JPH03173715A - Production of 50kgf/mm2 class refractory steel for construction use excellent in weldability - Google Patents

Production of 50kgf/mm2 class refractory steel for construction use excellent in weldability

Info

Publication number
JPH03173715A
JPH03173715A JP31293189A JP31293189A JPH03173715A JP H03173715 A JPH03173715 A JP H03173715A JP 31293189 A JP31293189 A JP 31293189A JP 31293189 A JP31293189 A JP 31293189A JP H03173715 A JPH03173715 A JP H03173715A
Authority
JP
Japan
Prior art keywords
steel
weldability
rolling
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31293189A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yano
和彦 矢野
Kiyoshi Iwai
清 岩井
Akihito Nishijima
西島 明史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31293189A priority Critical patent/JPH03173715A/en
Publication of JPH03173715A publication Critical patent/JPH03173715A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide high yield strength at high temp. and superior weldability by subjecting a slab of a refractory steel in which Pcm value is specified to rolling at respectively specified rolling reduction and temp. CONSTITUTION:A steel having a composition which consists of 0.07-0.15% C, 0.05-0.60% Si, 0.50-1.50% Mn, 0.005-0.060% Nb, and the balance Fe with inevitable impurities and in which the value of Pcm specified by an equation is regulated to <=0.24% is cast. The resulting cast slab is heated up to >=1050 deg.C, and rolling reduction at <=900 deg.C is regulated to >=50%, and further, rolling is finished at 850-780 deg.C. By the above procedure, a 50kgf/mm<2> class refractory steel for construction use having >=22kgf/mm<2> yield strength at 600 deg.C and excellent in weldability can be obtained. If necessary, one or more kinds among 0.005-0.060% V, 0.05-0.50% Cu, 0.05-0.50% Ni, 0.005-0.030% Ti, and 0.0005-0.0050% Ca are incorporated to the above steel composition. By this method, the necessity of fireproofing coating can be reduced or obviated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐火鋼の製造方法に関し、詳しくは600℃
の高温においても高い耐力を有する溶接性の優れた建築
用50kgf/+m”級耐火鋼の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing fire-resistant steel, and more specifically, to a method for producing fire-resistant steel.
The present invention relates to a method for manufacturing 50 kgf/+m'' class fire-resistant steel for architectural use, which has high yield strength even at high temperatures and has excellent weldability.

(従来の技術) 建築構造物では、火災時に鉄骨が高温にさらされると強
度が下がり、建築物としての耐力が低下するため、建築
基準法により鉄骨の耐火被覆施工が義務づけられている
(Prior Art) In building structures, when steel frames are exposed to high temperatures in the event of a fire, their strength decreases and the strength of the building decreases, so the Building Standards Act requires the construction of fireproof coatings on steel frames.

従来の51−Mn系の建築用鋼では、350℃を超える
と火災時に構造部材に要求される耐力である長期耐力(
常温耐力の2/3)の22kgf/mm2を下回るため
、鉄骨の温度が350℃を超えないように、工事費、工
期などの面から足伽となる耐火被覆を施している。
Conventional 51-Mn-based architectural steel loses its long-term yield strength (the strength required for structural members in the event of a fire) when the temperature exceeds 350°C.
Since the strength is less than 22 kgf/mm2 (2/3) of the room temperature proof strength, a fireproof covering was applied to prevent the temperature of the steel frame from exceeding 350°C, which would be a barrier in terms of construction cost and construction period.

しかし、最近追加されたr新耐火設計法1では、高温耐
力の優れた鋼材(耐火鋼材)を使用すれば、耐火被覆量
の削減が認められるようになっている。
However, in the recently added New Fireproof Design Method 1, the amount of fireproof coating can be reduced by using steel materials (fireproof steel materials) with excellent high-temperature resistance.

