (front surface, plate thickness 1 / 4t, 1 / 2t, 3 / 4t, and back surface). , And the average value at each position, and the average value in the thickness direction is used.

また、本発明の圧延H形鋼では、軟質層側に形成されるフェライトを、平均で5〜40μmの粒径を有するフェライトとする。フェライトの平均粒径が5μm未満では、室温耐力が上昇し、80%以下の低降伏比を確保することが難しくなるとともに、延性が低下する。一方、フェライトの平均粒径が40μmを超えると、靭性が劣化する。なお、好ましくは7〜30μmである。ここでは、フェライトの平均粒径の測定は、軟質層内のフェライトについて行なうものとする。     In the rolled H-section steel of the present invention, the ferrite formed on the soft layer side is a ferrite having a particle size of 5 to 40 μm on average. When the average grain size of ferrite is less than 5 μm, the yield strength at room temperature increases, and it becomes difficult to secure a low yield ratio of 80% or less, and the ductility is lowered. On the other hand, if the average particle diameter of ferrite exceeds 40 μm, toughness deteriorates. In addition, Preferably it is 7-30 micrometers. Here, the measurement of the average particle diameter of a ferrite shall be performed about the ferrite in a soft layer.

本発明の圧延H形鋼は、前記組織に加えて、mass%でMo:0.10〜1.0%を含有する組成を有し、さらに好ましくは、mass%で、C:0.01〜0.20%、Si:0.6%以下、Mn:0.05〜1.6%、P:0.030%以下、S:0.030%以下、Al:0.1%以下、Mo:0.10〜1.0%を含み、あるいはさらに、Cu:1%以下、Ni:3%以下のうちから選ばれた1種または2種、および/または、Cr:3%以下、V:0.3%以下、Nb:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上、および/または、Ti:0.1%以下、Ca:0.1%以下、Mg:0.1%以下、Zr:0.1%以下、Hf:0.1%以下、REM:0.1%以下のうちから選ばれた1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる組成を有する。   The rolled H-section steel of the present invention has a composition containing Mo: 0.10 to 1.0% in mass% in addition to the above structure, and more preferably in mass%, C: 0.01 to 0.20%, Si: 0.6 %: Mn: 0.05 to 1.6%, P: 0.030% or less, S: 0.030% or less, Al: 0.1% or less, Mo: 0.10 to 1.0%, or Cu: 1% or less, Ni: 3% One or two selected from the following and / or Cr: 3% or less, V: 0.3% or less, Nb: 0.1% or less, B: 0.01% or less One or more selected from Ti: 0.1% or less, Ca: 0.1% or less, Mg: 0.1% or less, Zr: 0.1% or less, Hf: 0.1% or less, REM: 0.1% or less Or it has 2 or more types, and the remainder has a composition which consists of Fe and an unavoidable impurity.

次に、組成の限定理由について説明する。以下、とくに断らない限り、mass%は単に%で記す。   Next, the reason for limiting the composition will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.

Mo:0.10〜1.0%
Moは、高温強度を上昇させる有効な元素である。本発明では、600℃における耐力が176MPa以上となる優れた耐火性を確保するために、0.10%以上の含有を必要とする。一方、1.0%を超える含有は、溶接性の低下をもたらす。このため、Moは0.10〜1.0%の範囲に限定した。なお、好ましくは0.2〜0.8%である。
Mo: 0.10 to 1.0%
Mo is an effective element that increases the high-temperature strength. In the present invention, the content of 0.10% or more is required in order to ensure excellent fire resistance with a yield strength at 600 ° C. of 176 MPa or more. On the other hand, the content exceeding 1.0% causes a decrease in weldability. For this reason, Mo was limited to the range of 0.10 to 1.0%. In addition, Preferably it is 0.2 to 0.8%.

C:0.01〜0.20%
Cは、圧延H形鋼の強度を増加させる元素であり、所定値以上の強度を確保するために、さらに、高温強度を上昇させるのに有効な特殊炭化物を析出させるために、本発明では0.01%以上の含有を必要とする。一方、0.20%を超える含有は、溶接部、とくに仮付け溶接部など小入熱溶接部を硬化させ、溶接割れを生じる懸念がある。このため、Cは0.01〜0.20%の範囲に限定することが好ましい。なお、より好ましくは、0.02〜0.18%である。
C: 0.01-0.20%
C is an element that increases the strength of the rolled H-section steel. In order to ensure the strength of a predetermined value or more and to precipitate special carbide effective for increasing the high temperature strength, in the present invention, 0.01% is added. % Content is required. On the other hand, if the content exceeds 0.20%, a welded portion, particularly a small heat input welded portion such as a tack welded portion, is hardened and there is a concern that a weld crack will occur. For this reason, C is preferably limited to a range of 0.01 to 0.20%. In addition, More preferably, it is 0.02 to 0.18%.

Si:0.6%以下
Siは、安価でかつ、鋼中に固溶して強度を上昇させるとともに、溶製段階で脱酸剤として作用する元素であり、このような効果を得るためには0.05%以上含有させることが望ましい。一方、0.6%を超える含有は、靭性を低下させる。このために、Siは0.6%以下に限定することが好ましい。
Si: 0.6% or less
Si is an inexpensive element that dissolves in steel to increase strength and acts as a deoxidizer in the melting stage. To obtain such an effect, 0.05% or more should be contained. desirable. On the other hand, the content exceeding 0.6% lowers the toughness. For this reason, it is preferable to limit Si to 0.6% or less.

