JPH05117744A - Production of 490n/mm2 class refractory steel products for building - Google Patents
Production of 490n/mm2 class refractory steel products for buildingInfo
- Publication number
- JPH05117744A JPH05117744A JP27560591A JP27560591A JPH05117744A JP H05117744 A JPH05117744 A JP H05117744A JP 27560591 A JP27560591 A JP 27560591A JP 27560591 A JP27560591 A JP 27560591A JP H05117744 A JPH05117744 A JP H05117744A
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- less
- steel
- temperature
- weldability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、耐火鋼材の製造方法に
関し、詳しくは、 600℃の高温においても高い耐力を有
し、良好な溶接性と優れた大入熱溶接継手靱性を兼ね備
えた建築用 490N/mm2 級耐火鋼材の製造方法に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a refractory steel material, and more particularly, it has a high yield strength even at a high temperature of 600 ° C., and has a good weldability and an excellent large heat input welded joint toughness. The present invention relates to a method for manufacturing a 490 N / mm 2 class refractory steel material for use.
【0002】[0002]
【従来の技術】建築構造物では、火災時に鉄骨が高温に
さらされると強度が下がり、建築物としての耐力が低下
するため、建築基準法により、耐火被覆施工が義務付け
られている。2. Description of the Related Art In a building structure, when a steel frame is exposed to a high temperature during a fire, the strength of the building is lowered and the yield strength of the building is lowered.
【0003】従来のSi−Mn系の建築用鋼材では、 3
50℃を超えると火災時に構造部材に要求される耐力であ
る長期耐力(常温耐力の 2/ 3)の 217N/mm2 を下
回るため、鉄骨の温度が 350℃を超えないように、工事
費、工期などの面からは足かせとなる耐火被覆を施して
いる。しかし、最近追加された「新耐火設計法」では、
高温耐力の優れた鋼材(耐火鋼材)を使用すれば、耐火
被覆量の削減が認められるようになっている。In the conventional Si—Mn-based building steel, 3
If it exceeds 50 ° C, it will fall below 217 N / mm 2 which is the proof stress required for structural members at the time of fire (2/3 of room temperature proof strength), which is 217 N / mm 2 , so that the steel frame temperature should not exceed 350 ° C. From the aspect of construction period, etc., it is covered with a fireproof coating. However, in the recently added "new fireproof design method",
Reduction of the amount of refractory coating has come to be recognized by using steel materials (fire-resistant steel materials) having excellent high-temperature resistance.
【0004】[0004]
【発明が解決しようとする課題】現在、高温耐力の優れ
た鋼材としては、ボイラ・圧力容器用として広く使用さ
れているCr−Mo鋼板がある。本鋼板は、 600℃における
耐力は、 217N/mm2 以上を有するが、溶接割れ感受
性組成(PCM)が高いために、耐溶接割れ性が悪く、溶
接時に予熱、後熱を行なうなど溶接施工上難点がある。
さらに、溶接施工効率を高めるために用いられるエレク
トロスラグ溶接やサブマージアーク溶接のような大入熱
溶接を施すと、溶接熱影響部(HAZ)の靱性が著しく
低下するため、小入熱溶接を余儀無くされている。At present, as a steel material excellent in high temperature proof stress, there is a Cr-Mo steel sheet which is widely used for boilers and pressure vessels. This steel sheet has a proof stress at 600 ° C of 217 N / mm 2 or more, but its weld crack susceptibility composition (P CM ) is high, so the weld crack resistance is poor, and preheating and postheating are performed during welding. There are difficulties.
Furthermore, when large heat input welding such as electroslag welding or submerged arc welding, which is used to improve welding work efficiency, is performed, the toughness of the weld heat affected zone (HAZ) decreases significantly, so small heat input welding is unavoidable. It has been lost.