(発明が解決しようとする課題) 現状、高温耐力の優れた鋼としては、ボイラ・圧力容器
用として広く使用されているCr −Mo鋼板がある0
本鋼板は、600°Cの耐力は22kgf/m+e”以
上を有するが、溶接割れ感受性組成(PCM)が高いた
めに、耐溶接割れ性が悪く、予熱、後熱を行うなど溶接
施工に難点がある。
(Problem to be solved by the invention) Currently, as a steel with excellent high-temperature yield strength, there is a Cr-Mo steel sheet that is widely used for boilers and pressure vessels.
This steel plate has a yield strength of 22 kgf/m+e" or more at 600°C, but due to its high weld crack susceptibility composition (PCM), it has poor weld crack resistance and has difficulties in welding work such as requiring preheating and postheating. be.

このため、建築用鋼の耐火被覆施工の低減あるいは省略
を図るために、高い高温耐力を有するとともに優れた溶
接性ならびに母材特性を有し、従来と同し設計・施工が
できる鋼が必要とされている。
Therefore, in order to reduce or eliminate the need for fire-resistant coating on architectural steel, we need a steel that has high high-temperature yield strength, excellent weldability and base material properties, and can be designed and constructed in the same way as conventional steel. has been done.

また、建築用鋼には、地震時の建築物の変形能の点から
、80%以下の降伏比の要求が強まっている。
Furthermore, from the viewpoint of the deformability of buildings during earthquakes, there is an increasing requirement for architectural steel to have a yield ratio of 80% or less.

(課題を解決するための手段) 本発明は、従来の建築用鋼における上記の問題点に鑑み
、本発明者らが鋭意研究を行った結果、化学成分、特に
Cr −Mo系を基本成分として、Nbの析出強化によ
って、溶接性を損なわずに、高温耐力を大幅に改善する
ことが可能であるという知見を得て完成されたもので、
その第1発明は、C:0゜05〜0.15%、Si :
0.05〜0.60%、Mn:0.50〜1.50%、
Cr:0.10〜0.60%、Mo:0.10〜0.6
0%、Nb:0.005〜0.060%を含有し、残部
Feおよび不可避不純物からなり、かつ、下記0式で規
定されるPCHの値が0.24%以下である鋼片を10
50°C以上の温度に加熱したのち、900°C以下の
圧下率を50%以上とし、850〜780°Cの温度範
囲で圧延を終了させ600″Cにおける耐力が22kg
f/+am”以上である溶接性の優れた建築用50kg
f/m+a2級耐火鋼の製造方法である。
(Means for Solving the Problems) In view of the above-mentioned problems with conventional architectural steel, the present inventors have conducted extensive research, and as a result, the present invention has been developed using a chemical composition, particularly a Cr-Mo system, as a basic component. This was completed based on the knowledge that Nb precipitation strengthening can significantly improve high-temperature yield strength without impairing weldability.
The first invention has C: 0°05 to 0.15%, Si:
0.05-0.60%, Mn: 0.50-1.50%,
Cr: 0.10-0.60%, Mo: 0.10-0.6
0%, Nb: 0.005 to 0.060%, the balance consists of Fe and unavoidable impurities, and the PCH value specified by the following formula 0 is 0.24% or less.
After heating to a temperature of 50°C or higher, the rolling reduction at 900°C or lower is set to 50% or higher, and the rolling is finished in a temperature range of 850 to 780°C, resulting in a yield strength of 22 kg at 600"C.
50kg for architectural use with excellent weldability of f/+am” or more
This is a method for manufacturing f/m+a class 2 fireproof steel.

第2発明は、V:0.005〜0.060%、Cu:0
.05〜0.50%、 Ni:0.05〜0.50%、
Ti:0.005〜0.030 %、Ca:0.000
5〜0.0050%の内から選んだ1種または2種以上
を含有する請求項(1)の製造方法である(作用) 以下に、本発明における化学成分の限定理由について説
明する。
The second invention is V: 0.005 to 0.060%, Cu: 0
.. 05-0.50%, Ni: 0.05-0.50%,
Ti: 0.005-0.030%, Ca: 0.000
The manufacturing method according to claim (1), which contains one or more selected from 5 to 0.0050% (Function) Below, the reasons for limiting the chemical components in the present invention will be explained.