Mn:0.05〜1.6%
Mnは、Siと同様に、圧延H形鋼の強度向上に有効に作用する元素であり、本発明では0.05%以上含有させることが好ましい。一方、1.6%を超える含有は、溶接性を低下させる。このため、Mnは0.05〜1.6%の範囲に限定することが好ましい。
Mn: 0.05-1.6%
Mn, like Si, is an element that effectively acts to improve the strength of rolled H-section steel, and it is preferably contained in an amount of 0.05% or more in the present invention. On the other hand, if the content exceeds 1.6%, weldability decreases. For this reason, it is preferable to limit Mn to the range of 0.05 to 1.6%.

P:0.030%以下、S:0.030%以下
P、Sは、鋼中に不可避的不純物として存在し、靭性や耐焼戻し脆性などに対して悪影響を及ぼすため、極力低減することが望ましい。しかし、P:0.030%以下、S:0.030%以下であれば、それらの悪影響は小さい。このため、Pは0.030%以下、Sは0.030%以下に限定することが好ましい。
P: 0.030% or less, S: 0.030% or less P and S are present as unavoidable impurities in steel and adversely affect toughness and tempering brittleness, so it is desirable to reduce them as much as possible. However, if P: 0.030% or less and S: 0.030% or less, those adverse effects are small. For this reason, it is preferable to limit P to 0.030% or less and S to 0.030% or less.

Al:0.1%以下
Alは、脱酸剤として作用する元素であり、このような効果を得るためには、0.005%以上含有することが好ましい。一方、0.1%を超える含有は、鋼の清浄性を低下させる。このため、Alは0.1%以下に限定することが好ましい。なお、Siなどの他元素により脱酸処理を行う場合には、無添加でもよく、この場合には不可避的不純物として、0.005%未満の含有となる。
Al: 0.1% or less
Al is an element that acts as a deoxidizer, and in order to obtain such an effect, 0.005% or more is preferably contained. On the other hand, the content exceeding 0.1% lowers the cleanliness of the steel. For this reason, it is preferable to limit Al to 0.1% or less. In addition, when performing a deoxidation process with other elements, such as Si, you may not add, but in this case, it will contain less than 0.005% as an unavoidable impurity.

上記した基本組成に加えて、必要に応じ、さらにCu:1%以下、Ni:3%以下のうちから選ばれた1種または2種、および/または、Cr:3%以下、V:0.3%以下、Nb:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上、および/または、Ti:0.1%以下、Ca:0.1%以下、Mg:0.1%以下、Zr:0.1%以下、Hf:0.1%以下、REM:0.1%以下のうちから選ばれた1種または2種以上を、選択して含有してもよい。なお、上記した成分以外の残部は、Feおよび不可避的不純物である。   In addition to the basic composition described above, if necessary, one or two selected from Cu: 1% or less, Ni: 3% or less, and / or Cr: 3% or less, V: 0.3% Hereinafter, Nb: 0.1% or less, B: One or more selected from 0.01% or less, and / or Ti: 0.1% or less, Ca: 0.1% or less, Mg: 0.1% or less, Zr: One or more selected from 0.1% or less, Hf: 0.1% or less, and REM: 0.1% or less may be selected and contained. The balance other than the components described above is Fe and inevitable impurities.

Cu:1%以下、Ni:3%以下のうちから選ばれた1種または2種
Cu、Niは、固溶強化元素であり、焼入れ性を大きく向上させることなくH形鋼の強度を上昇させることが可能であり、とくに厚肉フランジH形鋼の室温耐力調整に有効であり、必要に応じ選択して含有できる。含有する場合には、Cu:0.05%以上、Ni:0.05%以上含有することが好ましいが、1%を超えるCuの含有は、圧延時の表面割れを助長し、顕著なCu析出脆化も生じる。また、Niは高価な元素であり、3%以下の含有に限定することが好ましい。
One or two selected from Cu: 1% or less, Ni: 3% or less
Cu and Ni are solid solution strengthening elements, which can increase the strength of H-section steel without greatly improving hardenability, and are particularly effective in adjusting the room temperature proof stress of thick-wall flange H-section steel. It can be selected and contained as necessary. If contained, Cu: 0.05% or more, Ni: 0.05% or more is preferable, but inclusion of Cu exceeding 1% promotes surface cracking during rolling and causes significant Cu precipitation embrittlement. . Ni is an expensive element and is preferably limited to 3% or less.

Cr:3%以下、V:0.3%以下、Nb:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上
Cr、V、Nb、Bは、Moと複合して含有することにより、一層の高温強度上昇が期待でき、必要に応じ選択して含有できる。
One or more selected from Cr: 3% or less, V: 0.3% or less, Nb: 0.1% or less, B: 0.01% or less
When Cr, V, Nb, and B are contained in combination with Mo, a further increase in high-temperature strength can be expected, and they can be selected and contained as necessary.