【0005】このため、建築用鋼材の耐火被覆施工の低
減あるいは省略を図るために、高い高温耐力を有すると
ともに優れた溶接性、大入熱溶接継手靱性及び母材特性
を有し、従来と同じ設計・施工ができる鋼材が必要とさ
れている。また、建築用鋼材には、地震時の建築物の変
形能の点から、80%以下の降伏比〔(耐力/引張強さ)
× 100〕の要求が強まっている。For this reason, in order to reduce or eliminate the fireproof coating work for building steel materials, it has a high-temperature proof stress, excellent weldability, large heat input welded joint toughness and base metal characteristics, and is the same as the conventional one. Steel materials that can be designed and constructed are needed. In addition, in terms of the deformability of a building during an earthquake, a yield ratio of 80% or less [(proof stress / tensile strength)
X 100] requirements are increasing.
【0006】前記のような建築用鋼材の改良製造方法と
しては、特開平 2− 77523号公報や特開平 3−6322号公
報が提案されている。As an improved manufacturing method of the above-mentioned construction steel material, JP-A-2-77523 and JP-A-3-6322 have been proposed.
【0007】[0007]
【課題を解決するための手段】本発明者等は、上記した
建築用鋼材に対する要求を達成するために、前述の先行
発明とは異なった観点から種々研究を重ねた結果、化学
成分、特にTiの炭窒化物の形成により、溶接性を損なう
ことなく鋼材の高温耐力を向上し、さらに優れた大入熱
溶接継手靱性を確保することが出来るという知見を得
て、本発明を完成するに至った。Means for Solving the Problems The inventors of the present invention have conducted various studies from the viewpoint different from the above-mentioned prior invention in order to achieve the above-mentioned requirements for the steel materials for construction, and as a result, the chemical composition, particularly Ti The present invention was completed based on the finding that the formation of the carbonitrides in Example 1 improves the high-temperature yield strength of the steel material without impairing the weldability, and that it can secure excellent high heat input welded joint toughness. It was
【0008】すなわち本発明の第1発明は重量比にて
C:0.05〜0.15%、Si:0.05〜0.60%、Mn:0.50〜1.80
%、 P:0.02%以下、 S: 0.005%以下、Mo:0.10〜0.
40%、Ti: 0.030〜 0.150%、 N:0.0020〜0.0070%、
Ca:0.0005〜0.0050%を含有し、残部Feおよび不可避不
純物からなり、かつ、下記式で規定されるPCMの値が0.
24%以下である鋼片を1100℃以上の温度に加熱したあ
と、1000℃以下での圧下率を50%以上とし、 850〜 950
℃の温度範囲で圧延を終了させ、 600℃における耐力が
217N/mm2 以上であり、良好な溶接性と優れた大入
熱溶接継手靱性を有した建築用 490N/mm2 級耐火鋼
材の製造方法を要旨としている。 PCM= C+Si/30 +Mn/20 +Cu/20 +Ni/60 +Cr/20 +
Mo/15 +V/10+5B(%)That is, the first aspect of the present invention is the weight ratio.
C: 0.05 to 0.15%, Si: 0.05 to 0.60%, Mn: 0.50 to 1.80
%, P: 0.02% or less, S: 0.005% or less, Mo: 0.10-0.
40%, Ti: 0.030 to 0.150%, N: 0.0020 to 0.0070%,
Ca: 0.0005 to 0.0050% is contained, the balance is Fe and unavoidable impurities, and the value of P CM defined by the following formula is 0.
After heating a steel slab that is 24% or less to a temperature of 1100 ° C or higher, the rolling reduction at 1000 ° C or lower is set to 50% or higher, and
Rolling is completed within the temperature range of ℃
It is 217 N / mm 2 or more, and the gist is a manufacturing method of a 490 N / mm 2 class refractory steel for construction having good weldability and excellent large heat input welded joint toughness. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 +
Mo / 15 + V / 10 + 5B (%)
【0009】また、第2発明は、第1発明に重量比にて
さらに V: 0.005〜 0.060%、Cu:0.05〜0.50%、Ni:
0.05〜0.50%、Cr:0.10〜0.40%の内から選んだ1種又
は2種以上を含有させた建築用 490N/mm2 級耐火鋼
材の製造方法を要旨とするものである。The second aspect of the present invention further comprises V: 0.005-0.060%, Cu: 0.05-0.50%, and Ni: by weight ratio to the first aspect.