Cは、強度上昇に寄与する元素であるが、0.05%未
満では強度を確保することは困難であり、また、0.1
5%を超えて多量に添加するときは、溶接性および靭性
を劣化させる。したがって、その添加量は0.05〜0
.15%の範囲とする。
C is an element that contributes to increasing strength, but it is difficult to ensure strength at less than 0.05%, and C is an element that contributes to increasing strength.
When added in a large amount exceeding 5%, weldability and toughness deteriorate. Therefore, the amount added is 0.05 to 0
.. The range is 15%.

Siは、脱酸のために必須の元素であるが、0.05%
未満では脱酸効果が少な(、また、0.60%を超えて
過多に添加すると溶接性を劣化させる。このため、その
添加量は0.05〜0.60%の範囲とする。
Si is an essential element for deoxidation, but at 0.05%
If it is less than 0.60%, the deoxidizing effect will be small (and if it is added in excess of 0.60%, weldability will deteriorate. Therefore, the amount added is in the range of 0.05 to 0.60%.

Mnは、鋼の強度および靭性を確保するために必要な元
素であるが、0.50%未満ではこのような効果は少な
く、また、1.50%を超えて多量に添加すると溶接性
を劣化させ、かつ、靭性も劣化させる、したがって、そ
の添加量は0.50〜1.50%の範囲とする。
Mn is an element necessary to ensure the strength and toughness of steel, but if it is less than 0.50%, this effect will be small, and if it is added in large amounts exceeding 1.50%, weldability will deteriorate. Therefore, the amount added should be in the range of 0.50 to 1.50%.

Crは、高温強度の向上に有効な元素であるが、0.1
θ%未満ではこのような効果は期待しがたく、0.60
%を超えて多量に添加すると溶接性が劣化する。このた
め、その添加量は0.10〜0.60%の範囲とする。
Cr is an element effective in improving high-temperature strength, but 0.1
It is difficult to expect such an effect below θ%, and 0.60
If added in a large amount exceeding %, weldability deteriorates. Therefore, the amount added is in the range of 0.10 to 0.60%.

Moは、高温強度を確保するために不可欠な元素であり
、600℃における耐力を著しく上昇させる、しかしな
がら、0.1θ%未満ではこのような効果は得られず、
また、0.60%を超えて添加すると溶接性を損なう、
したがって、その添加量は0.10〜0.60%の範囲
とする。
Mo is an essential element for ensuring high-temperature strength and significantly increases yield strength at 600°C.However, if it is less than 0.1θ%, such an effect cannot be obtained.
Also, if added in excess of 0.60%, weldability will be impaired.
Therefore, the amount added is in the range of 0.10 to 0.60%.

Nbは、析出硬化および変態強化による高温強度上昇お
よび細粒化による靭性の向上が図られる元素である。し
かし、0.005%未満ではこのような効果は得られず
、また、0.060%を超えて過多に添加するときは溶
接継手靭性が劣化する。したがって、その添加量はo、
oos〜0.060%の範囲とする。
Nb is an element that increases high-temperature strength through precipitation hardening and transformation strengthening, and improves toughness through grain refinement. However, if it is less than 0.005%, such an effect cannot be obtained, and if it is added in excess of 0.060%, the toughness of the welded joint deteriorates. Therefore, the amount added is o,
The range is from oos to 0.060%.

なお、本発明における第2発明では、上記の元素の他に
必要に応じて、V 5Cus Nts TiおよびCa
の内の1種または2種以上を添加することができ■は、
析出硬化による強度上昇に有効な元素であるが、o、o
os%未満ではこのような効果は殆ど期待できず、また
、0.060%を超えて過多に添加するときは溶接性が
劣化する。したがって、その添加量は0.005〜0.
060%の範囲とする。
In addition, in the second invention of the present invention, in addition to the above-mentioned elements, V 5Cus Nts Ti and Ca
One or more of the following can be added:
It is an effective element for increasing strength through precipitation hardening, but o, o
If the content is less than os%, hardly any such effect can be expected, and if it is added in excess of 0.060%, weldability deteriorates. Therefore, the amount added is 0.005 to 0.
The range is 0.060%.