Crは、焼戻し軟化抵抗の向上を介して、高温強度を上昇させる。このような効果は0.1%以上の含有で顕著となる。一方、3%を超える含有は、溶接性を低下させる。このため、Crは3%以下に限定することが好ましい。   Cr increases the high-temperature strength through an improvement in temper softening resistance. Such an effect becomes remarkable when the content is 0.1% or more. On the other hand, the content exceeding 3% lowers the weldability. For this reason, it is preferable to limit Cr to 3% or less.

Nb、Vはともに、Moと同様に炭化物形成能の強い元素であり、高温強度の向上に有効で、それぞれ0.010%以上含有することが好ましい。V、Nbの一部は圧延後の冷却あるいは復熱過程で炭化物として析出し、常温耐力を上昇させる。このため、V:0.3%以下、Nb:0.1%以下に限定することが好ましい。   Both Nb and V are elements having a strong carbide forming ability like Mo and are effective in improving the high temperature strength, and are preferably contained in an amount of 0.010% or more. A part of V and Nb precipitates as carbides in the cooling or recuperation process after rolling, and increases the normal temperature proof stress. For this reason, it is preferable to limit to V: 0.3% or less and Nb: 0.1% or less.

Bは、微量の添加で焼入れ性を向上させる元素であり、圧延後の加速冷却が不十分となる板厚が50mmを超えるような極厚肉フランジの耐火性を向上させる場合に有効に作用する。このためには、0.0003%以上含有することが望ましい。一方、0.01%を超えて含有しても、焼入れ性向上効果は飽和し、含有量に見合う効果を期待できない。このため、Bは0.01%以下に限定することが好ましい。   B is an element that improves hardenability by adding a small amount, and acts effectively when improving the fire resistance of an extremely thick flange having a plate thickness exceeding 50 mm that makes accelerated cooling insufficient after rolling. . For this purpose, it is desirable to contain 0.0003% or more. On the other hand, even if the content exceeds 0.01%, the effect of improving hardenability is saturated and an effect commensurate with the content cannot be expected. For this reason, it is preferable to limit B to 0.01% or less.

Ti:0.1%以下、Ca:0.1%以下、Mg:0.1%以下、Zr:0.1%以下、Hf:0.1%以下、REM:0.1%以下を1種または2種以上
Ti、Ca、Mg、Zr、Hf、REMはいずれも、溶接熱影響部のオーステナイト粒径を微細化させる有効な元素であり、必要に応じ選択して含有できる。一方、それぞれ0.1%を超える過剰な含有は、清浄度を低下し、靭性や延性を低下させる。このため、Ti:0.1%以下、Ca:0.1%以下、Mg:0.1%以下、Zr:0.1%以下、Hf:0.1%以下、REM:0.1%以下に限定することが好ましい。なお、Ti、Ca、Mg、Zr、Hf、REMは、いずれも強い脱酸元素でもあり、SiやAlに代えて脱酸剤として添加することもできる。
Ti: 0.1% or less, Ca: 0.1% or less, Mg: 0.1% or less, Zr: 0.1% or less, Hf: 0.1% or less, REM: 0.1% or less
Ti, Ca, Mg, Zr, Hf, and REM are all effective elements for refining the austenite grain size of the weld heat affected zone, and can be selected and contained as necessary. On the other hand, an excessive content exceeding 0.1% respectively reduces the cleanliness and reduces toughness and ductility. Therefore, it is preferable to limit to Ti: 0.1% or less, Ca: 0.1% or less, Mg: 0.1% or less, Zr: 0.1% or less, Hf: 0.1% or less, and REM: 0.1% or less. Ti, Ca, Mg, Zr, Hf, and REM are all strong deoxidizing elements, and can be added as a deoxidizing agent instead of Si or Al.

つぎに、本発明の圧延H形鋼の好ましい製造方法について説明する。   Below, the preferable manufacturing method of the rolling H-section steel of this invention is demonstrated.

まず、上記した組成の鋼素材を、1000〜1350℃に再加熱したのち、熱間圧延終了温度をAr変態点(℃)以上とする孔型圧延およびユニバーサル圧延により所定形状のH形鋼にする熱間圧延工程を施す。
なお、鋼素材の製造方法は、本発明ではとくに限定しない。通常の溶製方法、鋳造方法がいずれも好適に適用できるが、鋳造方法は連続鋳造法とすることが経済的に有利となる。
First, after reheating the steel material having the above composition to 1000 to 1350 ° C., it is converted into an H-shaped steel having a predetermined shape by hole rolling and universal rolling in which the hot rolling finish temperature is not less than the Ar 3 transformation point (° C.). A hot rolling process is performed.
In addition, the manufacturing method of a steel raw material is not specifically limited in this invention. Both normal melting methods and casting methods can be suitably applied, but it is economically advantageous to use a continuous casting method as the casting method.

鋼素材は、一旦、変形抵抗の低い均一なオーステナイトに変態させるために1000℃以上に再加熱することが好ましい。一方、鋼素材を、1350℃を超えて再加熱すると、酸化が著しくなり、表面疵やスケールロスが増大する危険性が高くなる。このため、鋼素材の再加熱温度は1000〜1350℃の範囲とすることが好ましい。   The steel material is preferably reheated to 1000 ° C. or higher in order to transform it into uniform austenite with low deformation resistance. On the other hand, if the steel material is reheated above 1350 ° C., the oxidation becomes significant and the risk of increasing surface defects and scale loss increases. For this reason, it is preferable to make the reheating temperature of a steel raw material into the range of 1000-1350 degreeC.

