JP4427521B2 - Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability - Google Patents

Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability Download PDF

Info

Publication number
JP4427521B2
JP4427521B2 JP2006103916A JP2006103916A JP4427521B2 JP 4427521 B2 JP4427521 B2 JP 4427521B2 JP 2006103916 A JP2006103916 A JP 2006103916A JP 2006103916 A JP2006103916 A JP 2006103916A JP 4427521 B2 JP4427521 B2 JP 4427521B2
Authority
JP
Japan
Prior art keywords
less
strength
weldability
steel plate
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006103916A
Other languages
Japanese (ja)
Other versions
JP2007277622A (en
Inventor
学 星野
政昭 藤岡
洋一 田中
達也 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006103916A priority Critical patent/JP4427521B2/en
Publication of JP2007277622A publication Critical patent/JP2007277622A/en
Application granted granted Critical
Publication of JP4427521B2 publication Critical patent/JP4427521B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、予熱フリーの溶接性に優れる引張強さ780MPa級の高張力厚鋼板を、高価なNi、Mo、V、Cuを使用せず、かつ、圧延後の再加熱焼戻し熱処理を必要としない高い生産性と低コストのもとに製造する方法に関するものである。本発明鋼は、建設機械、産業機械、橋梁、建築、造船などの溶接構造物の構造部材として、板厚12mm以上40mm以下の厚鋼板の形態で用いられるものである。   The present invention does not use expensive Ni, Mo, V, Cu, high-temperature thick steel plates with a tensile strength of 780 MPa, which have excellent preheating-free weldability, and does not require reheating and tempering heat treatment after rolling. The present invention relates to a method of manufacturing with high productivity and low cost. The steel of the present invention is used in the form of a thick steel plate having a thickness of 12 mm or more and 40 mm or less as a structural member of a welded structure such as a construction machine, an industrial machine, a bridge, a building, or a shipbuilding.

建設機械、産業機械、橋梁、建築、造船などの溶接構造部材として用いられる引張強さ780MPa級の高張力鋼板には、母材の高強度・高靭性の両立に加えて、構造部材の高強度化ニーズの増大に伴い、予熱フリーの高溶接性を満足し、かつ、廉価で、短工期で製造可能な780MPa級の厚鋼板が板厚40mm程度まで要求されるようになってきた。すなわち、母材高強度・高靭性、小入熱溶接時の予熱フリー化を、廉価成分系で、短工期に加え廉価製造プロセスにて満足する必要がある。   High tensile strength steel sheets with a tensile strength of 780MPa used as welded structural members for construction machinery, industrial machinery, bridges, architecture, shipbuilding, etc., in addition to the high strength and toughness of the base material, the high strength of the structural members Along with the increase in the demand for the production, a 780 MPa class thick steel plate that satisfies high pre-free weldability, is inexpensive, and can be manufactured in a short construction period has been required up to a thickness of about 40 mm. In other words, it is necessary to satisfy the high-strength and high toughness of the base metal and the preheating-free operation at the time of small heat input welding in the low-cost component system and the low-cost manufacturing process in addition to the short construction period.

高溶接性を付与した780MPa級の高張力厚鋼板の従来の製造方法としては、例えば、特許文献1〜3に開示があるように、鋼板の圧延直後にオンラインで直接焼入れを行い、その後に焼戻し処理を行う、直接焼入れ、焼戻しによる方法がある。   For example, as disclosed in Patent Documents 1 to 3, a conventional method of manufacturing a high-strength thick steel plate of 780 MPa class imparted with high weldability is directly quenched immediately after rolling of the steel plate, and then tempered. There are methods by direct quenching and tempering.

また、圧延後の再加熱焼戻し熱処理を必要としない非調質での780MPa級の高張力厚鋼板の製造方法に関しては、例えば、特許文献4〜8に開示があり、いずれも再加熱焼戻し熱処理が省略できる点では製造工期、生産性に優れる製造方法である。このうち、特許文献4〜7に記載の発明は、鋼板の圧延後の加速冷却を途中で停止する、加速冷却−途中停止プロセスによる製造方法に関するものである。また、特許文献8に記載の発明は、圧延後空冷で室温まで冷却する製造方法に関するものである。   Moreover, regarding the manufacturing method of the high strength thick steel plate of the 780 MPa class in the non-tempering which does not require the reheating tempering heat treatment after rolling, for example, patent documents 4 to 8 disclose the method. In terms of omission, the manufacturing method is excellent in terms of manufacturing period and productivity. Among these, the inventions described in Patent Documents 4 to 7 relate to a manufacturing method by an accelerated cooling-intermediate stop process in which accelerated cooling after rolling of a steel sheet is stopped halfway. The invention described in Patent Document 8 relates to a manufacturing method for cooling to room temperature by air cooling after rolling.

特開平03−232923号公報Japanese Patent Laid-Open No. 03-232923 特開平09−263828号公報JP 09-263828 A 特開2000−160281号公報JP 2000-160281 A 特開2000−319726号公報JP 2000-319726 A 特開2005−015859号公報Japanese Patent Laid-Open No. 2005-015859 特開2004−052063号公報JP 2004-052063 A 特開2001−226740号公報JP 2001-226740 A 特開平08−188823号公報Japanese Patent Laid-Open No. 08-188823

しかしながら、例えば、上記特許文献1〜3に記載の発明では、再加熱焼戻し熱処理が必要となるため、製造工期、生産性、製造コストに問題がある。このような従来技術に対しては、再加熱焼戻し熱処理が省略できるいわゆる非調質の製造方法への要求が強い。   However, for example, in the inventions described in Patent Documents 1 to 3, since reheating and tempering heat treatment is required, there are problems in the manufacturing period, productivity, and manufacturing cost. For such a conventional technique, there is a strong demand for a so-called non-tempered manufacturing method in which reheating and tempering heat treatment can be omitted.