It is intended to provide a manufacturing method of a construction-use 490 N / mm 2 class refractory steel material containing one or more selected from 0.05 to 0.50% and Cr: 0.10 to 0.40%.
【0010】[0010]
【作用】本発明の構成と作用を説明する。本発明が対象
とする鋼材の化学成分の限定理由は次の通りである。C
は、強度上昇に寄与する元素であるが、0.05%未満では
強度を確保することが困難であり、また、0.15%を超え
て多量に添加するときは、溶接性及び靱性を劣化させ
る。したがって、その添加量は0.05〜0.15%の範囲とす
る。The structure and operation of the present invention will be described. The reasons for limiting the chemical composition of the steel material targeted by the present invention are as follows. C
Is an element that contributes to the increase in strength, but if it is less than 0.05%, it is difficult to secure the strength, and if it is added in excess of 0.15%, the weldability and toughness deteriorate. Therefore, the amount added is in the range of 0.05 to 0.15%.
【0011】Siは、脱酸のために必須の元素であるが、
0.05%未満では脱酸効果が少なく、また、0.60%を超え
て過多に添加すると溶接性を劣化させる。このため、そ
の添加量は0.05〜0.60%の範囲とする。Si is an essential element for deoxidation,
If it is less than 0.05%, the deoxidizing effect is small, and if it is added in excess of 0.60%, the weldability deteriorates. Therefore, the addition amount is set to the range of 0.05 to 0.60%.
【0012】Mnは、鋼の強度及び靱性を確保するために
必要な元素であるが、0.50%未満ではこのような効果は
少なく、また、1.50%を超えて多量に添加すると溶接性
を劣化させ、かつ、靱性も劣化させる。したがって、そ
の添加量は0.50〜1.50%の範囲とする。Mn is an element necessary to secure the strength and toughness of steel. If it is less than 0.50%, such an effect is small, and if it is added in excess of 1.50%, the weldability is deteriorated. In addition, it also deteriorates toughness. Therefore, the amount added is in the range of 0.50 to 1.50%.
【0013】Pは、 0.020%超過ではミクロ偏析によ
り、大入熱溶接継手靱性、母材靱性ならびに耐溶接割れ
性を劣化させるので、 0.020%以下とする。If P exceeds 0.020%, microsegregation deteriorates the toughness of the high heat input welded joint, the toughness of the base metal and the resistance to weld cracking. Therefore, P is made 0.020% or less.
【0014】Sは、 0.005%超過では粗大なA系介在物
を形成しやすくなり、母材靱性を劣化させるので 0.005
%以下とする。If S exceeds 0.005%, coarse A-type inclusions are likely to be formed and the toughness of the base material is deteriorated.
% Or less.
【0015】Moは、高温強度を確保するために不可欠な
元素であり、 600℃における耐力を著しく上昇させる。
しかしながら、0.10%未満ではこのような効果は得られ
ず、また、0.40%を超えて添加すると溶接性を損なう。
したがって、その添加量は0.10〜0.40%の範囲とする。Mo is an indispensable element for ensuring high-temperature strength and significantly increases the yield strength at 600 ° C.
However, if less than 0.10%, such an effect cannot be obtained, and if more than 0.40% is added, the weldability is impaired.
Therefore, the addition amount is set to the range of 0.10 to 0.40%.
【0016】Tiは、炭窒化物を形成し、鋼の高温耐力を
向上させる効果を有すると共に、溶接熱影響部のオース
テナイト粒の微細化及びフェライトの生成促進により、
溶接熱影響部の靱性向上に有効な元素であるが、 0.030
%未満ではこのような効果は少なく、一方、 0.150%を
超えると溶接性が劣化する。したがって、その添加量は
0.030〜 0.150%の範囲とする。Ti has the effect of forming carbonitrides and improving the high temperature proof stress of steel, and by refining the austenite grains in the heat-affected zone of the welding and promoting the formation of ferrite,
Although it is an element effective in improving the toughness of the heat affected zone,
If it is less than 0.1%, such an effect is small, while if it exceeds 0.150%, the weldability deteriorates. Therefore, the amount added is
The range is 0.030 to 0.150%.