加熱された鋼素材は孔型圧延およびユニバーサル圧延により、所定寸法形状のH形鋼とされる。孔型圧延およびユニバーサル圧延は、熱間圧延終了温度をAr変態点以上の温度とすることが好ましい。熱間圧延終了温度がAr変態点未満では、その後のフランジ水冷却面側にフェライトが析出するために耐火性が低下する。このため、熱間圧延終了温度をAr変態点以上に限定することが好ましい。なお、より好ましくは、(Ar変態点+20℃)〜950℃の範囲である。なお、Ar変態点は、次(1)式
Ar(℃)=910−273C+25Si−74Mn−56Ni−16Cr−9Mo−5Cu−1620Nb ……(1)
(ここで、C、Si、Mn、Ni、Cr、Mo、Cu、Nb:各元素の含有量(mass%))
で定義される。
The heated steel material is made into an H-shaped steel having a predetermined size and shape by hole rolling and universal rolling. In the hole rolling and universal rolling, it is preferable that the hot rolling end temperature is a temperature equal to or higher than the Ar 3 transformation point. If the hot rolling end temperature is less than the Ar 3 transformation point, the ferrite is precipitated on the subsequent flange water cooling surface side, so that the fire resistance is lowered. For this reason, it is preferable to limit the hot rolling end temperature to the Ar 3 transformation point or higher. Incidentally, more preferably in the range of (Ar 3 transformation point + 20 ℃) ~950 ℃. The Ar 3 transformation point is the following formula (1): Ar 3 (° C.) = 910−273C + 25Si−74Mn−56Ni−16Cr−9Mo−5Cu−1620Nb (1)
(Here, C, Si, Mn, Ni, Cr, Mo, Cu, Nb: content of each element (mass%))
Defined by

ついで、熱間圧延工程を終了したH形鋼に、熱間圧延終了後、冷却復熱処理を施す。   Subsequently, after the hot rolling, the H-shaped steel that has finished the hot rolling process is subjected to a cooling reheat treatment.

冷却復熱処理は、好ましくは(Ar変態点−100℃)以上の温度から、フランジ外面またはフランジ内面を5〜80℃/sの平均冷却速度で、冷却面の表面温度で100〜650℃の範囲の冷却停止温度まで冷却したのち冷却を停止し、該表面温度で200〜700℃の温度まで復熱させる処理とすることが好ましい。 The cooling heat treatment is preferably performed at a temperature of (Ar 3 transformation point −100 ° C.) or higher, at an average cooling rate of 5 to 80 ° C./s on the flange outer surface or the flange inner surface, and a surface temperature of the cooling surface of 100 to 650 ° C. After cooling to a cooling stop temperature in the range, it is preferable to stop the cooling and reheat to a temperature of 200 to 700 ° C. at the surface temperature.

本発明では、フランジ内外面の内の一方から水冷を用いた加速冷却とするのが望ましい。これにより、水冷面側を転位密度の高いベイナイトおよび/またはマルテンサイトを主体とする硬質層とし耐火性を向上させ、一方、非水冷面側を軟質なフェライト相を主体とする軟質層とし常温耐力および常温引張強さを必要以上に上昇することを抑制することができる。   In the present invention, it is desirable to perform accelerated cooling using water cooling from one of the inner and outer surfaces of the flange. This makes the water-cooled surface side a hard layer mainly composed of bainite and / or martensite having a high dislocation density and improves the fire resistance, while the non-water-cooled surface side is a soft layer mainly composed of a soft ferrite phase. And it can suppress that normal temperature tensile strength raises more than necessary.

冷却復熱処理における加速冷却に際して、冷却は水冷面側でフェライトの析出を抑制し耐火性を向上させるために、(Ar変態点−100℃)以上の温度から行なうことが好ましい。また、加速冷却の冷却速度は、フェライト析出を抑制し耐火性を向上させるために、5℃/s以上の冷却速度とすることが好ましい。なお、80℃/sを超える冷却速度で冷却しても、耐火性向上には効果を示さない。このようなことから、加速冷却の冷却速度は、5〜80℃/sの範囲に限定することが好ましい。より好ましくは6〜50℃/sである。なお、冷却速度は、伝熱計算により求まるフランジ板内の平均冷却速度である。 In the accelerated cooling in the cooling reheat treatment, the cooling is preferably performed at a temperature equal to or higher than (Ar 3 transformation point−100 ° C.) in order to suppress the precipitation of ferrite and improve the fire resistance on the water-cooled surface side. The cooling rate for accelerated cooling is preferably 5 ° C./s or higher in order to suppress ferrite precipitation and improve fire resistance. In addition, even if it cools with the cooling rate exceeding 80 degreeC / s, it does not show an effect for fire resistance improvement. For this reason, the cooling rate of accelerated cooling is preferably limited to a range of 5 to 80 ° C./s. More preferably, it is 6-50 degreeC / s. The cooling rate is an average cooling rate in the flange plate determined by heat transfer calculation.