非調質の製造方法として、上記特許文献4に記載の発明では、その実施例に記載があるように溶接時に50℃以上での予熱が必要であり、予熱フリーの高溶接性を満足することができないという問題がある。さらに、特許文献5に記載の発明では、0.6%以上のNi添加が必要なため高価な成分系となり製造コスト上問題がある。特許文献6に記載の発明では、実施例に記載の板厚15mmまでしか製造できず、40mm厚までの板厚要求を満足できない。さらに、板厚15mmにおいても、C含有量が少なく継手のミクロ組織が粗粒となり十分な継手低温靭性が得られない問題もある。特許文献7に記載の発明では、実施例に記載があるように1.0%程度のNi添加が必要なため高価な成分系となり製造コスト上問題がある。特許文献8に記載の発明では、実施例に記載の板厚12mmまでしか製造できず、40mm厚までの板厚要求を満足できない。さらに、その圧延条件の特徴としてフェライトとオーステナイトの二相温度範囲で累積圧下率16〜30%の圧延を行うため、フェライト粒が粗大化しやすく12mm厚の製造においても強度、靭性が低下しやすい問題もある。   As a non-tempered manufacturing method, the invention described in Patent Document 4 requires preheating at 50 ° C. or higher during welding as described in the examples, and satisfies high weldability without preheating. There is a problem that can not be. Furthermore, in the invention described in Patent Document 5, since 0.6% or more of Ni needs to be added, it becomes an expensive component system and there is a problem in manufacturing cost. In the invention described in Patent Document 6, it is possible to manufacture only the plate thickness of 15 mm described in the examples, and it is impossible to satisfy the plate thickness requirement of up to 40 mm. Furthermore, even when the plate thickness is 15 mm, there is a problem that the C content is small and the microstructure of the joint becomes coarse and sufficient joint low temperature toughness cannot be obtained. In the invention described in Patent Document 7, since it is necessary to add about 1.0% of Ni as described in the examples, it becomes an expensive component system and there is a problem in manufacturing cost. In the invention described in Patent Document 8, it is possible to manufacture only the plate thickness up to 12 mm described in the examples, and the plate thickness requirement up to 40 mm thickness cannot be satisfied. Furthermore, the rolling condition is characterized by rolling with a cumulative reduction ratio of 16 to 30% in the two-phase temperature range of ferrite and austenite, so that the ferrite grains are likely to be coarsened, and the strength and toughness are likely to deteriorate even in the production of 12 mm thickness. There is also.

以上のように、母材の高強度と高靭性、高溶接性を、高価合金元素のNi、Mo、V、Cuを無添加で、かつ、圧延冷却後の再加熱焼戻し熱処理を省略した上で満足可能な、板厚40mmまでの高張力厚鋼板の製造方法は、需要家の要望が強いにもかかわらず、未だ発明されていないのが現状である。   As described above, the high strength, high toughness, and high weldability of the base material can be obtained by adding no expensive alloy elements, such as Ni, Mo, V, and Cu, and omitting the reheating and tempering heat treatment after rolling cooling. A satisfactory method for producing a high-tensile steel plate having a thickness of up to 40 mm has not been invented yet, despite the strong demands of customers.

母材強度780MPa級の厚鋼板では、溶接時の予熱フリー化に及ぼす板厚の影響は非常に大きい。板厚12mm未満では、予熱フリー化が比較的容易に達成できる。これは、板厚12mm未満であれば、水冷時の鋼板の冷却速度を板厚中心部でも100℃/sec以上と非常に大きくすることが物理的に可能なことによる。この場合、Cや合金元素を多量に添加しなくとも、高冷却速度により硬いマルテンサイトやベイナイト組織が得られ、780MPa級の強度が得られる。そして、合金元素添加量の少ない薄手780MPa鋼では予熱しなくても溶接熱影響部の硬さを低く抑えることができ、予熱フリーでも溶接割れを防止できる。一方で、板厚が厚くなると、水冷時の冷却速度は小さくなる。このため、薄手鋼板と同一成分では焼入れ不足から厚手鋼板の強度は低下し、780MPa級の強度を満足できなくなる。特に、冷却速度が最も小さくなる板厚中心部(1/2t部)での強度低下が顕著である。冷却速度が8℃/secを下回るような板厚40mmを超える厚手鋼板になると、母材強度確保に合金元素の多量添加が必須となり、溶接予熱フリー化は極めて困難となる。   In the case of a thick steel plate having a base material strength of 780 MPa, the influence of the plate thickness on the preheating free during welding is very large. If the plate thickness is less than 12 mm, preheating-free can be achieved relatively easily. This is because if the plate thickness is less than 12 mm, the cooling rate of the steel plate during water cooling can be physically increased to 100 ° C./sec or more even at the center of the plate thickness. In this case, a hard martensite or bainite structure can be obtained at a high cooling rate without adding a large amount of C or an alloy element, and a strength of 780 MPa can be obtained. And in the thin 780 MPa steel with a small amount of alloying elements added, the hardness of the weld heat affected zone can be kept low without preheating, and weld cracking can be prevented even without preheating. On the other hand, as the plate thickness increases, the cooling rate during water cooling decreases. For this reason, with the same component as the thin steel plate, the strength of the thick steel plate decreases due to insufficient quenching, and the strength of 780 MPa class cannot be satisfied. In particular, the strength reduction is remarkable at the center portion (1/2 t portion) where the cooling rate is the smallest. If the steel plate is thicker than 40 mm, and the cooling rate is less than 8 ° C./sec, it is essential to add a large amount of alloying elements to ensure the strength of the base material, making it difficult to make welding preheating free.