【0017】Nは、前記Tiと組合わせることによって、
大入熱溶接継手靱性を改善する。しかし、0.0020%未満
ではこのような効果を発揮することが出来ず、また、0.
0070%を超えて多量に添加すると溶接継手靱性を劣化さ
せる。したがって、その添加量は0.0020〜0.0070%の範
囲とする。By combining N with the above Ti,
Improve the toughness of large heat input welded joints. However, if it is less than 0.0020%, such an effect cannot be exhibited, and if it is 0.
If it is added in a large amount exceeding 0070%, the weld joint toughness is deteriorated. Therefore, the addition amount is set to 0.0020 to 0.0070%.
【0018】Caは、微量で板厚方向の特性を改善する元
素であるが、0.0005%未満ではこのような効果は得られ
ず、一方、0.0050%を超えて添加するときは、このよう
な効果は飽和すると共に、大型介在物が発生し超音波欠
陥を生じやすくなる。このため、その添加量は0.0005〜
0.0050%の範囲とする。[0018] Ca is an element that improves the properties in the plate thickness direction in a trace amount, but if less than 0.0005%, such an effect cannot be obtained, while if added in excess of 0.0050%, such an effect is obtained. Is saturated, and large inclusions are generated to easily cause ultrasonic defects. Therefore, the amount added is 0.0005-
The range is 0.0050%.
【0019】本発明では上記化学成分以外に V、Cu、N
i、Crの内から選んだ1種又は2種以上を添加すること
が出来る。In the present invention, in addition to the above chemical components, V, Cu, N
One or two or more selected from i and Cr can be added.
【0020】Vは、析出強化による強度上昇に有効な元
素であるが、 0.005%未満ではこのような効果は殆ど期
待できず、また、 0.060%を超えて過多に添加するとき
は溶接性が劣化する。したがって、その添加量は 0.005
〜 0.060%の範囲とする。V is an element effective in increasing the strength by precipitation strengthening, but if less than 0.005%, such an effect can hardly be expected, and if more than 0.060% is added excessively, the weldability deteriorates. To do. Therefore, the amount added is 0.005
The range is to 0.060%.
【0021】Cuは、固溶強化による強度上昇に有効な元
素であるが、0.05%未満ではこのような効果は少なく、
また、0.50%を超えて添加すると熱間加工性及び溶接性
を損なう。このため、その添加量は0.05〜0.50%の範囲
とする。Cu is an element effective in increasing the strength by solid solution strengthening, but if it is less than 0.05%, such an effect is small,
If added in excess of 0.50%, hot workability and weldability will be impaired. Therefore, the addition amount is set to the range of 0.05 to 0.50%.
【0022】Niは、靱性の向上に有効な元素であるが、
0.05%未満ではこのような効果は得られない。また、0.
50%を超えて添加してもこのような効果は飽和し、経済
的にも無駄である。したがって、その添加量は0.05〜0.
50%の範囲とする。Ni is an element effective in improving toughness,
If it is less than 0.05%, such an effect cannot be obtained. Also, 0.
Even if added in excess of 50%, such an effect is saturated and it is economically wasteful. Therefore, the amount added is 0.05-0.
The range is 50%.
【0023】Crは、高温強度の向上に有効な元素である
が、0.10%未満ではこのような効果は期待し難く、ま
た、0.40%を超えて多量に添加すると溶接性が劣化す
る。このため、その添加量は0.10〜0.40%の範囲とす
る。Cr is an element effective for improving the high temperature strength, but if it is less than 0.10%, it is difficult to expect such an effect, and if it is added in excess of 0.40%, the weldability deteriorates. Therefore, the addition amount is set to 0.10 to 0.40%.