加速冷却の冷却停止温度は、冷却面の表面温度で100〜650℃の範囲とすることが好ましい。冷却停止温度が650℃を超えると、水冷却面を十分にベイナイトあるいはマルテンサイト変態させることができない。一方、100℃未満では、非水冷面側からの復熱が不十分となり、延性が低下する。このため、冷却停止温度は水冷却面の表面温度で100〜650℃の範囲に限定することが好ましい。なお、さらに好ましくは150〜600℃である。   The cooling stop temperature for accelerated cooling is preferably in the range of 100 to 650 ° C. as the surface temperature of the cooling surface. If the cooling stop temperature exceeds 650 ° C., the water cooling surface cannot be sufficiently transformed into bainite or martensite. On the other hand, when the temperature is lower than 100 ° C., recuperation from the non-water-cooled surface becomes insufficient, and ductility is lowered. For this reason, it is preferable to limit the cooling stop temperature to a range of 100 to 650 ° C. in terms of the surface temperature of the water cooling surface. In addition, it is 150-600 degreeC more preferably.

冷却に際しては、冷却停止後、水冷却面の表面温度で、200℃〜700℃の範囲内の温度まで復熱させる冷却とすることが好ましい。復熱温度を200℃以上とするためには、冷却時に冷却面の表面温度を100℃以上とすることが好ましい。   In the cooling, it is preferable that the cooling is performed after the cooling is stopped and the surface temperature of the water cooling surface is reheated to a temperature within a range of 200 ° C to 700 ° C. In order to set the recuperation temperature to 200 ° C. or higher, it is preferable to set the surface temperature of the cooling surface to 100 ° C. or higher during cooling.

復熱温度が200℃未満では、冷却面が過度に硬化し、延性が低下する。一方、復熱温度が700℃を超えると、復熱過程で炭化物の析出が促進され、高温耐力の上昇が少なくなるとともに、室温耐力が上昇し、降伏比が高くなる。このため、復熱温度は200〜700℃の範囲とすることが好ましい。なお、より好ましくは、300〜700℃である。   When the recuperation temperature is less than 200 ° C., the cooling surface is excessively cured and the ductility is lowered. On the other hand, when the recuperation temperature exceeds 700 ° C., precipitation of carbides is promoted during the recuperation process, and the increase in the high-temperature yield strength decreases, the room temperature yield strength increases, and the yield ratio increases. For this reason, the recuperation temperature is preferably in the range of 200 to 700 ° C. In addition, More preferably, it is 300-700 degreeC.

また、フランジ内外面のうち、上記した冷却を施さない他の面(非冷却面)は、表層に軟質層を形成させるため、特別な冷却をせず、放冷のまま、あるいは冷却速度:1℃/s以下の緩冷とすることが好ましい。   In addition, the other surfaces (non-cooled surfaces) that are not subjected to the cooling among the inner and outer surfaces of the flange are not subjected to special cooling because they form a soft layer on the surface layer, or are allowed to cool or have a cooling rate of 1 It is preferable that the cooling is performed at a low temperature of ℃ / s or less.

表2に示す組成の溶鋼を転炉で溶製し、連続鋳造法でビームブランク状鋳片(鋼素材)とした。ついで、これら鋼素材を表3に示す加熱温度に再加熱したのち、表3に示す条件の熱間圧延工程を施してH形鋼とし、ついでフランジ外面に表3に示す条件で水冷し、復熱させる冷却復熱処理を施した。なお、一部のH形鋼では、フランジ外面および内面に冷却復熱処理を施し、比較例とした。また、一部のH形鋼では、フランジ内外面に冷却復熱処理を施さず、放冷のままとした。     Molten steel having the composition shown in Table 2 was melted in a converter and used as a beam blank slab (steel material) by a continuous casting method. Next, after reheating these steel materials to the heating temperatures shown in Table 3, they are subjected to a hot rolling process with the conditions shown in Table 3 to form H-shaped steels, and then water-cooled on the flange outer surface under the conditions shown in Table 3 and restored. A cooling reheat treatment for heating was performed. In some H-section steels, cooling outer heat treatment was applied to the outer surface and inner surface of the flange as a comparative example. Further, in some H-section steels, the cooling inner heat treatment was not performed on the inner and outer surfaces of the flange, and it was left to cool.

Figure 2005272949
Figure 2005272949

Figure 2005272949
Figure 2005272949

かくして得られたH形鋼より、JIS Z 2201に規定される1号引張試験片をフランジ幅の1/4の部分より引張方向を圧延方向として採取した。また、JIS Z 2202に規定されるVノッチ試験片をフランジ幅の1/4の部分で、板厚1/4t部より採取した。なお、引張試験は室温で、シャルピー衝撃試験は0℃で実施した。   From the H-shaped steel thus obtained, No. 1 tensile test piece defined in JIS Z 2201 was taken from the portion of 1/4 of the flange width as the rolling direction. Further, a V-notch test piece defined in JIS Z 2202 was taken from a 1/4 t part of the plate thickness at a quarter of the flange width. The tensile test was performed at room temperature and the Charpy impact test was performed at 0 ° C.

さらに、フランジの板厚1/2tの部分から、高温引張試験片(10mmφ)を採取し、600℃で高温引張試験を実施した。なお、高温引張は600℃で15min保持した後に実施した。   Further, a high-temperature tensile test piece (10 mmφ) was taken from the flange having a thickness of 1/2 t, and a high-temperature tensile test was performed at 600 ° C. The high temperature tension was performed after holding at 600 ° C. for 15 minutes.