Cuは、固溶強化による強度上昇に有効な元素であるが
、0.05%未満ではこのような効果は少な(、また、
0.50%を超えて添加すると熱間加工性および溶接性
を損なう、このため、その添加量は0゜05〜0.50
%の範囲とする。
Cu is an element that is effective in increasing strength through solid solution strengthening, but if it is less than 0.05%, this effect is small (and
Adding more than 0.50% will impair hot workability and weldability, so the amount added should be between 0.05 and 0.50%.
% range.

Niは、靭性の向上に有効な元素であるが、0.05%
未満ではこのような効果は得られない。また、0.50
%を超えて添加してもこのような効果は飽和し、経済的
にも無駄である。したがって、その添加量は0.05〜
0.50%の範囲とする。
Ni is an element effective in improving toughness, but at 0.05%
If the amount is less than that, such an effect cannot be obtained. Also, 0.50
Even if it is added in an amount exceeding 20%, such an effect will be saturated and it will be economically wasteful. Therefore, the amount added is 0.05~
The range is 0.50%.

Tiは、オーステナイト粒の粗大化を抑制するとともに
、微細フェライトを生成することから、溶接継手部の靭
性の脆化軽減に有効な元素である。
Ti suppresses the coarsening of austenite grains and generates fine ferrite, so it is an effective element for reducing embrittlement of the toughness of the welded joint.

しかし、0.005%未満ではかかる効果を発揮するこ
とができず、また、0.030%を超えて添加すると溶
接継手部の靭性を劣化させる。したがって、その添加量
は0.005〜0.030%の範囲とする。
However, if less than 0.005%, such effects cannot be exhibited, and if added in excess of 0.030%, the toughness of the welded joint will deteriorate. Therefore, the amount added is in the range of 0.005 to 0.030%.

Caは、微量で板厚方向の特性を改善する元素であるが
、o、ooos%未満ではこのような効果はなく一方、
o、ooso%を超えて添加するときは、このような効
果は飽和するとともに、大型介在物が発生し超音波欠陥
を生じやすくなる。このため、その添加量は0.000
5〜o、ooso%の範囲とする。
Ca is an element that improves properties in the thickness direction in trace amounts, but if it is less than o, oos%, there is no such effect;
When added in excess of o, ooso%, such effects are saturated and large inclusions are generated, making it easy to cause ultrasonic defects. Therefore, the amount added is 0.000
The range is 5 to o, ooso%.

なお、第1発明および第2発明ともに、溶接時の低温割
れを防止するために、溶接割れ感受性組成(Po)を0
.24%以下に限定する。
In addition, in both the first invention and the second invention, in order to prevent cold cracking during welding, the weld cracking susceptibility composition (Po) is set to 0.
.. Limited to 24% or less.

つぎに、本発明における加熱、圧延条件の限定理由につ
いて説明する。
Next, the reasons for limiting the heating and rolling conditions in the present invention will be explained.

加熱温度を1050°C以上に限定した理由は、常温強
度および高温強度の確保に必要なNbを鋼中に固溶させ
るためである。また、900°C以下の圧下率は靭性の
確保に有効な細粒オーステナイトを得るために50%以
上が必要である。さらに、圧延終了温度については、圧
延終了温度が780°C未満の場合は、フェライトの細
粒化ならびに二相域圧延によるフェライトの加工硬化に
より、降伏比が高くなり、80%以下の降伏比を得るこ
とができない。
The reason why the heating temperature is limited to 1050° C. or higher is to dissolve Nb, which is necessary for ensuring room temperature strength and high temperature strength, into the steel. Further, the rolling reduction ratio of 900°C or less is required to be 50% or more in order to obtain fine-grained austenite that is effective in ensuring toughness. Furthermore, regarding the rolling end temperature, if the rolling end temperature is less than 780°C, the yield ratio will increase due to grain refinement of ferrite and work hardening of ferrite due to two-phase region rolling, and the yield ratio will be 80% or less. can't get it.

また、圧延終了温度が850℃を超えると、オーステナ
イトがネ■粒となるため靭性が劣化する。したがって、
圧延終了温度は850〜780℃の温度範囲に限定する
Further, when the rolling end temperature exceeds 850°C, the austenite becomes red grains and the toughness deteriorates. therefore,
The rolling end temperature is limited to a temperature range of 850 to 780°C.