【0024】そしてさらに、第1発明及び第2発明共、
溶接時の低温割れを防止するために、PCM(溶接割れ感
受性組成)を0.24%以下に限定する。Further, both the first invention and the second invention,
In order to prevent cold cracking during welding, P CM (weld crack sensitive composition) is limited to 0.24% or less.
【0025】次に、本発明における加熱・圧延条件の限
定理由について説明する。加熱温度を1100℃以上に限定
した理由は、常温強度及び高温強度の確保に必要なTiを
鋼中に固溶させるためである。そして、この後の1000℃
以下での圧下率は、オーステナイト粒の微細化による良
好な母材靱性を確保するために、50%以上が必要であ
る。Next, the reasons for limiting the heating / rolling conditions in the present invention will be described. The reason for limiting the heating temperature to 1100 ° C. or higher is that Ti, which is necessary for securing room temperature strength and high temperature strength, is solid-soluted in steel. And after this 1000 ℃
The rolling reduction below is required to be 50% or more in order to secure good base metal toughness due to refinement of austenite grains.
【0026】さらに圧延終了温度に関しては、圧延終了
温度が 850℃未満の場合はフェライトの細粒化及び二相
域圧延によるフェライトの加工硬化により降伏比が高く
なり、80%以下の降伏比を得ることが出来ない。また、
圧延終了温度が 950℃を超えると、オーステナイトが粗
粒となるため、母材靱性が劣化する。したがって、圧延
終了温度は 850〜 950℃の範囲に限定する。Regarding the rolling end temperature, when the rolling end temperature is lower than 850 ° C., the yield ratio becomes high due to the grain refinement of ferrite and the work hardening of ferrite by the two-phase region rolling, and the yield ratio of 80% or less is obtained. I can't. Also,
If the rolling end temperature exceeds 950 ° C, the austenite becomes coarse grains and the toughness of the base material deteriorates. Therefore, the rolling finish temperature is limited to the range of 850 to 950 ° C.
【0027】[0027]
【実施例】本発明の実施例を説明するが、これによって
本発明は何ら限定されることはない。供試鋼材は、表1
に示す化学成分を含有する鋼片を、1150℃に加熱後、10
00℃以下で50%以上の圧下率を確保するために、圧延
中、板厚60mmで 920〜 950℃の温度で温度調整を行
い、圧延終了温度が 890〜 910℃の範囲で板厚25mmに
仕上げたものである。EXAMPLES Examples of the present invention will be described, but the present invention is not limited thereto. The test steel materials are shown in Table 1.
After heating the steel slab containing the chemical composition shown in 1150 ℃,
In order to secure a reduction of 50% or more at 00 ℃ or less, the temperature is adjusted during rolling at a temperature of 920 to 950 ℃ at a plate thickness of 60 mm, and the plate thickness is 25 mm at a rolling end temperature of 890 to 910 ℃. It is finished.
【0028】[0028]
【表1】 [Table 1]
【0029】これらの鋼板から試験片を採取し、常温引
張試験、シャルピー衝撃試験、 600℃の高温引張試験、
最高かたさ試験及び再現熱サイクル後のシャルピー衝撃
試験を行なった。その結果を表2に示す。なお、再現熱
サイクルの条件は、加熱温度を1350℃とし、 800℃から
500℃への冷却時間を 220秒とした。また、最高かたさ
試験はJIS Z3101に準じて行った。表1に本発
明鋼A〜E及び比較鋼F〜Iの化学成分、PCMを、表2
に引張特性、衝撃特性、溶接性、高温特性及びHAZ靱
性をそれぞれ示す。Test pieces were taken from these steel sheets, and subjected to normal temperature tensile test, Charpy impact test, high temperature tensile test at 600 ° C.,
The maximum hardness test and the Charpy impact test after the simulated thermal cycle were performed. The results are shown in Table 2. In addition, the conditions of the simulated heat cycle are as follows:
The cooling time to 500 ° C was 220 seconds. The highest hardness test was performed according to JIS Z3101. Table 1 shows the chemical components, P CM , of the invention steels A to E and the comparative steels F to I.