さらに、フランジの板厚方向断面(L方向断面)について、光学顕微鏡を用いて組織を調査した。観察位置は、表面(外面)、1/4t、1/2t、3/4tおよび裏面(内面)とし、各位置で5視野以上観察し、各位置での硬質相であるベイナイト、マルテンサイト(焼戻し)の各組織分率を画像解析装置により算出し、各位置での硬質相分率とし、さらに各位置での硬質相分率を平均して、フランジ板厚方向の平均硬質相分率とした。なお、組織観察から、フランジの表層について、硬質層、軟質層の有無を確認し、硬質層、軟質層の組織分率を同様に求めた。   Furthermore, the structure was investigated using the optical microscope about the plate | board thickness direction cross section (L direction cross section) of a flange. The observation positions are the front surface (outer surface), 1 / 4t, 1 / 2t, 3 / 4t, and back surface (inner surface), and at least 5 visual fields are observed at each position, and bainite and martensite (tempering) that are hard phases at each position. ) Calculated by the image analysis device, the hard phase fraction at each position, and the average hard phase fraction at each position, the average hard phase fraction in the flange plate thickness direction . In addition, from the structure observation, the presence or absence of the hard layer and the soft layer was confirmed on the surface layer of the flange, and the tissue fractions of the hard layer and the soft layer were similarly determined.

また、軟質層については、表面から1〜5mmの領域を光学顕微鏡で組織を5視野以上観察し、フェライト粒径を画像解析装置を用いて、円相当直径として測定した。   For the soft layer, the region of 1 to 5 mm from the surface was observed with 5 or more fields of view with an optical microscope, and the ferrite particle size was measured as an equivalent circle diameter using an image analyzer.

得られた結果を表4に示す。   Table 4 shows the obtained results.

Figure 2005272949
Figure 2005272949

本発明例はいずれも、室温耐力(室温降伏点)YP、0.2YSの上昇を抑制し、80%以下の低降伏比を維持して、600℃での高温耐力YS600 を176MPa以上と、高温強度が効率よく上昇した、耐火性に優れた低降伏比圧延H形鋼となっている。一方、フランジの両面を水冷却し、平均硬質相分率が本発明範囲を外れる比較例(H形鋼No.5、13)では、高温強度は顕著に上昇するが、それ以上に室温強度が上昇し、延性が低下している。また、フランジの一方の水冷却が不十分で、平均硬質相分率が20%未満と、本発明範囲を外れる比較例(H形鋼No.14、No.19)では、高温耐力が低く、一方、平均硬質相分率が80%を超え、本発明範囲を外れる比較例(H形鋼No.7)では、常温強度は大きく上昇しているが、延性、靭性の低下が著しい。 In all of the examples of the present invention, the increase in room temperature yield strength (room temperature yield point) YP, 0.2YS was suppressed, the low yield ratio of 80% or less was maintained, and the high temperature yield strength YS 600 at 600 ° C. was 176 MPa or higher. It is a low yield ratio rolled H-section steel with high strength and excellent fire resistance. On the other hand, in the comparative examples (H-section steel Nos. 5 and 13) in which the average hard phase fraction falls outside the scope of the present invention when both surfaces of the flange are cooled with water, the high temperature strength is remarkably increased, but the room temperature strength is more than that. Increased and ductility decreased. In addition, in the comparative examples (H-section steel No.14, No.19) that are out of the scope of the present invention, in which the water cooling of one side of the flange is insufficient and the average hard phase fraction is less than 20%, the high-temperature proof stress is low, On the other hand, in the comparative example (H-section steel No. 7) in which the average hard phase fraction exceeds 80% and deviates from the scope of the present invention, the normal temperature strength is greatly increased, but the ductility and toughness are significantly decreased.

また、復熱温度が200℃を下回り、平均硬質相分率が本発明範囲を外れる比較例(H形鋼No.7)では、延性が低下している。復熱温度が650℃を超え、製造条件が本発明の好適範囲を外れる本発明例(H形鋼No.6、No.20)では、高温強度が若干低下している。   Further, in the comparative example (H-section steel No. 7) in which the recuperation temperature is lower than 200 ° C. and the average hard phase fraction is out of the range of the present invention, the ductility is lowered. In the present invention examples (H-section steel No. 6 and No. 20) in which the recuperation temperature exceeds 650 ° C. and the production conditions are outside the preferred range of the present invention, the high-temperature strength is slightly reduced.

600℃における析出Mo量におよぼす平均硬質相分率の影響を示すグラフである。4 is a graph showing the influence of the average hard phase fraction on the amount of precipitated Mo at 600 ° C. 室温耐力YSRT、600℃における耐力YS600と平均硬質相分率との関係を示すグラフである。It is a graph showing the relationship between the yield strength YS 600 and average hard phase fraction at room temperature yield strength YS RT, 600 ℃.