そこで、本発明は、母材の高強度と高靭性、高溶接性を、高価合金元素のNi、Mo、V、Cu無添加で、かつ、圧延冷却後の再加熱焼戻し熱処理を省略した上で満足可能な、具体的には、母材の板厚中心部において、引張強さ780MPa以上、降伏応力685MPa以上、−20℃でのシャルピー吸収エネルギーが100J以上で、y割れ試験時の必要予熱温度が25℃以下を満足可能な、溶接性に優れる引張強さ780MPa級高張力厚鋼板の製造方法を提供することを目的とするものである。ここで、本発明が対象とする鋼板の板厚は、12mm以上40mm以下である。   Therefore, the present invention provides high strength, high toughness, and high weldability of the base material without adding the expensive alloy elements Ni, Mo, V, and Cu, and omitting reheating and tempering heat treatment after rolling cooling. Satisfactory, specifically, at the center of the thickness of the base metal, the tensile strength is 780 MPa or more, the yield stress is 685 MPa or more, the Charpy absorbed energy at −20 ° C. is 100 J or more, and the necessary preheating temperature for the y-cracking test Is intended to provide a method for producing a high-tensile steel plate having a tensile strength of 780 MPa that can satisfy 25 ° C. or less and has excellent weldability. Here, the plate | board thickness of the steel plate which this invention makes object is 12 mm or more and 40 mm or less.

本発明者らは、上述した課題を解決するために、Ni、Mo、V、Cu無添加の成分系で圧延後直接焼入れによる製造を前提に、母材、溶接継手につき数多くの検討を行った。Ni、Mo、V、Cu無添加のB添加成分系につき、小入熱溶接時の予熱フリーの実現に向け、添加成分に関する検討を行った結果、C添加量を0.03%以上、0.055%以下に厳格に規制した上で、Pcm値で評価し得る溶接割れ感受性指数を0.22%以下に規制することで、y割れ試験時の必要予熱温度を25℃以下とすることができ、予熱フリー化が可能となることがわかった。しかしながら、Pcm値0.22%以下を前提として、板厚40mmまでの板厚方向全厚に亘る母材強度・靭性を両立することは困難であった。これに対し、B添加鋼におけるNb、Mn、Cr添加量と圧延・冷却条件につき種々検討した結果、Nb添加量を0.02%以上、0.05%以下とした上で、さらに、Mnを1.0%以上、かつ、Crを0.4%以上添加した上で、Pcm値にて0.19%以上を満足するようにMnとCrを添加し、760℃以上で圧延した直後に700℃以上から、室温以上350℃以下まで冷却速度8℃/sec以上、80℃/sec以下にて加速冷却することで、板厚40mmまでの板厚方向全厚に亘る母材強度・靭性の両立、具体的には、引張強さ780MPa以上、降伏応力685MPa以上、−20℃でのシャルピー吸収エネルギーが100J以上を満足可能となることを新規に知見した。   In order to solve the above-mentioned problems, the present inventors have made many studies on the base material and the welded joint on the premise of manufacturing by direct quenching after rolling in a component system containing no Ni, Mo, V, or Cu. . As a result of examining the additive component in order to realize preheating free at the time of small heat input welding for the additive component system of Ni, Mo, V and Cu additive-free, the amount of addition of C is 0.03% or more, and 0.0. By strictly regulating the weld cracking susceptibility index, which can be evaluated by the Pcm value, to 0.22% or less after strictly regulating to 055% or less, the required preheating temperature during the y-cracking test can be made 25 ° C or less. It was found that preheating can be made free. However, on the premise of a Pcm value of 0.22% or less, it has been difficult to achieve both the base material strength and toughness over the entire thickness in the thickness direction up to a thickness of 40 mm. On the other hand, as a result of various investigations regarding Nb, Mn, Cr addition amounts and rolling / cooling conditions in the B-added steel, the Nb addition amount was set to 0.02% or more and 0.05% or less, Immediately after adding 1.0% or more and adding 0.4% or more of Cr, adding Mn and Cr so as to satisfy 0.19% or more in Pcm value and rolling at 760 ° C. or more, 700 Achieves both strength and toughness of the base material over the entire thickness in the plate thickness direction up to 40 mm by accelerated cooling at a cooling rate of 8 ° C / sec to 80 ° C / sec from room temperature to 350 ° C. Specifically, it has been newly found that the Charpy absorbed energy at −20 ° C. with a tensile strength of 780 MPa or more, a yield stress of 685 MPa or more can be satisfied.