(実施例) 以下に、実施例を挙げて本発明について説明する。(Example) The present invention will be described below with reference to Examples.

実施例1 供試鋼板は第1表に示す化学成分を含有する鋼片を第2
表に示す加熱・圧延条件にしたがって、板厚2511M
に仕上げたものである。これらの鋼板から試験片を採取
し、常温引張試験、シャルビai撃試験、最高かたさ試
験および600℃の高温引張試験を行った。その結果を
第2表に併記する。なお、最高かたさ試験はJIS Z
 3101に準じて行った。
Example 1 The test steel plate was a steel plate containing the chemical components shown in Table 1.
According to the heating and rolling conditions shown in the table, the plate thickness was 2511M.
It was completed in Test pieces were taken from these steel plates and subjected to a room temperature tensile test, a Charvia AI impact test, a maximum hardness test, and a 600° C. high temperature tensile test. The results are also listed in Table 2. The highest hardness test is JIS Z
It was carried out according to 3101.

第1表に本発明鋼A−Fおよび比較IC−にの板厚、化
学成分を、第2表にPCll、加熱・圧延条件、引張特
性、衝撃特性、溶接性および高温特性をそれぞれ示す。
Table 1 shows the plate thickness and chemical composition of the invention steels A-F and comparative IC-, and Table 2 shows the PCll, heating and rolling conditions, tensile properties, impact properties, weldability and high temperature properties, respectively.

(以下余白) 第2表から明らかなように、本発明鋼A−Fは600°
Cにおける耐力は22kgf/mm”以上で優れた高温
耐力を示し、かつ、最高かたさもHV350未満で良好
な溶接性を示している。なお、常温の引張特性は、50
kgf/mm2級の値を勿論満足している。
(Left below) As is clear from Table 2, the steels A-F of the present invention have an angle of 600°
The proof stress in C is 22 kgf/mm" or more, showing excellent high temperature proof stress, and the maximum hardness is less than HV350, showing good weldability. The tensile properties at room temperature are 50 kgf/mm" or more.
Of course, it satisfies the value of kgf/mm2 class.

降伏比は建築用鋼材に要求されている80%以下を十分
に満足している。また、シャルビ衝撃試験における破面
遷移温度も一35°C以下である。
The yield ratio fully satisfies the requirement of 80% or less for architectural steel materials. Furthermore, the fracture surface transition temperature in the Charvi impact test is -35°C or less.

一方、比較鋼G、Hは、いずれもPCMが本発明の限定
範囲から高めに外れているため、最高かたさがHV35
0以上であり、溶接性が悪く、さらに破面遷移温度も高
い、比較ml、Jは、いずれも、PCHは0.24%以
下であるが、前者はMoを、後者はNbをそれぞれ添加
されていないため、600°Cにおける耐力が低い、ま
た、従来の建築用50kgf/mm2板鋼板である比較
鋼にも、600°Cにおける耐力は18kgf/−■2
と低い。
On the other hand, the PCM of comparative steels G and H is far outside the limited range of the present invention, so the maximum hardness is HV35.
0 or more, the weldability is poor, and the fracture surface transition temperature is also high. Comparative ml and J both have PCH of 0.24% or less, but the former has Mo added and the latter has Nb added. Also, the yield strength at 600°C is low for comparison steel, which is a conventional 50kgf/mm2 steel plate for construction, and the yield strength at 600°C is 18kgf/-■2.
and low.

実施例2 供試鋼板は第3表に示す化学成分、加熱・圧延条件にし
たがって、板厚25−mに仕上げたものである。これら
の鋼板から試験片を採取し、常温引張試験、シャルビ衝
撃試験を行った。その結果を第3表に併記する。なお、
化学成分は第1表の本発明w4Aの化学成分と同じであ
る。
Example 2 A test steel plate was finished to a thickness of 25 m according to the chemical composition and heating/rolling conditions shown in Table 3. Test pieces were taken from these steel plates and subjected to a room temperature tensile test and a Charby impact test. The results are also listed in Table 3. In addition,
The chemical composition is the same as that of w4A of the present invention shown in Table 1.