Claims (6)

熱間圧延により製造された圧延H形鋼であって、mass%でMo:0.10〜1.0%を含有する組成を有し、かつ該圧延H形鋼のフランジ内外面の一方の表層が体積率で50%以上のベイナイトおよび/または焼戻しマルテンサイトを含む硬質層からなり、他方の表層が体積率で50%以上のフェライトを含む軟質層からなり、前記軟質層側のフェライトの平均粒径が5〜40μmで、かつフランジ板厚方向の平均値で、前記ベイナイトおよび/または焼戻しマルテンサイトを体積率で20〜80%含む組織を有し、600℃での耐力が176MPa以上であることを特徴とする耐火性に優れた低降伏比圧延H形鋼。   Rolled H-section steel manufactured by hot rolling, having a composition containing Mo: 0.10 to 1.0% in mass%, and one surface layer of the flange inner and outer surfaces of the rolled H-section steel in volume ratio It consists of a hard layer containing 50% or more of bainite and / or tempered martensite, and the other surface layer consists of a soft layer containing 50% or more of ferrite by volume, and the average particle diameter of ferrite on the soft layer side is 5 to 5%. It has a structure containing 20 to 80% by volume of the bainite and / or tempered martensite at an average value in the thickness direction of the flange plate of 40 μm, and the proof stress at 600 ° C. is 176 MPa or more. Low yield ratio rolled H-section steel with excellent fire resistance. 前記組成が、mass%で、
C:0.01〜0.20%、 Si:0.6%以下、
Mn:0.05〜1.6%、 P:0.030%以下、
S:0.030%以下、 Al:0.1%以下、
Mo:0.10〜1.0%
を含み、残部がFeおよび不可避的不純物からなる組成であることを特徴とする請求項1に記載の低降伏比圧延H形鋼。
The composition is mass%,
C: 0.01-0.20%, Si: 0.6% or less,
Mn: 0.05 to 1.6%, P: 0.030% or less,
S: 0.030% or less, Al: 0.1% or less,
Mo: 0.10 to 1.0%
The low yield ratio rolled H-section steel according to claim 1, wherein the balance is a composition comprising Fe and inevitable impurities.
前記組成に加えてさらに、mass%で、Cu:1%以下、Ni:3%以下のうちから選ばれた1種または2種を含有することを特徴とする請求項2に記載の低降伏比圧延H形鋼。   The low yield ratio according to claim 2, further comprising one or two kinds selected from Cu: 1% or less and Ni: 3% or less in mass% in addition to the composition. Rolled H-section steel. 前記組成に加えてさらに、mass%で、Cr:3%以下、V:0.3%以下、Nb:0.1%以下、B:0.01%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項2または3に記載の低降伏比圧延H形鋼。   In addition to the above-described composition, it may further contain at least one selected from mass%, Cr: 3% or less, V: 0.3% or less, Nb: 0.1% or less, and B: 0.01% or less. The low yield ratio rolled H-section steel according to claim 2 or 3, wherein: 前記組成に加えてさらに、mass%で、Ti:0.1%以下、Ca:0.1%以下、Mg:0.1%以下、
Zr:0.1%以下、Hf:0.1%以下、REM:0.1%以下のうちから選ばれた1種または2種以上を含有することを特徴とする請求項2ないし4のいずれかに記載の低降伏比圧延H形鋼。
In addition to the above composition, mass: Ti: 0.1% or less, Ca: 0.1% or less, Mg: 0.1% or less,
The low yield according to any one of claims 2 to 4, comprising one or more selected from Zr: 0.1% or less, Hf: 0.1% or less, and REM: 0.1% or less. Specific rolled H-section steel.
mass%で、
C:0.01〜0.20%、 Si:0.6%以下、
Mn:0.05〜1.6%、 P:0.030%以下、
S:0.030%以下、 Al:0.1%以下
Mo:0.10〜1.0%
を含む組成の鋼素材を、1000〜1350℃に再加熱したのち、熱間圧延終了温度を下記(1)式で定義されるAr変態点(℃)以上とする孔型圧延およびユニバーサル圧延により所定形状のH形鋼にする熱間圧延工程を行い、ついで、フランジ外面またはフランジ内面を5〜80℃/sの平均冷却速度で、冷却面の表面温度で100〜650℃の範囲の冷却停止温度まで冷却したのち冷却を停止し、該表面温度で200〜700℃の温度まで復熱させる冷却復熱処理を施すことを特徴とする耐火性に優れた低降伏比圧延H形鋼の製造方法。

Ar(℃)=910−273C+25Si−74Mn−56Ni−16Cr−9Mo−5Cu−1620Nb ……(1)
ここで、C、Si、Mn、Ni、Cr、Mo、Cu、Nb:各元素の含有量(mass%)
mass%
C: 0.01-0.20%, Si: 0.6% or less,
Mn: 0.05 to 1.6%, P: 0.030% or less,
S: 0.030% or less, Al: 0.1% or less
Mo: 0.10 to 1.0%
After reheating the steel material having the composition containing 1000 to 1350 ° C., the hot rolling finish temperature is set to Ar 3 transformation point (° C.) defined by the following formula (1) or more by the squeeze rolling and the universal rolling. A hot rolling process is performed to form a H-shaped steel with a predetermined shape, and then the cooling of the outer surface of the flange or the inner surface of the flange is stopped at an average cooling rate of 5 to 80 ° C./s and a surface temperature of the cooling surface in the range of 100 to 650 ° C. A method for producing a low yield ratio rolled H-section steel excellent in fire resistance, characterized in that after cooling to a temperature, cooling is stopped and a cooling reheat treatment is performed to reheat to a temperature of 200 to 700 ° C. at the surface temperature.
Ar 3 (° C.) = 910−273C + 25Si−74Mn−56Ni−16Cr−9Mo−5Cu−1620Nb (1)
Here, C, Si, Mn, Ni, Cr, Mo, Cu, Nb: Content of each element (mass%)
JP2004089133A 2004-03-25 2004-03-25 Low yield ratio rolled H-section steel excellent in fire resistance and manufacturing method thereof Expired - Lifetime JP4631299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004089133A JP4631299B2 (en) 2004-03-25 2004-03-25 Low yield ratio rolled H-section steel excellent in fire resistance and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004089133A JP4631299B2 (en) 2004-03-25 2004-03-25 Low yield ratio rolled H-section steel excellent in fire resistance and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005272949A true JP2005272949A (en) 2005-10-06
JP4631299B2 JP4631299B2 (en) 2011-02-16