本発明は、以上のような新規知見に基づき成されたものであって、その要旨は次のとおりである。
(1) 質量%で、C:0.03%以上、0.055%以下、Mn:1.0%以上、2.3%以下、P:0.02%以下、S:0.0050%以下、Cr:0.4%以上、1.5%以下、Nb:0.02%以上、0.05%以下、Ti:0.005%以上、0.015%以下、Al:0.003%以上、0.08%以下、B:0.0005%以上、0.0020%以下、N:0.0015%以上、0.0060%以下を含有し、下記に示される溶接割れ感受性指数Pcm値が0.19%以上、0.22%以下であり、残部Feおよび不可避的不純物からなる成分組成を有する鋼片または鋳片を、1000℃以上、1200℃以下に加熱し、760℃以上で圧延を行い、これに引き続き、700℃以上から冷却速度が8℃/sec以上、80℃/sec以下となる加速冷却を開始し、室温以上350℃以下で該加速冷却を停止することを特徴とする、溶接性に優れる引張強さ780MPa級の高張力厚鋼板の製造方法。
Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]
ここで、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[B]は、それぞれC、Si、Mn、Cu、Ni、Cr、Mo、V、Bの質量%で表した含有量を意味する。
(2) さらに、質量%で、Si:0.10%以上、0.40%以下を含有することを特徴とする、上記(1)に記載の溶接性に優れる引張強さ780MPa級の高張力厚鋼板の製造方法。
(3) さらに、質量%で、Mg:0.0005%以上、0.01%以下、Ca:0.0005%以上、0.01%以下の1種または2種を含有することを特徴とする、上記(1)または(2)に記載の溶接性に優れる引張強さ780MPa級の高張力厚鋼板の製造方法。
The present invention has been made on the basis of the above novel findings, and the gist thereof is as follows.
(1) By mass%, C: 0.03% or more, 0.055% or less, Mn: 1.0% or more, 2.3% or less, P: 0.02% or less, S: 0.0050% or less Cr: 0.4% or more, 1.5% or less, Nb: 0.02% or more, 0.05% or less, Ti: 0.005% or more, 0.015% or less, Al: 0.003% or more 0.08% or less, B: 0.0005% or more, 0.0020% or less, N: 0.0015% or more, 0.0060% or less, and the weld crack sensitivity index Pcm value shown below is 0 A steel slab or slab having a component composition of 19% or more and 0.22% or less and the balance Fe and inevitable impurities is heated to 1000 ° C. or more and 1200 ° C. or less and rolled at 760 ° C. or more. Subsequently, from 700 ° C. or higher, the cooling rate is 8 ° C./sec or higher, 80 ° C. / A method for producing a high-tensile steel plate having a tensile strength of 780 MPa class excellent in weldability, characterized by starting accelerated cooling at a sec. or less and stopping the accelerated cooling at room temperature or higher and 350 ° C. or lower.
Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B]
Here, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V], and [B] are C, Si, Mn, Cu, and Ni, respectively. , Cr, Mo, V, B means the content expressed in mass%.
(2) Further, by mass%, Si: 0.10% or more and 0.40% or less, high tensile strength of 780 MPa class excellent in weldability according to (1) above Manufacturing method of thick steel plate.
(3) Further, it is characterized by containing one or two of Mg: 0.0005% or more and 0.01% or less and Ca: 0.0005% or more and 0.01% or less in mass%. The manufacturing method of the high strength thick steel plate of the tensile strength 780 MPa class which is excellent in the weldability as described in said (1) or (2).

本発明によれば、高強度化ニーズの強い建設機械、産業機械、橋梁、建築、造船などの溶接構造物の構造部材として好適な、溶接予熱フリーの溶接性に優れる引張強さ780MPa級の板厚12mm以上40mm以下の高張力厚鋼板を、高価なNi、Mo、V、Cuを使用せず、かつ、圧延後の再加熱焼戻し熱処理を必要としない高い生産性と低コストのもとに製造することができ、その産業界へもたらす効果は極めて大きい。   According to the present invention, a plate having a tensile strength of 780 MPa that is suitable as a structural member for welded structures such as construction machines, industrial machines, bridges, buildings, shipbuilding, and the like with strong needs for high strength and excellent in weldability without welding preheating. Produces high-tensile steel plates with a thickness of 12 mm to 40 mm with high productivity and low cost that do not use expensive Ni, Mo, V, Cu, and do not require reheating and tempering heat treatment after rolling. And the effect on the industry is extremely large.

以下に、本発明における各成分組成および圧延条件等の製造方法の限定理由を説明する。   Below, the reason for limitation of manufacturing methods, such as each component composition and rolling conditions in this invention, is demonstrated.

Cは、母材強度を満足するために0.03%以上の添加が必要である。添加量が0.055%を超えると、溶接時の必要予熱温度が25℃を超えて予熱フリーを満足できないため、上限値は0.055%とする。   C needs to be added by 0.03% or more in order to satisfy the base material strength. If the addition amount exceeds 0.055%, the necessary preheating temperature during welding exceeds 25 ° C. and preheating free cannot be satisfied, so the upper limit is made 0.055%.

Mnは、母材強度・靭性の両立のために、1.0%以上の添加が必要である。2.3%を超えて添加すると中心偏析部において靭性に有害な粗大なMnSが生成する傾向にあり、板厚中心部の母材靭性の低下をもたらす場合があるので、上限を2.3%とする。   Mn needs to be added in an amount of 1.0% or more in order to achieve both strength and toughness of the base material. If added over 2.3%, coarse MnS that is harmful to toughness tends to be generated in the center segregation portion, which may lead to a decrease in the base metal toughness in the center portion of the plate thickness, so the upper limit is 2.3%. And

Pは、母材および継手の低温靭性を低下させるため含有しないことが望ましい。不可避的に混入する不純物元素としての許容値は0.02%以下である。   It is desirable not to contain P in order to lower the low temperature toughness of the base material and the joint. The allowable value as an impurity element inevitably mixed is 0.02% or less.