第3表に本発明鋼At〜^4および比較鋼A5〜八8の
板厚、化学成分、PC)1%加熱・圧延条件、引張特性
、衝撃特性をそれぞれ示す。
Table 3 shows the plate thickness, chemical composition, PC) 1% heating and rolling conditions, tensile properties, and impact properties of the invention steels At~^4 and comparative steels A5~88, respectively.

(以下余白) 本発明鋼A1〜A4は、加熱温度が1050−1200
°Cの範囲、900°C以下の圧下率が50%以上、圧
延終了温度が790〜850 ”Cの範囲であるため、
常温の引張特性は、50kgf/s+m”級の値を満足
している。また、降伏比も80%以下で、かつ、シャル
ビ衝撃試験における破面遷移温度も一20℃以下である
(Left below) Steels A1 to A4 of the present invention have a heating temperature of 1050-1200.
°C range, the rolling reduction rate is 50% or more below 900 °C, and the rolling end temperature is within the range of 790~850''C.
The tensile properties at room temperature satisfy the value of 50 kgf/s+m'' class. Also, the yield ratio is 80% or less, and the fracture surface transition temperature in the Charvy impact test is also -20°C or less.

一方、比較lA5は、加熱温度が1000°Cであるた
め、Nbが十分に固溶してないため、常温の強度が低い
、比較鋼A6は、900°C以下の圧下率が40%と小
さいため、細粒オーステナイトが得られず破面遷移温度
が高い、比較鋼A7は、圧延終了温度が750°Cと低
めのため、二相域圧延となり常温の降伏比が80%を超
えている。また、比較mA8は、圧延終了温度が880
°Cであり、オーステナイトの細粒化が不足しているた
め、破面遷移温度が高い。
On the other hand, comparative steel A5 has a low strength at room temperature because the heating temperature is 1000°C, so Nb is not sufficiently dissolved in solid solution. Comparative steel A6 has a small rolling reduction of 40% below 900°C. Therefore, comparative steel A7, in which fine-grained austenite is not obtained and the fracture surface transition temperature is high, has a low rolling end temperature of 750°C, so it is rolled in a two-phase region and the yield ratio at room temperature exceeds 80%. In addition, the comparative mA8 has a rolling end temperature of 880
°C, and the fracture surface transition temperature is high due to insufficient grain refinement of austenite.

なお、上記実施例は厚鋼板の製造方法に関するものであ
るが、本発明は他の鋼製品、例えば条鋼、形鋼の製造に
も適応し得ることは言うまでもない。
Although the above embodiment relates to a method for manufacturing thick steel plates, it goes without saying that the present invention can also be applied to the manufacture of other steel products, such as long steel and shaped steel.

(発明の効果)(Effect of the invention)

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.05〜0.15%、Si:0.05〜0
.60%、Mn:0.50〜1.50%、Cr:0.1
0〜0.60%、Mo:0.10〜0.60%、Nb:
0.005〜0.060%を含有し、残部Feおよび不
可避不純物からなり、かつ、下記[1]式で規定される
P_C_Mの値が0.24%以下である鋼片を1050
℃以上の温度に加熱したのち、900℃以下の圧下率を
50%以上とし、850〜780℃の温度範囲で圧延を
終了させ、600℃における耐力が22kgf/mm^
2以上であることを特徴とする溶接性の優れた建築用5
0kgf/mm^2級耐火鋼の製造方法。 ▲数式、化学式、表等があります▼[1]
(1) C: 0.05-0.15%, Si: 0.05-0
.. 60%, Mn: 0.50-1.50%, Cr: 0.1
0-0.60%, Mo: 0.10-0.60%, Nb:
A steel billet containing 0.005 to 0.060%, the balance consisting of Fe and unavoidable impurities, and the value of P_C_M defined by the following formula [1] is 0.24% or less is 1050
After heating to a temperature of ℃ or higher, the rolling reduction at 900℃ or lower is set to 50% or higher, and the rolling is finished in a temperature range of 850 to 780℃, and the yield strength at 600℃ is 22kgf/mm^
Architectural use 5 with excellent weldability characterized by a rating of 2 or more
0kgf/mm^2 class fireproof steel manufacturing method. ▲ Contains mathematical formulas, chemical formulas, tables, etc. ▼ [1]
(2)V:0.005〜0.060%、Cu:0.05
〜0.50%、Ni:0.05〜0.50%、Ti:0
.005〜0.030%、Ca:0.0005〜0.0
050%の内から選んだ1種または2種以上を含有する
ことを特徴とする請求項(1)の製造方法。
(2) V: 0.005-0.060%, Cu: 0.05
~0.50%, Ni:0.05~0.50%, Ti:0
.. 005-0.030%, Ca: 0.0005-0.0
The manufacturing method according to claim 1, characterized in that the method contains one or more selected from 0.050%.
JP31293189A 1989-11-30 1989-11-30 Production of 50kgf/mm2 class refractory steel for construction use excellent in weldability Pending JPH03173715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31293189A JPH03173715A (en) 1989-11-30 1989-11-30 Production of 50kgf/mm2 class refractory steel for construction use excellent in weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31293189A JPH03173715A (en) 1989-11-30 1989-11-30 Production of 50kgf/mm2 class refractory steel for construction use excellent in weldability