Shows tensile properties, impact properties, weldability, high temperature properties and HAZ toughness, respectively.
【0030】[0030]
【表2】 [Table 2]
【0031】表2から明らかなように、本発明鋼A〜E
は、PCMが0.24%以下で 600℃における耐力が 217N/
mm2 以上で優れた高温耐力を示し、常温の引張特 性
は 490N/mm2 級の値(耐力 315N/mm2 以上、引
張強さ 490〜 610N/mm2 )をもちろん満足し、降伏
比は建築用鋼材に要求される80%以下を十分に満足して
いる。また、シャルピー衝撃試験における破面遷移温度
も−35℃以下である。最高硬さはHv 350未満で良好な
溶接性を示し、さらに再現熱サイクル試験によるHAZ
靱性(vE20)も良好である。As is clear from Table 2, the steels A to E of the present invention.
Has a P CM of 0.24% or less and a proof stress at 600 ° C of 217 N /
It exhibits excellent high temperature proof strength at mm 2 or more, and the tensile properties at room temperature satisfy the 490 N / mm 2 class values (proof strength 315 N / mm 2 or more, tensile strength 490 to 610 N / mm 2 ), and the yield ratio is We are fully satisfied with the 80% or less required for building steel products. The fracture surface transition temperature in the Charpy impact test is also -35 ° C or lower. The maximum hardness is less than Hv 350, which shows good weldability, and HAZ by the repeated heat cycle test.
The toughness (vE 20 ) is also good.
【0032】一方、比較鋼Fは、 600℃における耐力は
217N/mm2 以上と高いが、Ti無添加のためHAZ靱
性が低く、またMo、Crの含有量及びPCMが本発明の限定
範囲から高めに外れているため、最高硬さがHv 350以
上であり、溶接性が悪い。On the other hand, the comparative steel F has a proof stress at 600 ° C.
Although it is as high as 217 N / mm 2 or more, the HAZ toughness is low because Ti is not added, and the maximum hardness is Hv 350 or more because the Mo and Cr contents and P CM are out of the range of the present invention. And the weldability is poor.
【0033】比較鋼Gは、Ti添加材でPCMも0.24%以下
であり、高温特性及び溶接性は良好であるが、 Nが本発
明鋼の限定範囲から高めに外れているためHAZ靱性が
悪い。Comparative Steel G is a Ti-added material and has a P CM of 0.24% or less, which is excellent in high temperature characteristics and weldability, but has a high HAZ toughness because N is out of the range of the present invention. bad.
【0034】比較鋼Hは、Tiの含有量が本発明の限定範
囲より少ないため、 600℃における耐力が 217N/mm
2 以上を満足していない。Comparative Steel H has a Ti content less than the limit range of the present invention, so that the yield strength at 600 ° C. is 217 N / mm.
Not satisfied with 2 or more.
【0035】さらに比較鋼Iは、従来の建築用 490N/
mm2 級鋼板の一例であるが、Mo、Ti、Crを添加してい
ないため、 600℃における耐力は 217N/mm2 以上を
満足しておらずHAZ靱性も悪い。Further, Comparative Steel I is 490 N / for conventional construction.
This is an example of a mm 2 class steel sheet, but since Mo, Ti, and Cr are not added, the yield strength at 600 ° C. does not satisfy 217 N / mm 2 or more, and the HAZ toughness is also poor.
【0036】次に、表1に示す本発明鋼Aの鋼片を用い
て、表3に示す加熱・圧延条件により比較鋼A1〜A4を製
造し、得られた比較鋼A1〜A4の引張特性、衝撃特性およ
び高温特性を調査した。この調査結果を表3に併せて示
す。Next, comparative steels A1 to A4 were manufactured under the heating and rolling conditions shown in Table 3 using the steel pieces of the invention steel A shown in Table 1, and the tensile properties of the obtained comparative steels A1 to A4. , Impact properties and high temperature properties were investigated. The results of this investigation are also shown in Table 3.