Sは、母材および継手の低温靭性を低下させるため含有しないことが望ましい。不可避的に混入する不純物元素としての許容値は0.0050%以下である。   It is desirable not to contain S in order to reduce the low temperature toughness of the base material and the joint. The allowable value as an impurity element inevitably mixed is 0.0050% or less.

Crは、母材強度・靭性の両立のために、0.4%以上の添加が必要である。1.5%を超えて添加すると板厚中心部の母材靭性の低下をもたらす場合があるので、上限を1.5%とする。   Cr needs to be added in an amount of 0.4% or more in order to achieve both the base material strength and toughness. If added over 1.5%, the base material toughness of the central portion of the plate thickness may be lowered, so the upper limit is made 1.5%.

Nbは、母材の強度・靭性の両立のために、0.02%以上の添加が必要である。0.05%を超えて添加すると、Nb(C,N)としての析出C量が増加し、固溶C量減少による焼入性低下のため、特に厚手材の板厚中心部において目標とする母材強度が得られない場合があるので、上限を0.05%とする。   Nb needs to be added in an amount of 0.02% or more in order to achieve both strength and toughness of the base material. If added over 0.05%, the amount of precipitated C as Nb (C, N) increases, and the hardenability decreases due to the decrease in the amount of solid solution C. Since the base material strength may not be obtained, the upper limit is made 0.05%.

TiとNは、微細なTiN粒子を形成し、溶接熱影響部のオーステナイト粒粗大化防止を通して継手靭性を良好にするのに有効である。また、TiはB添加鋼の焼入性安定化に一定の効果を有する。これは、固溶Nが、BN形成による固溶B量減少を通して焼入性低下を招くが、Tiを添加し固溶NをTiNとして析出させることで固溶Bの焼入性向上効果が安定して得られることによる。これら効果を両立させて得るためには、0.005%以上のTiと0.0015%以上のNの添加が必要である。粗大なTiN粒子による継手低温靭性低下と過剰Nによる焼入性低下の両方を抑制するため、Ti添加量は0.015%、N添加量は0.0060%を上限とする。   Ti and N are effective for forming fine TiN particles and improving joint toughness through preventing austenite grain coarsening in the weld heat affected zone. Further, Ti has a certain effect on stabilizing the hardenability of the B-added steel. This is because solid solution N causes a decrease in hardenability by reducing the amount of solid solution B due to BN formation, but the effect of improving the hardenability of solid solution B is stable by adding Ti and precipitating solid solution N as TiN. It depends on what is obtained. In order to obtain both of these effects, it is necessary to add 0.005% or more of Ti and 0.0015% or more of N. In order to suppress both the joint low-temperature toughness drop due to coarse TiN particles and the hardenability drop due to excess N, the upper limit is 0.015% for Ti addition and 0.0060% for N addition.

Bは、焼入性を高め、母材高強度・高靭性を得るため、0.0005%以上の添加が必要である。一方、0.0020%を超えて添加すると焼入性が低下し、良好な継手低温靭性や十分な母材高強度・高靭性が得られない場合があるので、上限を0.0020%とする。   B is required to be added in an amount of 0.0005% or more in order to improve the hardenability and obtain high strength and toughness of the base material. On the other hand, if added over 0.0020%, the hardenability decreases, and good joint low temperature toughness and sufficient base metal high strength and high toughness may not be obtained, so the upper limit is made 0.0020%. .

Alは、通常脱酸元素として添加される範囲の0.003%以上、0.08%以下を含有範囲とする。   Al is contained in a range of 0.003% to 0.08% of the range usually added as a deoxidizing element.

Siは、母材強度の確保のために添加しても良い。この効果を得るためには、0.10%以上の添加が必要である。しかしながら、0.4%を超えて添加すると母材及び継手の靭性が低下するので、その上限を0.4%とする。   Si may be added to ensure the strength of the base material. In order to obtain this effect, addition of 0.10% or more is necessary. However, if added over 0.4%, the toughness of the base metal and joint decreases, so the upper limit is made 0.4%.

MgおよびCaの1種または2種を添加することにより、硫化物や酸化物を形成して母材靭性および継手靭性を高めることができる。この効果を得るためには、MgあるいはCaは、それぞれ0.0005%以上の添加が必要である。しかし、0.01%を超えて過剰に添加すると粗大な硫化物や酸化物が生成するため、かえって靭性を低下させることがある。したがって、添加量をそれぞれ0.0005%以上、0.01%以下とする。   By adding one or two of Mg and Ca, sulfides and oxides can be formed to increase the base metal toughness and joint toughness. In order to obtain this effect, Mg or Ca needs to be added in an amount of 0.0005% or more. However, if it is added in excess of 0.01%, coarse sulfides and oxides are produced, and the toughness may be lowered. Therefore, the addition amount is set to 0.0005% or more and 0.01% or less, respectively.

Ni、Mo、V、Cuは、合金コストの上昇が僅かである理由により、Ni、Mo:0.05%以下、V:0.01%以下、Cu:0.2%以下で含有してもよい。さらには、Ni、Mo、V、Cuが、スクラップ原料などから不可避的に混入する場合は、含有していても高コストとはならないため、上記の上限値を超えて含有しても本発明の範囲内である。   Ni, Mo, V, and Cu may be contained in Ni, Mo: 0.05% or less, V: 0.01% or less, and Cu: 0.2% or less because of a slight increase in alloy cost. Good. Furthermore, when Ni, Mo, V, and Cu are inevitably mixed from scrap raw materials or the like, even if contained, it does not increase the cost. Within range.