Publications (1)

Publication Number Publication Date
JPH03173715A true JPH03173715A (en) 1991-07-29

Family

ID=18035198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31293189A Pending JPH03173715A (en) 1989-11-30 1989-11-30 Production of 50kgf/mm2 class refractory steel for construction use excellent in weldability

Country Status (1)

Country Link
JP (1) JPH03173715A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106319376A (en) * 2015-06-29 2017-01-11 鞍钢股份有限公司 Novel low-weld-crack-sensitivity high-strength steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106319376A (en) * 2015-06-29 2017-01-11 鞍钢股份有限公司 Novel low-weld-crack-sensitivity high-strength steel plate

Similar Documents

Publication Publication Date Title
JPH0450362B2 (en)
JPH06316723A (en) Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability
JPH03173715A (en) Production of 50kgf/mm2 class refractory steel for construction use excellent in weldability
JPH04193907A (en) Production of 50kgf/mm2 class refractory steel plate for construction use
JP4592173B2 (en) Martensitic stainless steel welded structure with excellent fire resistance
JPH05117745A (en) Production of 490n/mm2 class weather resistant refractory steel products for building structural purpose
JP3244155B2 (en) Manufacturing method of refractory steel for hot-dip galvanized structure
JPH04350120A (en) Production of high strength refractory steel plate for construction use
JP4570221B2 (en) Martensitic stainless steel with excellent fire resistance
JPH0252196A (en) Welding wire for fire resistant steel
JP3550721B2 (en) Method for producing hot-rolled steel strip for building with excellent fire resistance and toughness
JP2546954B2 (en) Method for manufacturing high-strength steel for construction with excellent fire resistance
JPH0737649B2 (en) Manufacturing method of fireproof steel plate for building with low yield ratio
JP3232118B2 (en) Hot-rolled steel strip for construction with excellent fire resistance and toughness and method for producing the same
JP4002463B2 (en) 490 N / mm grade 2 steel excellent in fire resistance and method for producing the same
JP4085795B2 (en) Refractory steel for construction and method for producing the same
JP4743198B2 (en) Refractory steel for construction and method for producing the same
JP2816008B2 (en) Low yield ratio steel material for building with excellent fire resistance and method of manufacturing the same
JPH07207336A (en) Production of refractory steel products for building structural purpose
JP2000080414A (en) Manufacture of hot-dip galvanized refractory steel product for structural
JPH0770647A (en) Production of hot dip galvanized steel sheet for corrosion resisting refractory structure
JP2529035B2 (en) Large diameter steel pipe for construction with excellent fire resistance
JP3499278B2 (en) Refractory cast steel
JPH04180518A (en) Production of 50kgf/mm2 class refractory steel for building having excellent toughness of large heat input welded joint
JPS61257456A (en) High toughness and high phosphorus type weather resistant steel having superior weldability and giving welded joint of superior performance