Family

ID=35172927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004089133A Expired - Lifetime JP4631299B2 (en) 2004-03-25 2004-03-25 Low yield ratio rolled H-section steel excellent in fire resistance and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4631299B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091725A1 (en) * 2006-02-08 2007-08-16 Nippon Steel Corporation Fire-resistant high-strength rolled steel material and method for production thereof
CN103614638A (en) * 2013-12-12 2014-03-05 南京钢铁股份有限公司 High-niobium Q460-grade fire-resistant steel and manufacturing method thereof
CN108699651A (en) * 2016-03-02 2018-10-23 新日铁住金株式会社 Low temperature H-shaped steel and its manufacturing method
CN114126796A (en) * 2019-06-17 2022-03-01 日本制铁株式会社 Joint joint and automobile component
WO2022185632A1 (en) * 2021-03-03 2022-09-09 Jfeスチール株式会社 H-shaped steel
WO2024091057A1 (en) * 2022-10-28 2024-05-02 현대제철 주식회사 Steel section and steel section manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294984A (en) * 2000-04-12 2001-10-26 Nkk Corp Fire resistant rolled steel and its producing method
JP4329583B2 (en) * 2004-03-17 2009-09-09 Jfeスチール株式会社 Low yield ratio H-section steel excellent in earthquake resistance and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294984A (en) * 2000-04-12 2001-10-26 Nkk Corp Fire resistant rolled steel and its producing method
JP4329583B2 (en) * 2004-03-17 2009-09-09 Jfeスチール株式会社 Low yield ratio H-section steel excellent in earthquake resistance and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091725A1 (en) * 2006-02-08 2007-08-16 Nippon Steel Corporation Fire-resistant high-strength rolled steel material and method for production thereof
CN103614638A (en) * 2013-12-12 2014-03-05 南京钢铁股份有限公司 High-niobium Q460-grade fire-resistant steel and manufacturing method thereof
CN108699651A (en) * 2016-03-02 2018-10-23 新日铁住金株式会社 Low temperature H-shaped steel and its manufacturing method
US10900099B2 (en) 2016-03-02 2021-01-26 Nippon Steel Corporation Steel H-shape for low temperature service and manufacturing method therefor
CN114126796A (en) * 2019-06-17 2022-03-01 日本制铁株式会社 Joint joint and automobile component
CN114126796B (en) * 2019-06-17 2023-09-26 日本制铁株式会社 Joint and automobile component
WO2022185632A1 (en) * 2021-03-03 2022-09-09 Jfeスチール株式会社 H-shaped steel
JPWO2022185632A1 (en) * 2021-03-03 2022-09-09
JP7405246B2 (en) 2021-03-03 2023-12-26 Jfeスチール株式会社 H-shaped steel
WO2024091057A1 (en) * 2022-10-28 2024-05-02 현대제철 주식회사 Steel section and steel section manufacturing method

Also Published As

Publication number Publication date
JP4631299B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP5604842B2 (en) Steel material for large heat input welding
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP4329583B2 (en) Low yield ratio H-section steel excellent in earthquake resistance and manufacturing method thereof
JP5217385B2 (en) Steel sheet for high toughness line pipe and method for producing the same
WO2011099408A1 (en) Production method for thick steel plate
WO2008126944A1 (en) Steel material having excellent high-temperature strength and toughness, and method for production thereof
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP5796636B2 (en) Steel material for large heat input welding
JP2005068519A (en) Method for producing high strength thick steel plate for building structure, having excellent toughness to super-large heat input welding-affected zone
JP2008231541A (en) High strength cold rolled steel sheet and manufacturing method thereof
JP2015190008A (en) Non-heat treated low yield ratio high tensile thick steel sheet excellent in weld heat-affected zone toughness and production method therefor
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP4631299B2 (en) Low yield ratio rolled H-section steel excellent in fire resistance and manufacturing method thereof
JP6354571B2 (en) Rolled H-section steel and its manufacturing method
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JP4038166B2 (en) Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof
JP4539100B2 (en) Super high heat input welded heat affected zone
JP2020204091A (en) High strength steel sheet for high heat input welding
JP5223295B2 (en) Refractory H-shaped steel with excellent reheat embrittlement resistance and method for producing the same
JP2005272854A (en) Method for producing high-tensile steel excellent in refractoriness and toughness in welded heat affected part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Ref document number: 4631299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250