溶接割れ感受性指数Pcm値は、0.22%以下にしないと溶接時の予熱をフリーにできないので、その上限を0.22%以下とする。Pcm値が0.19%未満となると、母材の高強度・高靭性を満足できないので、その下限を0.19%とする。   The weld cracking susceptibility index Pcm value must be 0.22% or less because preheating during welding cannot be made free, so the upper limit is made 0.22% or less. If the Pcm value is less than 0.19%, the high strength and high toughness of the base material cannot be satisfied, so the lower limit is made 0.19%.

ここで、Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]であり、式中の[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[B]は、それぞれC、Si、Mn、Cu、Ni、Cr、Mo、V、Bの質量%で表した含有量を意味する。   Here, Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B] [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V], and [B] in the formula are C, Si, Mn, Cu, and Ni, respectively. , Cr, Mo, V, B means the content expressed in mass%.

次に、成分組成以外の製造方法について述べる。   Next, manufacturing methods other than the component composition will be described.

鋼片または鋳片の加熱温度は、Nbの炭窒化物であるNb(C,N)を十分に固溶させるために、1000℃以上とする必要がある。1200℃を超えるとオーステナイト粒が粗大化して靭性低下の原因になるため、その上限を1200℃とする。   The heating temperature of the steel slab or slab needs to be 1000 ° C. or higher in order to sufficiently dissolve Nb (C, N), which is Nb carbonitride. If the temperature exceeds 1200 ° C, the austenite grains become coarse and cause toughness reduction, so the upper limit is set to 1200 ° C.

圧延温度が760℃を下回ると過剰な圧延歪の蓄積により局部的にフェライトが生成し母材の高強度・高靭性が得られない場合があるので、圧延温度の下限を760℃に規制する。   If the rolling temperature is lower than 760 ° C., ferrite is locally generated due to accumulation of excessive rolling strain, and the high strength and high toughness of the base material may not be obtained. Therefore, the lower limit of the rolling temperature is restricted to 760 ° C.

圧延後の加速冷却の開始温度は、700℃未満の場合、局部的にフェライトが生成し、母材の高強度・高靭性が得られない場合があるので、その下限温度を700℃とする。   When the starting temperature of accelerated cooling after rolling is less than 700 ° C, ferrite is locally generated, and the high strength and high toughness of the base material may not be obtained. Therefore, the lower limit temperature is set to 700 ° C.

加速冷却の冷却速度が8℃/sec未満の場合、局部的にフェライトが生成し、母材の高強度・高靭性が得られないので、その下限値を8℃/secとする。上限は水冷により安定して実現可能な冷却速度である80℃/secとする。   When the cooling rate of accelerated cooling is less than 8 ° C./sec, ferrite is locally generated and the high strength and high toughness of the base material cannot be obtained. Therefore, the lower limit is set to 8 ° C./sec. The upper limit is 80 ° C./sec, which is a cooling rate that can be stably realized by water cooling.

加速冷却の停止温度が350℃より高いと、特に板厚30mm以上の厚手材の板厚中心部において、焼入れ不足によるフェライト、上部ベイナイトや島状マルテンサイトの生成量が増加し、母材の高強度が得られないので、停止温度の上限を350℃とする。この時の停止温度とは、冷却終了後に鋼板が復熱した時の鋼板表面温度とする。停止温度の下限は室温であるが、鋼板の脱水素の点で、より好ましい停止温度は100℃以上である。   When the accelerated cooling stop temperature is higher than 350 ° C, the amount of ferrite, upper bainite, and island martensite generated due to insufficient quenching increases, especially in the thickness center of thick materials with a thickness of 30 mm or more. Since the strength cannot be obtained, the upper limit of the stop temperature is set to 350 ° C. The stop temperature at this time is the steel sheet surface temperature when the steel sheet is reheated after the cooling is completed. The lower limit of the stop temperature is room temperature, but the more preferable stop temperature is 100 ° C. or higher in terms of dehydrogenation of the steel sheet.

表1に示す成分組成の鋼を溶製して得られた鋼片を、表2に示す製造条件にて12〜40mm厚さの鋼板とした。これらのうち表2の1−A〜7−Eは本発明鋼であり、8−F〜19−Bは比較例である。表中、下線で示す数字や記号は、成分または圧延条件等の製造条件が特許範囲を逸脱しているか、あるいは特性が下記の目標値を満足していないものである。なお、表1のNi、Mo、V、Cuのうち、0%でないものは不可避的不純物元素としての含有量である。   Steel pieces obtained by melting steel having the component composition shown in Table 1 were made into steel plates having a thickness of 12 to 40 mm under the production conditions shown in Table 2. Among these, 1-A to 7-E in Table 2 are steels of the present invention, and 8-F to 19-B are comparative examples. In the table, underlined numbers and symbols indicate that manufacturing conditions such as components or rolling conditions deviate from the patent scope, or the characteristics do not satisfy the following target values. In addition, among Ni, Mo, V, and Cu in Table 1, the content that is not 0% is the content as an unavoidable impurity element.