【0037】[0037]
【表3】 [Table 3]
【0038】表3より明らかなように、比較鋼A1は、加
熱温度が本発明の限定範囲より低いため、Tiが十分固溶
せず、常温強度、高温強度共低い。As is clear from Table 3, the comparative steel A1 has a heating temperature lower than the limited range of the present invention, so that Ti does not form a solid solution sufficiently and both the room temperature strength and the high temperature strength are low.
【0039】比較鋼A2は、圧下率が本発明の限定範囲よ
り小さいため、オーステナイト粒の細粒化が十分でなく
母材靱性が悪い。The comparative steel A2 has a rolling reduction smaller than the limited range of the present invention, so that the austenite grains are not sufficiently refined and the base material toughness is poor.
【0040】比較鋼A3は、圧延終了温度が本発明の限定
範囲より低いため、フェライトが細粒となり常温の降伏
比が80%を超える。一方、比較鋼A4は、圧延終了温度が
本発明の限定範囲より高めに外れているため、オーステ
ナイトの細粒化が十分でなく母材靱性が悪い。In Comparative Steel A3, the rolling end temperature is lower than the limit range of the present invention, so the ferrite becomes fine grains and the yield ratio at room temperature exceeds 80%. On the other hand, in Comparative Steel A4, the rolling end temperature deviates higher than the limited range of the present invention, so that the austenite grain refinement is insufficient and the base metal toughness is poor.
【0041】[0041]
【発明の効果】本発明は以上説明したように構成されて
いるから、得られた鋼は、化学成分特にTiの炭窒化物の
形成により、溶接性を損なう事無く高温耐力を向上し、
更に優れた大入熱溶接継手靱性を確保しているため、 6
00℃における高い耐力と良好な溶接性、大入熱溶接継手
靱性を兼ね備え、かつ、降伏比の低い鋼材を製造するこ
とが可能であり、従来必要とされていた耐火被覆を大幅
に低減あるいは省略することが可能であり、さらに、溶
接施工および耐震性の点からも、構造物の安全性を高め
ることが出来るという優れた効果を有しており、産業上
きわめて有益である。EFFECT OF THE INVENTION Since the present invention is constituted as described above, the steel obtained has improved high-temperature yield strength without impairing weldability due to the formation of carbonitrides of chemical composition, especially Ti.
Because of the excellent toughness of large heat input welded joints,
It is possible to manufacture steel materials that have a high yield strength at 00 ° C, good weldability, and high toughness heat input welded joint toughness, and a low yield ratio. In addition, it has an excellent effect that the safety of the structure can be enhanced in terms of welding work and earthquake resistance, which is extremely useful in industry.
Claims (2)
〜0.60%、Mn:0.50〜1.80%、 P:0.02%以下、 S:
0.005%以下、Mo:0.10〜0.40%、Ti: 0.030〜 0.150
%、 N:0.0020〜0.0070%、Ca:0.0005〜0.0050%を含
有し、残部Feおよび不可避不純物からなり、かつ、下記
式で規定されるPCMの値が0.24%以下である鋼片を1100
℃以上の温度に加熱したのち、1000℃以下での圧下率を
50%以上とし、 850〜 950℃の温度範囲で圧延を終了さ
せ、 600℃における耐力が 217N/mm2 以上であり、
良好な溶接性と優れた大入熱溶接継手靱性を有すること
を特徴とする建築用 490N/mm2 級耐火鋼材の製造方
法。 PCM= C+Si/30 +Mn/20 +Cu/20 +Ni/60 +Cr/20 +
Mo/15 +V/10+5B(%)1. A weight ratio of C: 0.05 to 0.15%, Si: 0.05.
~ 0.60%, Mn: 0.50 to 1.80%, P: 0.02% or less, S:
0.005% or less, Mo: 0.10 to 0.40%, Ti: 0.030 to 0.150
% N: from 0.0020 to .0070% Ca: containing 0.0005 to 0.0050%, and the balance Fe and unavoidable impurities, and the steel strip values of P CM is equal to or less than 0.24% which is defined by the following formula 1100
After heating to a temperature above ℃,
50% or more, rolling is completed in the temperature range of 850 to 950 ° C, and the yield strength at 600 ° C is 217 N / mm 2 or more,
A method for producing a 490 N / mm 2 class refractory steel for construction, which has good weldability and excellent toughness with a high heat input welded joint. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 +
Mo / 15 + V / 10 + 5B (%)
%、Cu:0.05〜0.50%、Ni:0.05〜0.50%、Cr:0.10〜
0.40%の内から選んだ1種又は2種以上を含有する請求
項1記載の建築用 490N/mm2 級耐火鋼材の製造方
法。2. The weight ratio is further V: 0.005 to 0.060.
%, Cu: 0.05 to 0.50%, Ni: 0.05 to 0.50%, Cr: 0.10 to
The method for producing a 490 N / mm 2 class refractory steel material for construction according to claim 1, which contains one or more selected from 0.40%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27560591A JPH05117744A (en) | 1991-10-23 | 1991-10-23 | Production of 490n/mm2 class refractory steel products for building |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27560591A JPH05117744A (en) | 1991-10-23 | 1991-10-23 | Production of 490n/mm2 class refractory steel products for building |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05117744A true JPH05117744A (en) | 1993-05-14 |
Family
ID=17557775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27560591A Pending JPH05117744A (en) | 1991-10-23 | 1991-10-23 | Production of 490n/mm2 class refractory steel products for building |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05117744A (en) |
-
1991
- 1991-10-23 JP JP27560591A patent/JPH05117744A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4427522B2 (en) | Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability and low temperature toughness | |
JP2006336105A (en) | Heat-resistant steel product and method for production thereof | |
JP4770415B2 (en) | High tensile steel plate excellent in weldability and method for producing the same | |
JP2009263772A (en) | METHOD FOR MANUFACTURING THICK HIGH-TENSILE STRENGTH STEEL PLATE HAVING EXCELLENT WELDABILITY AND LOW-TEMPERATURE JOINT TOUGHNESS AND TENSILE STRENGTH OF AT LEAST 780 MPa | |
JPH06316723A (en) | Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability | |
JP5008879B2 (en) | High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate | |
JP4427521B2 (en) | Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability | |
JP2002047532A (en) | High tensile strength steel sheet excellent in weldability and its production method | |
JP7506305B2 (en) | High-strength steel plate for large heat input welding | |
JP7410438B2 (en) | steel plate | |
JP4433844B2 (en) | Method for producing high strength steel with excellent fire resistance and toughness of heat affected zone | |
JP3319222B2 (en) | Manufacturing method of high chromium ferritic steel with excellent creep characteristics of welded joint | |
JPH05117745A (en) | Production of 490n/mm2 class weather resistant refractory steel products for building structural purpose | |
JP4250113B2 (en) | Steel plate manufacturing method with excellent earthquake resistance and weldability | |
JP5223295B2 (en) | Refractory H-shaped steel with excellent reheat embrittlement resistance and method for producing the same | |
JPH05112823A (en) | Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint | |
JPH10263817A (en) | Manufacture of high strength welded joint having excellent crack resistance | |
JPH05117744A (en) | Production of 490n/mm2 class refractory steel products for building | |
JP3491625B2 (en) | Fe-Cr alloy with excellent initial rust resistance, workability and weldability | |
JP7506306B2 (en) | High-strength steel plate for large heat input welding | |
JPH04350120A (en) | Production of high strength refractory steel plate for construction use | |
JPH06264136A (en) | Production of thick-walled refractory steel with low yield ratio for construction use, excellent in weldability | |
JPH08333623A (en) | Production of refractory steel material for building construction, excellent in earthquake resistance and reduced in yield ratio | |
JPH07173532A (en) | Production of low yield ratio type fire resistant architectural steel excellent in weldability | |
JPH08176731A (en) | High tensile steel and production thereof |