Figure 0004427521
Figure 0004427521

Figure 0004427521
Figure 0004427521

これらの鋼板についての母材強度、靭性と、溶接性の評価結果を表2に示す。母材強度は、JIS Z 2201に規定の、1A号全厚引張試験片あるいは4号丸棒引張試験片を採取し、JIS Z 2241に規定の方法で測定した。引張試験片は板厚20mm以下では1A号全厚引張試験片を採取し、20mm厚超では4号丸棒引張試験片を板厚の1/4部(1/4t部)と板厚中心部(1/2t部)より採取した。母材靭性は、板厚中心部から圧延方向に直角な方向にJIS Z 2202に規定の衝撃試験片を採取し、JIS Z 2242に規定の方法で−20℃でのシャルピー吸収エネルギー(vE−20)を求めて評価した。溶接性はJIS Z 3158に規定の方法で、入熱1.7kJ/mmで被覆アーク溶接を行い、ルート割れ防止に必要な予熱温度を求めて評価した。各特性の目標値はそれぞれ母材降伏応力が685MPa以上、母材引張強さが780MPa以上、母材のvE−20が100J以上、必要予熱温度が25℃以下とした。   Table 2 shows the evaluation results of the base material strength, toughness, and weldability of these steel plates. The base material strength was measured by taking a 1A full thickness tensile test piece or a No. 4 round bar tensile test piece specified in JIS Z 2201 and measuring it according to JIS Z 2241. Tensile test specimens are sampled from No. 1A full-thickness tensile specimens with a thickness of 20 mm or less, and No. 4 round bar tensile specimens with thicknesses of more than 20 mm are 1/4 part (1/4 t part) of the thickness and central part of the thickness. (1/2 t part). The base material toughness is obtained by collecting an impact test piece specified in JIS Z 2202 in a direction perpendicular to the rolling direction from the center of the plate thickness, and by Charpy absorbed energy (vE-20) at −20 ° C. by the method specified in JIS Z 2242. ) Was evaluated. Weldability was evaluated by obtaining a preheating temperature necessary for preventing root cracking by performing coated arc welding with a heat input of 1.7 kJ / mm by the method prescribed in JIS Z 3158. The target values for each characteristic were a base material yield stress of 685 MPa or more, a base material tensile strength of 780 MPa or more, a base material vE-20 of 100 J or more, and a necessary preheating temperature of 25 ° C. or less.

実施例1−A〜7−Eは、いずれも母材降伏応力が685MPa以上、母材引張強さが780MPa以上、母材のvE−20が100J以上、必要予熱温度が25℃以下である。   In each of Examples 1-A to 7-E, the base material yield stress is 685 MPa or more, the base material tensile strength is 780 MPa or more, the base material vE-20 is 100 J or more, and the necessary preheating temperature is 25 ° C. or less.

これに対して、以下の比較例は、母材の降伏応力や引張強さが不足する。すなわち、比較例8−FはC添加量が少ないため、10−HはMn添加量が少ないため、12−JはCr添加量が少ないため、15−MはNb添加量が多いため、17−Aは圧延終了温度が760℃を下回るため、18−Bは水冷開始温度が700℃を下回るため、19−Bは冷却停止温度が350℃を上回るため、母材の降伏応力や引張強さが不足する。   On the other hand, the following comparative examples lack the yield stress and tensile strength of the base material. That is, since Comparative Example 8-F has a small C addition amount, 10-H has a small Mn addition amount, 12-J has a small Cr addition amount, and 15-M has a large Nb addition amount, 17- Since A has a rolling end temperature lower than 760 ° C., 18-B has a water cooling start temperature lower than 700 ° C., and 19-B has a cooling stop temperature higher than 350 ° C., the yield stress and tensile strength of the base material are low. Run short.

また、以下の比較例は、母材靭性が不足する。すなわち、比較例11−IはMn添加量が多いため、13−KはCr添加量が多いため、14−LはNb添加量が少ないため、15−MはNb添加量が多いため、16−Aは加熱温度が高いため、母材靭性が不足する。   Moreover, the following comparative examples lack base material toughness. That is, since Comparative Example 11-I has a large amount of Mn added, 13-K has a large amount of Cr added, 14-L has a small amount of Nb added, and 15-M has a large amount of Nb added. Since A has a high heating temperature, the base material toughness is insufficient.

また、比較例9−GはC添加量が多いため、13−KはPcm値が高いため、必要予熱温度が25℃を上回り、予熱フリーを満足しない。   In addition, since Comparative Example 9-G has a large amount of C addition, 13-K has a high Pcm value, and thus the required preheating temperature exceeds 25 ° C., and the preheating is not satisfied.

Claims (3)

質量%で、
C :0.03%以上、0.055%以下、
Mn:1.0%以上、2.3%以下、
P :0.02%以下、
S :0.0050%以下、
Cr:0.4%以上、1.5%以下、
Nb:0.02%以上、0.05%以下、
Ti:0.005%以上、0.015%以下、
Al:0.003%以上、0.08%以下、
B :0.0005%以上、0.0020%以下、
N :0.0015%以上、0.0060%以下
を含有し、下記に示される溶接割れ感受性指数Pcm値が0.19%以上、0.22%以下であり、残部Feおよび不可避的不純物からなる成分組成を有する鋼片または鋳片を、1000℃以上、1200℃以下に加熱し、760℃以上で圧延を行い、これに引き続き、700℃以上から冷却速度が8℃/sec以上、80℃/sec以下となる加速冷却を開始し、室温以上350℃以下で該加速冷却を停止することを特徴とする、溶接性に優れる引張強さ780MPa級の高張力厚鋼板の製造方法。
Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]
ここで、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[B]は、それぞれC、Si、Mn、Cu、Ni、Cr、Mo、V、Bの質量%で表した含有量を意味する。
% By mass
C: 0.03% or more, 0.055% or less,
Mn: 1.0% or more, 2.3% or less,
P: 0.02% or less,
S: 0.0050% or less,
Cr: 0.4% or more, 1.5% or less,
Nb: 0.02% or more, 0.05% or less,
Ti: 0.005% or more, 0.015% or less,
Al: 0.003% or more, 0.08% or less,
B: 0.0005% or more, 0.0020% or less,
N: 0.0015% or more and 0.0060% or less, the weld cracking sensitivity index Pcm value shown below is 0.19% or more and 0.22% or less, and the balance is Fe and inevitable impurities. A steel slab or slab having a component composition is heated to 1000 ° C. or higher and 1200 ° C. or lower and rolled at 760 ° C. or higher. Subsequently, the cooling rate is increased from 700 ° C. or higher to 8 ° C./sec or higher, 80 ° C. / A method for producing a high-tensile steel plate having a tensile strength of 780 MPa class excellent in weldability, characterized by starting accelerated cooling at a sec. or less and stopping the accelerated cooling at room temperature or higher and 350 ° C. or lower.
Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B]
Here, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V], and [B] are C, Si, Mn, Cu, and Ni, respectively. , Cr, Mo, V, B means the content expressed in mass%.
さらに、質量%で、
Si:0.10%以上、0.40%以下
を含有することを特徴とする、請求項1に記載の溶接性に優れる引張強さ780MPa級の高張力厚鋼板の製造方法。
Furthermore, in mass%,
The method for producing a high-tensile steel plate having a tensile strength of 780 MPa and excellent weldability according to claim 1, comprising Si: 0.10% or more and 0.40% or less.
さらに、質量%で、
Mg:0.0005%以上、0.01%以下、
Ca:0.0005%以上、0.01%以下
の1種または2種を含有することを特徴とする、請求項1または2に記載の溶接性に優れる引張強さ780MPa級の高張力厚鋼板の製造方法。
Furthermore, in mass%,
Mg: 0.0005% or more, 0.01% or less,
Ca: 0.0005% or more and 0.01% or less of 1 type or 2 types, The high strength thick steel plate of the tensile strength 780MPa class excellent in the weldability of Claim 1 or 2 characterized by the above-mentioned. Manufacturing method.
JP2006103916A 2006-04-05 2006-04-05 Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability Expired - Fee Related JP4427521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006103916A JP4427521B2 (en) 2006-04-05 2006-04-05 Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006103916A JP4427521B2 (en) 2006-04-05 2006-04-05 Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability

Publications (2)

Publication Number Publication Date
JP2007277622A JP2007277622A (en) 2007-10-25
JP4427521B2 true JP4427521B2 (en) 2010-03-10

Family

ID=38679365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103916A Expired - Fee Related JP4427521B2 (en) 2006-04-05 2006-04-05 Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability

Country Status (1)

Country Link
JP (1) JP4427521B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4358898B1 (en) 2008-04-01 2009-11-04 新日本製鐵株式会社 Method for producing high-tensile thick steel plate having a tensile strength of 780 MPa or more, excellent in weldability and joint low-temperature toughness
CN101960037B (en) * 2008-10-23 2012-05-23 新日本制铁株式会社 High tensile strength steel thick plate having excellent weldability and tensile strength of 780MPa or above, and process for manufacturing same
TWI399444B (en) * 2009-01-17 2013-06-21 Nippon Steel & Sumitomo Metal Corp High strength and low temperature toughness, and a method for manufacturing the same
CN113106354A (en) * 2021-03-31 2021-07-13 五矿营口中板有限责任公司 Easily-welded oil-gas corrosion-resistant shipbuilding structural steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007277622A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP4897125B2 (en) High-strength steel sheet and its manufacturing method
JP4538094B2 (en) High strength thick steel plate and manufacturing method thereof
JP4735191B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP4551492B2 (en) High-tensile steel plate having a tensile strength of 780 MPa or more with excellent weldability and a method for producing the same
JP4735167B2 (en) Method for producing wear-resistant steel sheet with excellent low-temperature toughness
JP6807690B2 (en) Square steel pipe
JP2012122111A (en) Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JP4427522B2 (en) Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability and low temperature toughness
JP5692305B2 (en) Thick steel plate with excellent heat input welding characteristics and material homogeneity, and its manufacturing method
JP4418391B2 (en) High tensile strength steel sheet having yield strength of 650 MPa or more with small acoustic anisotropy and method for producing the same
JP5157257B2 (en) Low yield ratio steel sheet
JP4427521B2 (en) Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability
JP4358898B1 (en) Method for producing high-tensile thick steel plate having a tensile strength of 780 MPa or more, excellent in weldability and joint low-temperature toughness
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP5526685B2 (en) High heat input welding steel
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP5170212B2 (en) Method for producing high-tensile steel with high yield point
JP5223295B2 (en) Refractory H-shaped steel with excellent reheat embrittlement resistance and method for producing the same
JP3622246B2 (en) Method for producing extremely thick H-section steel with excellent strength, toughness and weldability
JP2007302977A (en) Method for manufacturing high-strength steel of tensile strength of 570 mpa class having excellent toughness of weld heat affected zone
JP4687153B2 (en) Production method of low yield ratio high strength steel
JP4830318B2 (en) Method for producing non-tempered high-tensile steel with excellent surface properties
JP4967373B2 (en) Non-tempered high-tensile steel sheet and method for producing the same
JP2014014836A (en) Continuous casting slab of steel containing b, and continuous casting method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R151 Written notification of patent or utility model registration

Ref document number: 4427521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees